Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (776)

Search Parameters:
Keywords = refractive index detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3651 KB  
Article
Optofluidic Lens Refractometer
by Yifan Zhang, Qi Wang, Yuxiang Li, Junjie Liu, Ziyue Lin, Mingkai Fan, Yichi Zhang and Xiang Wu
Micromachines 2025, 16(10), 1160; https://doi.org/10.3390/mi16101160 - 13 Oct 2025
Viewed by 373
Abstract
In the face of increasingly severe global environmental challenges, the development of low-cost, high-precision, and easily integrable environmental monitoring sensors is of paramount importance. Existing optical refractive index sensors are often limited in application due to their complex structures and high costs, or [...] Read more.
In the face of increasingly severe global environmental challenges, the development of low-cost, high-precision, and easily integrable environmental monitoring sensors is of paramount importance. Existing optical refractive index sensors are often limited in application due to their complex structures and high costs, or their bulky size and difficulty in automation. This paper proposes a novel optical microfluidic refractometer, consisting solely of a laser source, an optical microfluidic lens, and a CCD detector. Through an innovative “simple structure + algorithm” design, the sensor achieves high-precision measurement while significantly reducing cost and size and enhancing robustness. With the aid of signal processing algorithms, the device currently enables the detection of refractive index gradients as low as 1.4 × 10−5 within a refractive index range of 1.33 to 1.48. Full article
(This article belongs to the Special Issue Optofluidic Devices and Their Applications)
Show Figures

Figure 1

13 pages, 3209 KB  
Article
Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite
by Min-Jun Kim, Jong-Hyun Bang, Hyeong-Min Kim, Jae-Hyoung Park and Seung-Ki Lee
Appl. Sci. 2025, 15(20), 10894; https://doi.org/10.3390/app152010894 - 10 Oct 2025
Viewed by 331
Abstract
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to [...] Read more.
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to create a composite plasmonic surface. Compared with flat polymer-coated fibers, the micropillar array markedly increased the effective sensing surface and enhanced light trapping by providing anti-reflective conditions at the interface. Consequently, the sensor demonstrated superior performance in refractive index sensing, yielding a sensitivity of 4.54 with an R2 of 0.984, in contrast to 3.13 and 0.979 obtained for the flat counterpart. To validate its biosensing applicability, Interleukin-8 (IL-8), a cancer-associated cytokine, was selected as a model analyte. Direct immunoassays revealed quantitative detection across a broad dynamic range (0.1–1000 pg/mL) with a limit of detection of 0.013 pg/mL, while specificity was confirmed against non-target proteins. The proposed FO-LSPR platform thus offers a cost-effective and reproducible route to overcome the surface-area limitations of conventional designs, providing enhanced sensitivity and stability. These results highlight the potential of the micropillar-based FO-LSPR sensor for practical deployment in point-of-care diagnostics and real-time biomolecular monitoring. Full article
Show Figures

Figure 1

34 pages, 3928 KB  
Article
Simulation of Chirped FBG and EFPI-Based EC-PCF Sensor for Multi-Parameter Monitoring in Lithium Ion Batteries
by Mohith Gaddipati, Krishnamachar Prasad and Jeff Kilby
Sensors 2025, 25(19), 6092; https://doi.org/10.3390/s25196092 - 2 Oct 2025
Viewed by 470
Abstract
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). [...] Read more.
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). The proposed design synergistically combines a chirped fiber Bragg grating (FBG) and an extrinsic Fabry–Pérot interferometer (EFPI) on a multiplexed platform for the multifunctional sensing of refractive index (RI), temperature, strain, and pressure (via strain coupling) within LIBs. By matching the RI of the PCF cladding to the battery electrolyte using ethylene carbonate, the design maximizes light–matter interaction for exceptional RI sensitivity, while the cascaded EFPI enhances mechanical deformation detection beyond conventional FBG arrays. The simulation framework employs the Transfer Matrix Method with Gaussian apodization to model FBG reflectivity and the Airy formula for high-fidelity EFPI spectra, incorporating critical effects like stress-induced birefringence, Transverse Electric (TE)/Transverse Magnetic (TM) polarization modes, and wavelength dispersion across the 1540–1560 nm range. Robustness against fabrication variations and environmental noise is rigorously quantified through Monte Carlo simulations with Sobol sequences, predicting temperature sensitivities of ∼12 pm/°C, strain sensitivities of ∼1.10 pm/με, and a remarkable RI sensitivity of ∼1200 nm/RIU. Validated against independent experimental data from instrumented battery cells, this model establishes a robust computational foundation for real-time battery monitoring and provides a critical design blueprint for future experimental realization and integration into advanced battery management systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

