Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = reflective properties of road surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1948 KB  
Article
Graph-MambaRoadDet: A Symmetry-Aware Dynamic Graph Framework for Road Damage Detection
by Zichun Tian, Xiaokang Shao and Yuqi Bai
Symmetry 2025, 17(10), 1654; https://doi.org/10.3390/sym17101654 - 5 Oct 2025
Viewed by 223
Abstract
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry [...] Read more.
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry within road networks and damage patterns. We present Graph-MambaRoadDet (GMRD), a symmetry-aware and lightweight framework that integrates dynamic graph reasoning with state–space modeling for accurate, topology-informed, and real-time road damage detection. Specifically, GMRD employs an EfficientViM-T1 backbone and two DefMamba blocks, whose deformable scanning paths capture sub-pixel crack patterns while preserving geometric symmetry. A superpixel-based graph is constructed by projecting image regions onto OpenStreetMap road segments, encoding both spatial structure and symmetric topological layout. We introduce a Graph-Generating State–Space Model (GG-SSM) that synthesizes sparse sample-specific adjacency in O(M) time, further refined by a fusion module that combines detector self-attention with prior symmetry constraints. A consistency loss promotes smooth predictions across symmetric or adjacent segments. The full INT8 model contains only 1.8 M parameters and 1.5 GFLOPs, sustaining 45 FPS at 7 W on a Jetson Orin Nano—eight times lighter and 1.7× faster than YOLOv8-s. On RDD2022, TD-RD, and RoadBench-100K, GMRD surpasses strong baselines by up to +6.1 mAP50:95 and, on the new RoadGraph-RDD benchmark, achieves +5.3 G-mAP and +0.05 consistency gain. Qualitative results demonstrate robustness under shadows, reflections, back-lighting, and occlusion. By explicitly modeling spatial and topological symmetry, GMRD offers a principled solution for city-scale road infrastructure monitoring under real-time and edge-computing constraints. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

32 pages, 20641 KB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Cited by 1 | Viewed by 529
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

26 pages, 3294 KB  
Article
RIS-Aided V2I–VLC for the Next-Generation Intelligent Transportation Systems in Mountain Areas
by Wei Yang, Haoran Liu, Guangpeng Cheng, Zike Su and Yuanyuan Fan
Photonics 2025, 12(7), 664; https://doi.org/10.3390/photonics12070664 - 1 Jul 2025
Viewed by 503
Abstract
Visible light communication (VLC) is considered to be one of the key technologies for advancing the next-generation intelligent transportation systems (ITSs). However, in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) VLC, the line-of-sight (LOS) link for communication is often obstructed by vehicle mobility. To address [...] Read more.
Visible light communication (VLC) is considered to be one of the key technologies for advancing the next-generation intelligent transportation systems (ITSs). However, in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) VLC, the line-of-sight (LOS) link for communication is often obstructed by vehicle mobility. To address this issue and enhance system performance, a novel V2I–VLC system is proposed and analyzed in this study. The system targets mountain road traffic scenarios employing optical reflecting intelligent surfaces (RISs). To emphasize the practicality of the study, the effects of atmospheric turbulence (AT) and weather conditions are also considered in the channel modeling. Further, the closed-form expressions for average path loss, channel capacity, and outage probability are derived. Furthermore, a novel closed-form expression is also derived for the properties of RIS, which can be used to calculate the required number of RIS elements to achieve a target energy efficiency. In the performance analysis, the accuracy of the derived theoretical expression is validated by numerical simulation, and the effectiveness of the RIS-aided V2I–VLC system is evaluated. Moreover, with a reasonable number of required RIS elements, the system performance in terms of path loss is improved by more than 23.5% on average over the existing studies. Full article
(This article belongs to the Special Issue Emerging Technologies in Visible Light Communication)
Show Figures