16 pages, 1228 KB  
Article
Simulation of an Asymmetric Photonic Structure Integrating Tamm Plasmon Polariton Modes and a Cavity Mode for Potential Urinary Glucose Sensing via Refractive Index Shifts
by Hung-Che Chou, Rashid G. Bikbaev, Ivan V. Timofeev, Mon-Juan Lee and Wei Lee
Biosensors 2025, 15(10), 644; https://doi.org/10.3390/bios15100644 - 29 Sep 2025
Viewed by 398
Abstract
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this [...] Read more.
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this simulation-based study, we propose a novel asymmetric photonic structure that integrates Tamm plasmon polariton (TPP) modes and a cavity mode for high-precision refractive index sensing, with a conceptual focus on the potential detection of urinary glucose. The structure supports three distinct resonance modes, each with unique field localization. Both the TPP modes, confined at the metallic–dielectric interfaces, serve as stable references whose wavelengths are unaffected by refractive-index variations in human urine, whereas the cavity mode exhibits a redshift with increasing refractive index, enabling high responsiveness to analyte changes. The evaluation of sensing performance employs a sensitivity formulation that leverages either TPP mode as a reference and the cavity mode as a probe, thereby achieving dependable measurement and spectral stability. The optimized design achieves a sensitivity of 693 nm·RIU−1 and a maximum figure of merit of 935 RIU−1, indicating high detection resolution and spectral sharpness. The device allows both reflectance and transmittance measurements to ensure enhanced versatility. Moreover, the coupling between TPP and cavity modes demonstrates hybrid resonance, empowering applications such as polarization-sensitive or angle-dependent filtering. The figure of merit is analyzed further, considering resonance wavelength shifts and spectral sharpness, thus manifesting the structure’s robustness. Although this study does not provide experimental data such as calibration curves, recovery rates, or specificity validation, the proposed structure offers a promising conceptual framework for refractive index-based biosensing in human urine. The findings position the structure as a versatile platform for advanced photonic systems, offering precision, tunability, and multifunctionality beyond the demonstrated optical sensing capabilities. Full article
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Optical Fiber TFBG Glucose Biosensor via pH-Sensitive Polyelectrolyte Membrane
by Fang Wang, Xinyuan Zhou, Jianzhong Zhang and Shenhang Cheng
Biosensors 2025, 15(10), 642; https://doi.org/10.3390/bios15100642 - 25 Sep 2025
Viewed by 372
Abstract
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), [...] Read more.
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), which undergoes reversible swelling and refractive index (RI) changes in response to local pH variations. These changes are transduced into measurable shifts in the resonance wavelengths of TFBG cladding modes. The catalytic action of GOD oxidizes glucose to gluconic acid, thereby modulating the interfacial pH and actuating the polyelectrolyte membrane. With an optimized (PEI/PAA)4(PEI/GOD)1 structure, the biosensor achieves highly sensitive glucose detection, featuring a wide measurement range (10−8 to 10−2 M), a low detection limit of 27.7 nM, and a fast response time of ~60 s. It also demonstrates excellent specificity and robust performance in complex biological matrices such as rabbit serum and artificial urine, with recovery rates of 93–102%, highlighting its strong potential for point-of-care testing applications. This platform offers significant advantages in stability, temperature insensitivity, and miniaturization, making it well-suited for clinical glucose monitoring and disease management. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