Figure 1

19 pages, 4503 KB  
Article
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
by Wing Yi Pao, Joshua Howorth, Long Li, Martin Agelin-Chaab, Langis Roy, Julian Knutzen, Alexis Baltazar-y-Jimenez and Klaus Muenker
Sensors 2024, 24(10), 2997; https://doi.org/10.3390/s24102997 - 9 May 2024
Cited by 9 | Viewed by 4226
Abstract
With the emergence of autonomous functions in road vehicles, there has been increased use of Advanced Driver Assistance Systems comprising various sensors to perform automated tasks. Light Detection and Ranging (LiDAR) is one of the most important types of optical sensor, detecting the [...] Read more.
With the emergence of autonomous functions in road vehicles, there has been increased use of Advanced Driver Assistance Systems comprising various sensors to perform automated tasks. Light Detection and Ranging (LiDAR) is one of the most important types of optical sensor, detecting the positions of obstacles by representing them as clusters of points in three-dimensional space. LiDAR performance degrades significantly when a vehicle is driving in the rain as raindrops adhere to the outer surface of the sensor assembly. Performance degradation behaviors include missing points and reduced reflectivity of the points. It was found that the extent of degradation is highly dependent on the interface material properties. This subsequently affects the shapes of the adherent droplets, causing different perturbations to the optical rays. A fundamental investigation is performed on the protective polycarbonate cover of a LiDAR assembly coated with four classes of material—hydrophilic, almost-hydrophobic, hydrophobic, and superhydrophobic. Water droplets are controllably dispensed onto the cover to quantify the signal alteration due to the different droplets of various sizes and shapes. To further understand the effects of droplet motion on LiDAR signals, sliding droplet conditions are simulated using numerical analysis. The results are validated with physical optical tests, using a 905 nm laser source and receiver to mimic the LiDAR detection mechanism. Comprehensive explanations of LiDAR performance degradation in rain are presented from both material and optical perspectives. These can aid component selection and the development of signal-enhancing strategies for the integration of LiDARs into vehicle designs to minimize the impact of rain. Full article
(This article belongs to the Special Issue Intelligent Transportation Systems: Sensing, Automation and Control)
Show Figures

Figure 1

21 pages, 5795 KB  
Article
Investigation of Mechanical and Shrinkage Performance for Large-Size Cement-Stabilized Aggregates
by Chengwei Zhao, Tuo Huang, Xinglong Gao, Yahui Li and Li Lu
Materials 2024, 17(5), 1027; https://doi.org/10.3390/ma17051027 - 23 Feb 2024
Cited by 6 | Viewed by 1655
Abstract
Cement-stabilized macadam materials are widely utilized as semi-rigid base materials in road construction. However, conventional cement-stabilized macadam (CCSM) bases often develop shrinkage cracks during early construction and maintenance due to variations in humidity and temperature. Shrinkage cracks can subsequently result in reflective cracks [...] Read more.
Cement-stabilized macadam materials are widely utilized as semi-rigid base materials in road construction. However, conventional cement-stabilized macadam (CCSM) bases often develop shrinkage cracks during early construction and maintenance due to variations in humidity and temperature. Shrinkage cracks can subsequently result in reflective cracks in the asphalt pavement, significantly reducing the overall service life of the road. This study systematically evaluates the shrinkage and mechanical properties of large-size cement-stabilized macadam (LSCSM). Initially, the mix proportion for LSCSM is determined using the Bailey method. Subsequently, an experimental design based on the response surface method is implemented to comprehensively investigate various properties, including unconfined compressive strength, compressive rebound modulus, flexural strength, and the durability aspects of early drying shrinkage and temperature shrinkage through laboratory experiments. Further, the performance differences between CCSM and LSCSM are analyzed comparatively. The findings reveal that the compressive strength of LSCSM surpasses that of CCSM, albeit with comparatively lower compressive rebound modulus and flexural strength. LSCSM demonstrates a unique blend of characteristics, exhibiting traits of both semi-rigid and flexible materials. Furthermore, LSCSM exhibits favorable crack resistance properties, as evidenced by lower dry shrinkage strain, average dry and temperature shrinkage coefficient compared to CCSM. The proposed LSCSM in this study effectively reduces cement dosage and enhances the crack resistance performance of base materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

15 pages, 5807 KB  
Article
Performance Verification of Autonomous Driving LiDAR Sensors under Rainfall Conditions in Darkroom
by Jaeryun Choe, Hyunwoo Cho and Yoonseok Chung
Sensors 2024, 24(1), 14; https://doi.org/10.3390/s24010014 - 19 Dec 2023
Cited by 2 | Viewed by 2739
Abstract
This research aims to assess the functionality of the VLP-32 LiDAR sensor, which serves as the principal sensor for object recognition in autonomous vehicles. The evaluation is conducted by simulating edge conditions the sensor might encounter in a controlled darkroom setting. Parameters for [...] Read more.
This research aims to assess the functionality of the VLP-32 LiDAR sensor, which serves as the principal sensor for object recognition in autonomous vehicles. The evaluation is conducted by simulating edge conditions the sensor might encounter in a controlled darkroom setting. Parameters for environmental conditions under examination encompass measurement distances ranging from 10 to 30 m, varying rainfall intensities (0, 20, 30, 40 mm/h), and different observation angles (0°, 30°, 60°). For the material aspects, the investigation incorporates reference materials, traffic signs, and road surfaces. Employing this diverse set of conditions, the study quantitatively assesses two critical performance metrics of LiDAR: intensity and NPC (number of point clouds). The results indicate a general decline in intensity as the measurement distance, rainfall intensity, and observation angles increase. Instances were identified where the sensor failed to record intensity for materials with low reflective properties. Concerning NPC, both the effective measurement area and recorded values demonstrated a decreasing trend with enlarging measurement distance and angles of observation. However, NPC metrics remained stable despite fluctuations in rainfall intensity. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

16 pages, 5964 KB  
Article
Reflective Properties and Lighting Quality of Urban Asphalt Roads in a Full-Service Cycle: A Longitudinal Study in Zhejiang Province, China
by Chi Zhang, Chuan Lei, Lei Ye, Cheng Kang, Meihong Wang, Zhiyi Huang and Ke Wu
Sustainability 2023, 15(24), 16784; https://doi.org/10.3390/su152416784 - 13 Dec 2023
Cited by 1 | Viewed by 1849
Abstract
To optimize the lighting design of urban roads in China and improve traffic safety, the present study conducted a 10-year longitudinal experiment on urban asphalt roads in Zhejiang Province, China, and analyzed variations of the road surface’s reflective properties and lighting quality with [...] Read more.
To optimize the lighting design of urban roads in China and improve traffic safety, the present study conducted a 10-year longitudinal experiment on urban asphalt roads in Zhejiang Province, China, and analyzed variations of the road surface’s reflective properties and lighting quality with different service lengths, surface areas, and observation angles. The results showed that these roads were R2 roads with low resilience and strong directional reflection. The average luminance coefficient Q0 reached maximum and minimum at the beginning and after around one year of service, respectively. After four years of service, Q0 was about 80% of its initial value and remained stable. The specularity factor S1 reached a maximum of around two years of service. The average luminance Lav was approximately 35%, and overall luminance uniformity U0 was 31%, lower than that of R3 roads during the toughest period of the service life. If the lighting design follows the 1° observation angle r-table recommended by the specification, high Lav and low U0 occur for roads like expressways, leading to a significant increase in traffic safety risks; collector roads may suffer from insufficient Lav. Urban asphalt roads in Zhejiang Province, China, should use the R2 road standard and increase the design value of Lav by 35–45%, and high-level roads should increase the design value of U0 by 40%. The present study will provide scientific references for the design of lighting for urban roads in China, thus promoting long-term sustainable traffic safety in cities. Full article
(This article belongs to the Special Issue Risk Assessment of Accidents for Sustainable Safety)
Show Figures