19 pages, 4698 KB  
Article
Numerical Analysis of an Ultra-Sensitive Optical Fiber for Hemoglobin Concentration Detection
by Aryan Abbaszadeh, Somayeh Makouei, Samrand Rash-Ahmadi and Sebelan Danishvar
Photonics 2025, 12(9), 933; https://doi.org/10.3390/photonics12090933 - 19 Sep 2025
Viewed by 532
Abstract
Hemoglobin is a vital protein in the human body, and its deficiency leads to anemia. This condition reduces oxygen levels in red blood cells, which can be life-threatening. This paper presents the design of a novel optical fiber (OF) sensor for label-free detection [...] Read more.
Hemoglobin is a vital protein in the human body, and its deficiency leads to anemia. This condition reduces oxygen levels in red blood cells, which can be life-threatening. This paper presents the design of a novel optical fiber (OF) sensor for label-free detection of hemoglobin concentration. The sensor features concentric layers of gold and silica arranged sequentially. Finite element method (FEM) simulations were used to analyze its performance. The results indicate that for a refractive index (RI) range of 1.34 to 1.41, the sensor achieves a wavelength sensitivity (Sw) of up to 38,000 nm/RIU and an amplitude sensitivity (SA) of 11,280 RIU−1. The sensor exhibits a resolution of 1.85 × 10−6 RIU and a figure of merit (FOM) of 736.56 RIU−1. Its simple construction and high sensitivity make it a promising candidate for hemoglobin detection applications. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

12 pages, 2597 KB  
Article
High Performance Polymeric Fabry-Pérot Microcavities for Sensing and Lasing Applications
by Genni Testa, Vito Coviello, Gianluca Persichetti and Romeo Bernini
Polymers 2025, 17(18), 2496; https://doi.org/10.3390/polym17182496 - 16 Sep 2025
Viewed by 518
Abstract
We present the design, fabrication, and optical characterization of fully polymer-based high performance Fabry-Pérot microcavities for sensing and lasing applications. Two microcavity types (Cavity A and B) were realized using polymeric Distributed Bragg Reflector (DBR) films offering distinct spectral properties. Cavity A achieved [...] Read more.
We present the design, fabrication, and optical characterization of fully polymer-based high performance Fabry-Pérot microcavities for sensing and lasing applications. Two microcavity types (Cavity A and B) were realized using polymeric Distributed Bragg Reflector (DBR) films offering distinct spectral properties. Cavity A achieved a high quality factor (Q ≈ 2.15 × 105), demonstrating excellent sensitivity for bulk refractive index sensing with an ultrahigh figure of merit of 5.89 × 104 and a theoretical detection limit down 3.4 × 10−7 RIU. Cavity B was optimized for lasing applications. When filled with a Rhodamine B dye solution, it exhibited clear lasing action with a low threshold (1.83 μJ/mm2) and resonant peaks consistent with its free spectral range. These results highlight the potential of cost-effective polymeric cavities for disposable photonic sensor platforms and integrated biolaser devices. Full article
(This article belongs to the Special Issue High-Performance Polymeric Sensors, 3rd Edition)
Show Figures

Figure 1

16 pages, 1585 KB  
Proceeding Paper
Design of Pentagon-Shaped THz Photonic Crystal Fiber Biosensor for Early Detection of Crop Pathogens Using Decision Cascaded 3D Return Dilated Secretary-Bird Aligned Convolutional Transformer Network
by Sreemathy Jayaprakash, Prasath Nithiyanandam and Rajesh Kumar Dhanaraj
Eng. Proc. 2025, 106(1), 9; https://doi.org/10.3390/engproc2025106009 - 12 Sep 2025
Viewed by 230
Abstract
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated [...] Read more.
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated secretary-bird aligned convolutional transformer network (DC3D-SBA-CTN). The biosensor is designed to detect a broad spectrum of pathogens, including fungi (e.g., Fusarium spp.) and bacteria (e.g., Xanthomonas spp.), by identifying their unique refractive index signatures. Integrating advanced neural networks and optimization algorithms, the biosensor achieves a detection accuracy of 99.87%, precision of 99.65%, sensitivity of 99.77%, and specificity of 99.83%, as validated by a 5-fold cross-validation protocol. It offers high sensitivity (up to 7340 RIU−1), low signal loss, and robust performance against morphological variations, making it adaptable for diverse agricultural settings. This innovation enables rapid, precise monitoring of crop pathogens, revolutionizing plant disease management. Full article
Show Figures