Figure 1

22 pages, 4022 KB  
Article
Vertical vs. Horizontal Fractal Dimensions of Roads in Relation to Relief Characteristics
by Klemen Prah and Ashton M. Shortridge
ISPRS Int. J. Geo-Inf. 2023, 12(12), 487; https://doi.org/10.3390/ijgi12120487 - 30 Nov 2023
Cited by 2 | Viewed by 2463
Abstract
This paper investigated the surface length of roads from both horizontal and vertical perspectives using the theory of fractal dimension of surfaces and curves. Three progressive experiments were conducted. The first demonstrated the magnitude of the differences between the planar road length and [...] Read more.
This paper investigated the surface length of roads from both horizontal and vertical perspectives using the theory of fractal dimension of surfaces and curves. Three progressive experiments were conducted. The first demonstrated the magnitude of the differences between the planar road length and the DTM-derived surface road length and assessed its correlation with the DTM-calculated road slope. The second investigated the road distance complexity through the fractal dimension in both planar and vertical dimensions. The third related the vertical with the horizontal fractal dimension of roads across a range of distinct physiographic regions. The study contributed theoretically by linking the planimetric complexity to vertical complexity, with clear applications for advanced transportation studies and network analyses. The core methodology used geographic information systems (GIS) to integrate a high resolution (1 × 1 m) digital terrain model (DTM) with a road network layer. A novel concept, the vertical fractal dimension of roads was introduced. Both the vertical and horizontal fractal dimensions of the roads were calculated using the box-counting methodology. We conducted an investigation into the relationship between the two fractal dimensions using fourteen study areas within four distinct physiographic regions across Slovenia. We found that the average slope of a three-dimensional (3D) road was directly related to the length difference between 3D and two-dimensional (2D) roads. The calculated values for the vertical fractal dimension in the study areas were only slightly above 1, while the maximum horizontal fractal dimension of 1.1837 reflected the more sinuous properties of the road in plan. Variations in the vertical and horizontal fractal dimensions of the roads varied between the different physiographic regions. Full article
Show Figures

Figure 1

17 pages, 4320 KB  
Article
Assessment of Waste Glass Incorporation in Asphalt Concrete for Surface Layer Construction
by Stavros Kalampokis, Danai Kalama, Fotini Kesikidou, Maria Stefanidou and Evangelos Manthos
Materials 2023, 16(14), 4938; https://doi.org/10.3390/ma16144938 - 11 Jul 2023
Cited by 13 | Viewed by 3489
Abstract
The growing need to preserve natural resources and minimize landfill waste has led to an increased consideration of incorporating waste materials in road construction and maintenance. This study focuses specifically on utilizing waste glass as part of the aggregates in hot asphalt, particularly [...] Read more.
The growing need to preserve natural resources and minimize landfill waste has led to an increased consideration of incorporating waste materials in road construction and maintenance. This study focuses specifically on utilizing waste glass as part of the aggregates in hot asphalt, particularly in Asphalt Concrete (AC) for surface layers, known as “Glassphalt”. Glass, due to its poor adhesion to bitumen, presents challenges when used in asphalt mixtures. Two types of waste glass, monolithic and tempered, were incorporated at two distinct contents, 10% and 15%, into the AC. Several properties such as stiffness, resistance to permanent deformation (evaluated through cyclic compression tests), indirect tensile strength, and the indirect tensile strength ratio (ITSR) were assessed for all Glassphalt mixtures, as well as the conventional mixture. Additionally, the Solar Reflectance Index (SRI) was measured to evaluate the reflectivity of the resulting Glassphalts. The findings indicate that the incorporation of both types of waste glass resulted in reduced stiffness and resistance to permanent deformation. Regarding water sensitivity (ITSR), the Glassphalts containing 15% waste glass, regardless of the glass type, exhibited ITSR values below the accepted threshold of 80%. The addition of waste glass did not yield significant changes in SRI measurements. Full article
(This article belongs to the Special Issue Asphalt Mixtures and Pavements Design)
Show Figures

Figure 1

23 pages, 4912 KB  
Article
Application of Data Mining Techniques to Predict Luminance of Pavement Aggregate
by Grzegorz Mazurek and Paulina Bąk-Patyna
Appl. Sci. 2023, 13(7), 4116; https://doi.org/10.3390/app13074116 - 23 Mar 2023
Cited by 4 | Viewed by 1838
Abstract
The primary purpose of the analysis presented here is to assess the feasibility of effectively predicting the aggregate luminance coefficient. Current road lighting standards and recommendations are based on assessing the level and distribution of luminance on the road surface. The brightness of [...] Read more.
The primary purpose of the analysis presented here is to assess the feasibility of effectively predicting the aggregate luminance coefficient. Current road lighting standards and recommendations are based on assessing the level and distribution of luminance on the road surface. The brightness of a road surface depends on the amount of light falling on it, as well as the reflective properties of the road surface, which in turn depend on its physical condition, type and mineralogical composition. The complexity of the factors on which the value of the luminance coefficient depends it makes that data mining techniques the most appropriate tools for evaluation luminance coefficient phenomenon. This article uses five types of techniques: C&RT, boosted trees, random forest, neural network, and support vector machines. After a preliminary analysis, it was determined that the most effective technique was the boosted tree method. The results of the analysis indicated that the actual value of the luminance coefficient has multiple modal values within a single aggregate stockpile, depending on the mineralogical composition and grain size, and cannot be determined by a single central measure. The present model allowed us to determine the value of the luminance coefficient Qd with a mean error of 4.3 mcd-m−2·lx−1. In addition, it was found that the best aggregate for pavement brightening that allows high visibility during the day Qd and at night RL is a limestone aggregate. In the group of those that have the ability to potentially brighten the pavement were quartzite and granite aggregates. Full article
(This article belongs to the Special Issue Machine Learning Applications in Transportation Engineering)
Show Figures

Figure 1

19 pages, 6245 KB  
Article
Research of the Luminance of Asphalt Pavements in Trafficked Areas
by Deimantė Lunkevičiūtė, Viktoras Vorobjovas, Pranciškus Vitta and Donatas Čygas
Sustainability 2023, 15(3), 2826; https://doi.org/10.3390/su15032826 - 3 Feb 2023
Cited by 5 | Viewed by 3079
Abstract
A key factor for safe and comfortable driving on roads are properly reflective and well visible pavement surfaces at night. The brightness of the road pavement surface depends on the amount of light falling on it and the reflection properties of the road [...] Read more.
A key factor for safe and comfortable driving on roads are properly reflective and well visible pavement surfaces at night. The brightness of the road pavement surface depends on the amount of light falling on it and the reflection properties of the road pavement surface at any point. The luminance of the pavement depends on its physical condition, age and type of pavement, direction of illumination, and observation conditions. Different pavements can have different reflection characteristics that depend on the surface texture, materials, and binder (type and quantity). Experimental research was carried out on the carriageways and bicycle paths of Vilnius city streets, which differ in color and age. The analysis of the research results showed differences between the surface reflectance characteristics of these pavements depending on the color of the pavement, surface conditions, and age. The reflection properties of red asphalt pavements are better than black ones when the pavement surface is wet or moist. The reduced luminance coefficients of the carriageway (asphalt pavement installed in 2021) are about 12% lower than those of the carriageway pavement installed 10 years ago and about 60% lower for wet and moist pavements. The results obtained from the research are significant for street designers when choosing the type of pavement and designing street lighting. Full article
(This article belongs to the Special Issue Sustainable Road Materials and Pavement Design)
Show Figures