Figure 1

14 pages, 2244 KB  
Article
High-Sensitivity MXene-Functionalized Photonic Crystal Fiber Surface Plasmon Resonance Sensor with Dual Rectangular Grooves for Cancer Detection
by Min Lu, Yan He, Shuyu Xi, Pufan Zhong, Yu Zhang, He Tian, Yongmei Wang, Hanglin Lu, Junhui Hu and Jian Tang
Sensors 2025, 25(18), 5705; https://doi.org/10.3390/s25185705 - 12 Sep 2025
Viewed by 630
Abstract
Early detection of cancer remains a key challenge because current SPR-PCF sensors lack both sensitivity and robust light–analyte interaction. To overcome these limitations, this study proposed and validated an SPR biosensor utilizing MXene-functionalized PCF. By introducing a composite structure of MXene nanomaterials and [...] Read more.
Early detection of cancer remains a key challenge because current SPR-PCF sensors lack both sensitivity and robust light–analyte interaction. To overcome these limitations, this study proposed and validated an SPR biosensor utilizing MXene-functionalized PCF. By introducing a composite structure of MXene nanomaterials and Au, the detection performance of the sensor was significantly improved. The sensor adopts a circular air hole arrangement and double-groove morphology design and leverages MXene’s high conductivity and gold’s chemical stability to simultaneously enhance plasmonic coupling and biocompatibility. Through FEM-based structural optimization of the air hole diameter, Au layer thickness, and groove shape, the sensor exhibited outstanding refractive-index detection performance with a wavelength sensitivity of 11,072 nm/RIU, an impressive quality factor reaching 201.3 RIU−1, and a resolution as fine as 9.03 × 10−6 RIU. The simulation results demonstrated the capability of the sensor to discriminate six distinct cancer-cell types (cervical cancer HeLa, leukemia Jurkat, pheochromocytoma PC-12, triple-negative breast cancer MDA-MB-231, and breast cancer MCF-7) with high sensitivity and verify its ability to detect pan-cancer species. This study demonstrates an innovative approach for constructing a high-performance SPR sensing platform that has important application potential in the context of the early detection of multiple cancers. Full article
(This article belongs to the Special Issue Recent Advances in Micro- and Nanofiber-Optic Sensors)
Show Figures

Figure 1

20 pages, 12874 KB  
Article
Enhanced Sensitivity of 17-α-Ethinylestradiol (EE2) Detection Using Carbon Quantum Dots-Integrated Tapered Optical Fiber
by Rosyati Hamid, Yasmin Mustapha Kamil, Ahmad Zaharin Aris, Muhammad Hafiz Abu Bakar, Fariza Hanim Suhailin, Mohammed Thamer Alresheedi, Eng Khoon Ng and Mohd Adzir Mahdi
Appl. Sci. 2025, 15(18), 9890; https://doi.org/10.3390/app15189890 - 9 Sep 2025
Viewed by 635
Abstract
In this study, we developed a tapered optical fiber sensor enhanced with carbon quantum dots (CQDs) for the detection of 17-α-ethinylestradiol (EE2). The sensor operates on the changes in refractive index induced by the interaction between EE2 and antibodies on its surface. The [...] Read more.
In this study, we developed a tapered optical fiber sensor enhanced with carbon quantum dots (CQDs) for the detection of 17-α-ethinylestradiol (EE2). The sensor operates on the changes in refractive index induced by the interaction between EE2 and antibodies on its surface. The incorporation of CQDs significantly increased the available surface area for receptor–analyte interactions, leading to enhanced sensor performance. The sensor demonstrated high sensitivity of 2.4925 nm/(ng/L) within a detection range of 1 to 10 ng/L, with a strong correlation coefficient (R2 = 0.998). A detection limit as low as 0.0426 ng/L (0.144 pM) was achieved, along with a low dissociation constant of 2.19 × 10−11 M as determined by the Langmuir isotherm model. These findings highlight the potential of the CQD-functionalized optical fiber sensors as a promising tool for sensitive and selective EE2 detection in environmental monitoring applications. Full article
Show Figures