Figure 1

16 pages, 4020 KB  
Article
Use of Hybrid Mineral Filler with High Emissivity in Asphalt Mixture for Cooling Road Pavements
by Lingxiang Kong, Ling Xu, Yinfei Du, Jiao Jin, Giuseppe Loprencipe and Laura Moretti
Materials 2023, 16(1), 175; https://doi.org/10.3390/ma16010175 - 25 Dec 2022
Cited by 6 | Viewed by 3396
Abstract
Road asphalt pavements cover a high percentage of urban size and contribute to heat islands. This study proposed a new method to cool asphalt pavement by incorporating a kind of hybrid mineral filler (HMF) with high emissivity into a reference asphalt mixture prepared [...] Read more.
Road asphalt pavements cover a high percentage of urban size and contribute to heat islands. This study proposed a new method to cool asphalt pavement by incorporating a kind of hybrid mineral filler (HMF) with high emissivity into a reference asphalt mixture prepared with limestone mineral filler (LMF). The physical, emissive, solar reflective, and rheological properties of asphalt mastic and the thermal performances of asphalt mixture were covered to investigate the possibility of the proposed strategy. From Fourier transform infrared spectrum test, it can be found that HMF was physically blended with asphalt. The emissivity results show that HMF increased the emissivity of asphalt mastic from 0.9204 to 0.9820. The asphalt mastic containing HMF had similar solar reflectance with the control one. In addition, HMF could enhance the rutting resistance of asphalt mastic according to the results of multiple stress creep recovery tests. When HMF replaced LMF, the thermal conductivity of the asphalt mixture with HMF increased by 0.26 W/(m·K) (the reference value was 1.72 W/(m·K)). The combined effect of high emissivity and thermal conductivity led to a lower surface temperature (i.e., −5.4 °C) in the tests. The results of this study demonstrate that HMF is a potential material to cool asphalt pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Asphalt Pavements)
Show Figures

Figure 1

23 pages, 7576 KB  
Article
Preparation and Properties of New Thermal Reflective Coating for Asphalt Pavement
by Zhenxia Li, Tengteng Guo, Yuanzhao Chen, Chaohui Wang, Qian Chen, Siqing Ding, Qi Chen and Haijun Chen
Materials 2022, 15(22), 8087; https://doi.org/10.3390/ma15228087 - 15 Nov 2022
Cited by 10 | Viewed by 2353
Abstract
This paper aims to study the applicability of an epoxy resin modification to improve its anti-aging properties, which are conducive to road performance. To achieve this goal, a wide range of laboratory activities were conducted, including an emulsion mixed with epoxy resin and [...] Read more.
This paper aims to study the applicability of an epoxy resin modification to improve its anti-aging properties, which are conducive to road performance. To achieve this goal, a wide range of laboratory activities were conducted, including an emulsion mixed with epoxy resin and liquid phenolic resin as the coating substrate; surface-modified titanium dioxide, silica, hollow glass beads and sericite powder as functional fillers; then adding pigments and various additives to prepare a new asphalt pavement heat-reflective coating. Secondly, the optimum brushing amount of the coating was obtained, and the cooling effect was clarified. Finally, the road performance was evaluated by testing the coating’s skid resistance, wear resistance and impermeability. The results show that the skid resistance, abrasion resistance and impermeability of the heat reflection coating meet the specification requirements. Full article
Show Figures