Figure 1

22 pages, 10187 KB  
Article
Box–Behnken-Assisted Optimization of High-Performance Liquid Chromatography Method for Enhanced Sugar Determination in Wild Sunflower Nectar
by Nada Grahovac, Milica Aleksić, Lato Pezo, Ana Đurović, Zorica Stojanović, Jelena Jocković and Sandra Cvejić
Separations 2025, 12(9), 244; https://doi.org/10.3390/separations12090244 - 7 Sep 2025
Viewed by 612
Abstract
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols [...] Read more.
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols (e.g., mannitol and inositol) occur in lower concentrations and vary with biotic and abiotic factors. This study developed a robust high-performance liquid chromatography method with refractive index detection (HPLC-RID) for the simultaneous quantification of eight sugars (D-ribose, xylose, arabinose, fructose, mannose, glucose, sucrose, and maltose) and two sugar alcohols (mannitol, meso-inositol) in wild sunflower nectar. A Box–Behnken design (BBD), coupled with response surface methodology (RSM), was used to systematically optimize column temperature (20–23 °C), acetonitrile concentration (80–85%), and flow rate (0.7–1 mL/min), while achieving baseline separation of critical sugar pairs, including the previously co-eluting glucose/mannitol and glucose/mannose. Satisfactory resolution (Rs > 1 for all analytes) was achieved under optimized separation conditions comprising a column temperature of 20 °C, 82.5% acetonitrile, and a flow rate of 0.766 mL/min. The RSM efficiently evaluated factor interactions to maximize chromatographic performance, resulting in an optimized protocol that provides a cost-effective and environmentally friendly alternative to conventional sugar analysis methods. Method validation confirmed satisfactory linearity across relevant concentration ranges (50–500 mg/L for most sugars; 50–5500 mg/L for fructose and glucose), with correlation coefficients (R) between 0.985 and 0.999. The limits of detection (LOD) and quantification (LOQ) for the analyzed sugars and sugar alcohols ranged from 4.04 to 19.46 mg/L and from 13.46 to 194.61 mg/L, respectively. Glucose exhibited the highest sensitivity showing LOD of 4.04 and LOQ of 13.46 mg/L, whereas mannose was identified as the least sensitive analyte, with LOD of 19.46 mg/L and LOQ of 194.61 mg/L. The described method represents a reliable tool for sugar and sugar alcohol analysis in sunflower nectar and can be extended to other plant and food matrices with suitable sample preparation. Full article
(This article belongs to the Special Issue Innovative Sustainable Methods for Food Component Extraction)
Show Figures

Graphical abstract

13 pages, 4367 KB  
Article
Non-Destructive Characterization of Drywall Moisture Content Using Terahertz Time-Domain Spectroscopy
by Habeeb Foluso Adeagbo and Binbin Yang
Sensors 2025, 25(17), 5576; https://doi.org/10.3390/s25175576 - 6 Sep 2025
Viewed by 1253
Abstract
Despite its wide acceptance, one of the most critical limitations of Terahertz wave technology is its high sensitivity to moisture. This limitation can, in turn, be exploited for use in moisture detection applications. This work presents a quantitative, non-invasive characterization of moisture content [...] Read more.
Despite its wide acceptance, one of the most critical limitations of Terahertz wave technology is its high sensitivity to moisture. This limitation can, in turn, be exploited for use in moisture detection applications. This work presents a quantitative, non-invasive characterization of moisture content in standard gypsum drywall using Terahertz Time-Domain Spectroscopy (THz-TDS). With an increase in the moisture content of the drywall sample, experimental results indicated an increase in the dielectric properties such as the refractive index, permittivity, absorption coefficient, extinction coefficient, and dissipation factor. The demonstrated sensitivity to moisture establishes THz-TDS as a powerful tool for structural monitoring, hidden defect detection, and electromagnetic modeling of real-world building environments. Beyond material diagnostics, these findings have broader implications for THz indoor propagation studies, especially for emerging sub-THz and low THz communication technologies in 5G/6G and THz imaging of objects hidden behind the wall. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 4862 KB  
Article
Enzymatic SPR Approach for the Detection of Nano and Microplastic Particles Using Rainwater as Matrices
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Jonathan Muthuswamy Ponniah, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Microplastics 2025, 4(3), 57; https://doi.org/10.3390/microplastics4030057 - 1 Sep 2025
Viewed by 834
Abstract
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection [...] Read more.
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection of MPs and NPs, utilizing laccase as the recognition element. Standard plastic particles, including polystyrene (PS, 0.1 µm), polymethyl methacrylate (PMMA, 1.0 µm and 100 µm), and polyethylene (PE, 34–50 µm), were analyzed using SPR angular interrogation along with a fixed-angle scheme. The angular approach revealed a clear relationship between the resonance angle, particle size, and refractive index, while the fixed-angle method, combined with immobilized laccase, facilitated specific detection through enzyme/substrate interactions. The analytical parameters showed detection limits ranging from 7.5 × 10−4 µg/mL (PE, 34–50 µm) to 253.2 µg/mL (PMMA, 1 µm), with significant differences based on polymer type and enzymatic affinity. Application of the biosensor to real rainwater samples collected from two regions in Mexico (Tula and Molango) confirmed its functionality, although performance varied depending on matrix composition, exhibiting inhibition in samples with high manganese (Mn2+), chromium (Cr2+), and zinc (Zn2+) content. Despite these limitations, the sensor achieved a 113% recovery rate in Tula rainwater, demonstrating its potential for straightforward in situ environmental monitoring. This study highlights the capabilities of laccase-based SPR biosensors in enhancing microplastic detection and underscores the necessity of considering matrix effects for real-world applications. Full article
Show Figures