Figure 1

17 pages, 8499 KB  
Article
Comparative Study of the Mesomechanical Response of Asphalt Bridge Deck Pavement under Multiple Loads
by Yaning Cui, Chundi Si, Song Li and Taotao Fan
Coatings 2022, 12(11), 1665; https://doi.org/10.3390/coatings12111665 - 2 Nov 2022
Cited by 4 | Viewed by 2000
Abstract
Asphalt bridge deck pavement is a weak bridge structure area, and early damage usually occurs in this area under vehicle loads. Due to the complexity and diversity of vehicle loads and material structures, it is difficult to truly reflect the mechanical response of [...] Read more.
Asphalt bridge deck pavement is a weak bridge structure area, and early damage usually occurs in this area under vehicle loads. Due to the complexity and diversity of vehicle loads and material structures, it is difficult to truly reflect the mechanical response of bridge deck pavement under vehicle loads. This paper studies the vehicle road interaction from a microscopic perspective. In this research, the dynamic response of asphalt bridge deck pavement under multiple loads is comparatively studied, considering the mesoscopic structure of the asphalt materials. First, the compressive properties, tensile properties and interlaminar shear properties of each layer were studied through laboratory tests. Second, the asphalt mixture bridge deck pavement model, including mesostructured, was established. Then, the subprograms of the sinusoidal vibration load, rolling load and vehicle road coupling load were realised using the discrete element method (DEM). Finally, the mesomechanical response of asphalt bridge deck pavement under those three dynamic loads was comparatively studied. The study finds that there is a large difference in the mechanical response of bridge deck pavement under multiple loads. A sinusoidal vibration load can simply be the moving load, the edge of the loading area and the bottom of the lower layer bear large tensile stress, and the shear stress at the edge of the loading area is approximately 4 times that of the middle area. The rolling load can better reflect the status of the vehicle. There is a certain difference in the shear stress response between the rolling load and the sinusoidal vibration load, and the lower layer bears compressive–tensile alternating stress. Under the vehicle road coupling load, the volatility of the dynamic response is obvious due to the road roughness. Therefore, it is of vital importance to improve the abrasion resistance of the surface layer. The results show that the comprehensive consideration of multiple loads and the mesostructure can provide a more reliable method for the dynamic design of bridge deck pavement, which is of great significance for improving the durability of the pavement. Full article
(This article belongs to the Special Issue Asphalt Pavement: Materials, Design and Characterization)
Show Figures

Figure 1

14 pages, 2654 KB  
Article
Mechanical Performance of Fly Ash Based Geopolymer (FAG) as Road Base Stabilizer
by Liyana Ahmad Sofri, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Thanongsak Imjai, Petrica Vizureanu, Mohd Rosli Mohd Hasan, Mohammad Almadani, Ikmal Hakem Ab Aziz and Farahiyah Abdul Rahman
Materials 2022, 15(20), 7242; https://doi.org/10.3390/ma15207242 - 17 Oct 2022
Cited by 18 | Viewed by 3256
Abstract
This study examines the strength development of fly ash-based geopolymer (FAG) as a stabilizer for road base material for pavement construction. In the last decade, there has been a rapid development of conventionally treated bases, such as cement-treated bases. However, a major problem [...] Read more.
This study examines the strength development of fly ash-based geopolymer (FAG) as a stabilizer for road base material for pavement construction. In the last decade, there has been a rapid development of conventionally treated bases, such as cement-treated bases. However, a major problem with this kind of application is the shrinkage cracking in cement-treated bases that may result in the reflection cracks on the asphalt pavement surface. This study explores the effects of FAG on base layer properties using mechanistic laboratory evaluation and its practicability in pavement base layers. The investigated properties are flexural strength (FS), unconfined compressive strength (UCS), shrinkage, and resilient modulus (RM), as well as indirect tensile strength (ITS). The findings showed that the mechanical properties of the mixture enhanced when FAG was added to 80–85% of crushed aggregate, with the UCS being shown to be a crucial quality parameter. The effectiveness of FAG base material can have an impact on the flexible pavements’ overall performance since the base course stiffness directly depends on the base material properties. As a stabilizing agent for flexible pavement applications, the FAG-stabilized base appeared promising, predicated on test outcomes. Full article
(This article belongs to the Special Issue Nanomaterials for the Environmental Remediation of Water and Soil)
Show Figures

Figure 1

Back to TopTop