Figure 1

12 pages, 2232 KB  
Article
Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing
by Jiaye Ding, Ruizhao Li and Jie Cheng
Sensors 2025, 25(17), 5383; https://doi.org/10.3390/s25175383 - 1 Sep 2025
Viewed by 562
Abstract
The photonic spin Hall effect (PSHE) has emerged as a powerful metrological approach for precision measurements. Dynamic manipulation of PSHE through external stimuli could substantially expand its applications. In this work, we present a simple and active modulation scheme for PSHE in a [...] Read more.
The photonic spin Hall effect (PSHE) has emerged as a powerful metrological approach for precision measurements. Dynamic manipulation of PSHE through external stimuli could substantially expand its applications. In this work, we present a simple and active modulation scheme for PSHE in a surface plasmon resonance (SPR) structure by exploiting electric-field-tunable refractive indices of electro-optic materials. By applying an electric field, the enhancement of PSHE spin shifts is observed, and the dual-field control can further amplify these spin shifts through synergistic effects in this SPR structure. Notably, various operation modes of external electric field enable the real-time switching between two high-performance sensing functionalities (refractive index detection and angle measurement). Therefore, our designed PSHE sensor based on SPR structure with a simple structure of only three layers not only makes up for the complex structure in multi-functional sensors, but more importantly, this platform establishes a new paradigm for dynamic PSHE manipulation while paving the way for advanced multi-functional optical sensing technology. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 14630 KB  
Article
Robust On-Chip Polymer Coupler for All-Optical Ultrasound Detection
by Chao Zhao, Peijian Li and Chonglei Zhang
Photonics 2025, 12(9), 869; https://doi.org/10.3390/photonics12090869 - 28 Aug 2025
Viewed by 695
Abstract
Fiber-chip couplers play an important role in the field of on-chip all-optical ultrasound detection; however, they have received limited attention in research. Here, we present an on-chip photoresin coupler fabricated via two-photon lithography, combining the benefits of compact size, wide bandwidth, low loss, [...] Read more.
Fiber-chip couplers play an important role in the field of on-chip all-optical ultrasound detection; however, they have received limited attention in research. Here, we present an on-chip photoresin coupler fabricated via two-photon lithography, combining the benefits of compact size, wide bandwidth, low loss, and robust coupling. Utilizing a high-refractive-index photoresin medium, we achieved transmission efficiencies better than −1.3 dB in water environments within a 1528–1567 nm bandwidth. Alignment errors were constrained to ±2.5 μm laterally and 20 μm axially, with angular deviations exceeding ±3° at a −1 dB loss. Its sturdy structure facilitates 5–30 MHz ultrasound detection in liquid environments through phase-shifted Bragg grating. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop