Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = regulated working pressure heads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6420 KB  
Article
Stationary Type-Approval Test of the Tractor Pneumatic Braking System for Towed Vehicle Control
by Zbigniew Kamiński and Jarosław Czaban
Machines 2025, 13(3), 217; https://doi.org/10.3390/machines13030217 - 7 Mar 2025
Viewed by 882
Abstract
Agricultural tractors are equipped with air braking systems to supply and control the braking systems of towed vehicles. This system’s functional and operational characteristics significantly impact the compatibility and speed of the braking system of the tractor–trailer combination and are therefore checked during [...] Read more.
Agricultural tractors are equipped with air braking systems to supply and control the braking systems of towed vehicles. This system’s functional and operational characteristics significantly impact the compatibility and speed of the braking system of the tractor–trailer combination and are therefore checked during approval tests. This paper presents a test methodology and a description of the instrumentation and apparatus used to test the air braking systems of tractors under stationary conditions, as required by EU Regulation 2015/68. Sample test results of the trailer air supply system are included, such as checking the system for leaks, checking the pressure at the coupling heads, checking the compressor flow rate and air reservoir capacity, and checking the response time of the tractor control line. Approval authorities and tractor manufacturers can use the work results for quality control or product qualification tests. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 25521 KB  
Article
Contributon-Informed Approach to RPV Irradiation Study Using Hybrid Shielding Methodology
by Mario Matijević, Krešimir Trontl and Dubravko Pevec
Energies 2024, 17(23), 6174; https://doi.org/10.3390/en17236174 - 7 Dec 2024
Viewed by 1021
Abstract
An important aspect of pressurized water reactor (PWR) lifetime monitoring is supporting radiation shielding analyses which can quantify various in-core and out-core effects induced in reactor materials by varying neutron–gamma fields. A good understanding of such a radiation environment during normal and accidental [...] Read more.
An important aspect of pressurized water reactor (PWR) lifetime monitoring is supporting radiation shielding analyses which can quantify various in-core and out-core effects induced in reactor materials by varying neutron–gamma fields. A good understanding of such a radiation environment during normal and accidental operating conditions is required by plant regulators to ensure proper shielding of equipment and working personnel. The complex design of a typical PWR is posing a deep penetration shielding problem for which an elaborate simulation model is needed, not only in geometrical aspects but also in efficient computational algorithms for solving particle transport. This paper presents such a hybrid shielding approach of FW-CADIS for characterization of the reactor pressure vessel (RPV) irradiation using SCALE6.2.4 code package. A fairly detailed Monte Carlo model (MC) of typical reactor internals was developed to capture all important streaming paths of fast neutrons which will backscatter the biological shield and thus enhance RPV irradiation through the cavity region. Several spatial differencing and angular segmentation options of the discrete ordinates SN flux solution were compared in connection to a SN mesh size and were inspected by VisIt code. To optimize MC neutron transport toward the upper RPV head, which is a particularly problematic region for particle transport, a deterministic solution of discrete ordinates in forward/adjoint mode was convoluted in a so-called contributon flux, which proved to be useful for subsequent SN mesh refinement and variance reduction (VR) parameters preparation. The pseudo-particle flux of contributons comes from spatial channel theory which can locate spatial regions important for contributing to a shielding response. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

34 pages, 19773 KB  
Article
Physically Based Green–Ampt Model in Polar Coordinate System Predicting Soil Water Transport in Moistube Irrigation: Comparison of Physical, Semi-Physical-Empirical, and Numerical Models Under Varying Working Pressure Heads
by Ce Wang, Qun Zhang, Shengwei Zhao, Jun Qian, Qi Li, Jinyang Ye, Xiaoan Chen, Wuerkaixi Kurexi, Mingyi Huang and Zhanyu Zhang
Agronomy 2024, 14(12), 2839; https://doi.org/10.3390/agronomy14122839 - 28 Nov 2024
Viewed by 1039
Abstract
Predicting soil–water dynamics in Moistube irrigation (ΜΤΙ) favours understanding ΜΤΙ functioning mechanisms and technical parameter design. This study proposed a physically based infiltration (PH) model extending the Green–Ampt (GA) model to a two-dimensional polar coordinate system. We treated Moistube as a clay and [...] Read more.
Predicting soil–water dynamics in Moistube irrigation (ΜΤΙ) favours understanding ΜΤΙ functioning mechanisms and technical parameter design. This study proposed a physically based infiltration (PH) model extending the Green–Ampt (GA) model to a two-dimensional polar coordinate system. We treated Moistube as a clay and considered the infiltration from internal Moistube to surrounding soils. The performances of the PH model, together with a semi-physical–empirical (PH–EM) model and a numerical simulation (NUM) model, were evaluated based on regulated working pressure head (WPH) experiments. A HYDRUS 2D model was used based on experimental design to reproduce the soil–water dynamics by assigning Moistube and soil two sets of hydraulic parameters. WPH increase or decrease treatments were applied to Moistube. The Moistube discharge rate, infiltration volume, and wetting front (WF) advance were analyzed and predicted by three models. The results showed that cumulative infiltration, Moistube discharge, and effective saturation around Moistube were enhanced or abated under WPH increase or decrease, with WF accelerating or decelerating. The modelled effective saturation varied between 0.45 and 0.70, providing suitable moist conditions for crops. Percentage of bias (PBIAS) and mean absolute percentage relative error (MAPRE) were employed to evaluate model performances. Three models well-predicted infiltration characteristics and WF advance but differed in accuracy. The PH model overestimated and underestimated the Moistube discharge rate in early and later phases. The prediction accuracy in WF varied across infiltration phases and WPH modes. The PH–EM model yielded accurate results due to its empirical attribute. The NUM model produced novel phenomena of infiltration characteristics at WPH adjustment points, i.e., the discharge rate exponentially decreased over time after the WPH increased but presented restraining followed by rebounding trends after the WPH decreased. The NUM model strongly depended on the selection of the Moistube hydraulic parameters. Extending the GA model to a two-dimensional polar coordinate system by treating Moistube as a clay was practicable in modelling soil water dynamics, thereby contributing to designing and optimizing MTI technical indexes. Full article
(This article belongs to the Special Issue Improving Irrigation Management Practices for Agricultural Production)
Show Figures

Figure 1

31 pages, 3508 KB  
Article
Coal Ash Triggers an Elevated Temperature Landfill Development: Lessons from the Bristol Virginia Solid Waste Landfill Neighboring Community
by Reagan Patton Witt and Marcelo I. Guzman
Environments 2024, 11(9), 201; https://doi.org/10.3390/environments11090201 - 14 Sep 2024
Cited by 2 | Viewed by 3029 | Correction
Abstract
Landfills for disposing of solid waste are designed, located, managed, and monitored facilities expected to comply with government regulations to prevent contamination of the surrounding environment. After the average life expectancy of a typical landfill (30 to 50 years), a large investment in [...] Read more.
Landfills for disposing of solid waste are designed, located, managed, and monitored facilities expected to comply with government regulations to prevent contamination of the surrounding environment. After the average life expectancy of a typical landfill (30 to 50 years), a large investment in the construction, operation, final closure, and 30-year monitoring of a new site is needed. In this case study, we provide a holistic explanation of the unexpected development of elevated temperature landfills (ETLFs), such as that in the city of Bristol (United States) on the border of the states of Virginia and Tennessee, including the initial role played by coal ash. Despite the increasing frequency of ETLF occurrence, there is limited knowledge available about their associated environmental problems. The study uses mixed (qualitative, quantitative, and mapping) methods to analyze (1) the levels of odoriferous reduced sulfur compounds, ammonia, and volatile organic compounds (VOCs) emitted, (2) the ratio of methane to carbon dioxide concentrations in five locations, which dropped from unity (normal landfill) to 0.565, (3) the location of gas well heads with gradients of elevated temperatures, and (4) the correlation of the filling rate (upward of ~12 m y−1) with depth for registered events depositing coal ash waste. The work identifies spatial patterns that support the conclusion that coal ash served as the initiator for an ETLF creation. The case of the city of Bristol constitutes an example of ETLFs with elevated temperatures above the regulatory United States Environmental Protection Agency (EPA) upper threshold (65 °C), having alongside low methane emissions, large production of leachate, land subsidence, and a large production of organic compounds. Such landfills suffer abnormal chemical reactions within the waste mass that reduce the life expectancy of the site. Residents in such communities suffer intolerable odors from fugitive emissions and poor air quality becomes prominent, affecting the well-being and economy of surrounding populations. Conclusive information available indicates that the Bristol landfill has been producing large amounts of leachate and hazardous gases under the high pressures and temperatures developed within the landfill. A lesson learned, which should be used to prevent this problem in the future, is that the early addition of coal ash into the landfill would have catalyzed the process of ETLF creation. The work considers the public health risks and socioeconomic problems of residents exposed to emissions from an ETLF and discusses the efforts needed to prevent further incidents in other locations. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Figure 1

19 pages, 5818 KB  
Article
Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation
by Xiaodi Wu, Bo Yang and Song Zhou
Materials 2024, 17(3), 717; https://doi.org/10.3390/ma17030717 - 2 Feb 2024
Cited by 6 | Viewed by 2406
Abstract
Based on the classical grid theory and related regulations, a structure model of a fiber-wound composite gas cylinder was designed in this paper. Based on the design results, a finite element model of a fully wound composite cylinder of an aluminum alloy inner [...] Read more.
Based on the classical grid theory and related regulations, a structure model of a fiber-wound composite gas cylinder was designed in this paper. Based on the design results, a finite element model of a fully wound composite cylinder of an aluminum alloy inner liner with a working pressure of 35 MPa was established based on the ABAQUS software, and its stress distribution under working pressure and minimum burst pressure was analyzed. According to engineering experience, the pressure tolerance of composite cylinders can be improved by proper autofrettage pressure before working pressure, so the influence of autofrettage pressure was analyzed in this paper. The optimum autofrettage pressure was selected by setting the autofrettage gradient, and damage analysis was carried out on the cylinder with nominal working pressure of 35 MPa based on the Hashin failure criterion. The results show the initial damage sequence: matrix stretching occurs before the fiber stretching, and the damage generally starts from the spiral-wound layer. The tensile damage first appears in the transition section between the head and the barrel body, and the damage of the spiral-wound layer develops from the inner layer of the wound layer to the outer layer, while the damage of the circumferentially wound layer develops from the outer layer to the inner layer. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymers and Composites)
Show Figures

Figure 1

16 pages, 34294 KB  
Article
Analysis of the Joint Bearing Capacity of Composite Cushion-Spiral Case Structures for Hydropower Stations Considering the Damage Mechanisms of Surrounding Concrete
by Wenjie Xu, Gang Wang, Zhenyue Ma and Fei Kang
Water 2024, 16(1), 112; https://doi.org/10.3390/w16010112 - 27 Dec 2023
Cited by 2 | Viewed by 1862
Abstract
The spiral case structure is an essential part of a hydropower station. To accurately explore the joint load-bearing effect of the cushion-spiral case structure, a cushion-spiral case structure with a high HD value was selected, modeled, and analyzed in this study. The reliability [...] Read more.
The spiral case structure is an essential part of a hydropower station. To accurately explore the joint load-bearing effect of the cushion-spiral case structure, a cushion-spiral case structure with a high HD value was selected, modeled, and analyzed in this study. The reliability of the model was verified through measured data. Given the contact relation between the spiral case and the cushion, the cushion laying range was used as the control parameter to investigate its impact on the joint bearing capacity of the structure. In addition, the concrete damage theory was introduced to probe the damage mechanism of the structure under assumed extreme working conditions. The steel spiral case bears most of the internal water pressure in the joint bearing system, and the bearing ratio of the surrounding concrete and reinforcement decreases with the increase in the cushion wrap angle. A 1.1–1.2 overload head is the main section that forms penetrating cracks. For the spiral case structure with a high HD value, a reasonable cushion can significantly reduce the damage level of the surrounding concrete and regulate the uneven lifting of the turbine pier and the shear strength of the stay ring. This study can provide reference points for the spiral case arrangement and range and the structural failure response under extreme working conditions. Full article
(This article belongs to the Special Issue Recent Advances in the Operation and Maintenance of Hydropower Plants)
Show Figures

Figure 1

26 pages, 16450 KB  
Article
Modelling Soil Water Infiltration and Wetting Patterns in Variable Working-Head Moistube Irrigation
by Yaming Zhai, Wuerkaixi Kurexi, Ce Wang, Chengli Zhu, Zhanyu Zhang and Yi Li
Agronomy 2023, 13(12), 2987; https://doi.org/10.3390/agronomy13122987 - 4 Dec 2023
Cited by 6 | Viewed by 1971
Abstract
Moistube irrigation is an efficient method that accurately irrigates and fertilizes agricultural crops. Investigation into the mechanisms of infiltration behaviors under an adjusted working head (WKH) benefits a timely and artificially regulating moisture condition within root zones, as adapted to evapotranspiration. This study [...] Read more.
Moistube irrigation is an efficient method that accurately irrigates and fertilizes agricultural crops. Investigation into the mechanisms of infiltration behaviors under an adjusted working head (WKH) benefits a timely and artificially regulating moisture condition within root zones, as adapted to evapotranspiration. This study explores the laws of Moistube irrigated soil water movement under constant and adjusted working heads. Lysimeter experiments were conducted to measure Moistube irrigation cumulative infiltration, infiltration rate, and to observe wetting front area and water content distribution using digital image processing and time domain reflectometry, respectively. Treatments of constant heads (0, 1, and 2 m), increasing heads (0 to 1, 0 to 2 and 1 to 2 m) and deceasing heads (1 to 0, 2 to 0 and 2 to 1 m) were designed. The results show that (1) under constant heads, the cumulative infiltration increases linearly over time. The infiltration rate and cumulative infiltration are positively correlated with the pressure head. When WKH is increased or decreased, the infiltration rate and cumulative infiltration curves significantly change, followed by a gradual stabilization. The more the head is increased or decreased, the more evident this tendency will be. (2) When WKH is increased, the wetting front migration rate and the wetted soil moisture content marked increase; when WKH is decreased, the wetting front migration rate sharply decelerates, and the water content of the wetted soil slowly grows. They both tend to equilibrium with time. (3) By regarding the same cumulative infiltration of increased WKH and constant WKH treatments as a similar initial condition, we proposed a cumulative infiltration empirical model for Moistube irrigation under variable working head. Additionally, we treat the Moistube as a clayey porous medium and construct a HYDRUS-2D numerical model to predict the infiltration behaviors under variable WKH. The validity of the two models were well proven, with MRE and NRMSE close to 0 and NSE greater than 0.867, indicating good agreements with the experimental results. This model breaks through the limitation of constant boundary of traditional numerical model and applies variable head boundary to the boundary of the Moistube pipe, which can also effectively simulate the response mechanism of Moistube irrigation to variable WKH. The research results further confirmed the feasibility of manually adjusting the WKH to regulate the discharge of the Moistube pipe and soil moisture state. Based on the HYDRUS-2D numerical model simulation results and the root distribution and water demand of typical facility crops, the selection range of placement depth and the adjustable range of WKH of Moistube irrigation were proposed. The research results provide a theoretical reference for manual adjustment or automatic control of Moistube irrigation WKH to adapt to real-time crop water demand in agricultural production. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

14 pages, 2614 KB  
Article
Service Pressure and Energy Consumption Mitigation-Oriented Partitioning of Closed Water Distribution Networks
by Enrico Creaco, Carlo Giudicianni and Alessandro Tosco
Water 2023, 15(18), 3218; https://doi.org/10.3390/w15183218 - 10 Sep 2023
Cited by 5 | Viewed by 1874
Abstract
This paper presents the partitioning of the closed water distribution network (WDN) serving the city of Pavia, Italy. As a thus far poorly explored aspect in the scientific literature, clustering for the definition of size and extension of district metered areas (DMAs) and [...] Read more.
This paper presents the partitioning of the closed water distribution network (WDN) serving the city of Pavia, Italy. As a thus far poorly explored aspect in the scientific literature, clustering for the definition of size and extension of district metered areas (DMAs) and of inter-DMA boundary pipes is performed by ensuring that the DMAs respect the altimetric areas of the WDN by leaning on a modified formulation of modularity. To define the boundary pipes to be closed or alternatively fitted with a flow meter for the monitoring of DMA consumption, the dividing is performed with an innovative heuristic algorithm. This technique operates by sequentially implementing the boundary closures that do not cause significant head losses, to obtain an approximation of the Pareto front in the trade-off between number of flow meters installed and WDN reliability. In the last part of the work, the pumps present in the network are assumed to be equipped with the variable speed drive, and their hourly settings are optimized to regulate service pressure. Overall, WDN partitioning and pump setting optimization are proven to mitigate the service pressure and energy consumption of the WDN, offering evident and attractive benefits up to about 50% for water utilities. Full article
(This article belongs to the Special Issue Smart Technologies for Urban Water Systems)
Show Figures

Figure 1

18 pages, 4863 KB  
Article
High-Throughput Dispensing of Viscous Solutions for Biomedical Applications
by Richard A. Revia, Brandon Wagner, Matthew James and Miqin Zhang
Micromachines 2022, 13(10), 1730; https://doi.org/10.3390/mi13101730 - 13 Oct 2022
Cited by 3 | Viewed by 3220
Abstract
Cells cultured in three-dimensional scaffolds express a phenotype closer to in vivo cells than cells cultured in two-dimensional containers. Natural polymers are suitable materials to make three-dimensional scaffolds to develop disease models for high-throughput drug screening owing to their excellent biocompatibility. However, natural [...] Read more.
Cells cultured in three-dimensional scaffolds express a phenotype closer to in vivo cells than cells cultured in two-dimensional containers. Natural polymers are suitable materials to make three-dimensional scaffolds to develop disease models for high-throughput drug screening owing to their excellent biocompatibility. However, natural polymer solutions have a range of viscosities, and none of the currently available liquid dispensers are capable of dispensing highly viscous polymer solutions. Here, we report the development of an automated scaffold dispensing system for rapid, reliable, and homogeneous creation of scaffolds in well-plate formats. We employ computer-controlled solenoid valves to regulate air pressure impinging upon a syringe barrel filled with scaffold solution to be dispensed. Automated dispensing of scaffold solution is achieved via a programmable software interface that coordinates solution extrusion and the movement of a dispensing head. We show that our pneumatically actuated dispensing system can evenly distribute high-viscosity, chitosan-based polymer solutions into 96- and 384-well plates to yield highly uniform three-dimensional scaffolds after lyophilization. We provide a proof-of-concept demonstration of high-throughput drug screening by culturing glioblastoma cells in scaffolds and exposing them to temozolomide. This work introduces a device that can hasten the creation of three-dimensional cell scaffolds and their application to high-throughput testing. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications)
Show Figures

Figure 1

15 pages, 6628 KB  
Article
An Operative Framework for the Optimal Selection of Centrifugal Pumps As Turbines (PATs) in Water Distribution Networks (WDNs)
by Francesco Pugliese and Maurizio Giugni
Water 2022, 14(11), 1785; https://doi.org/10.3390/w14111785 - 1 Jun 2022
Cited by 17 | Viewed by 2609
Abstract
The current significant increase in energy consumption has resulted in the need to develop and implement effective approaches for defining alternative and sustainable solutions to couple primary resources with supporting methods of energy generation. In the field of effective water distribution network (WDN) [...] Read more.
The current significant increase in energy consumption has resulted in the need to develop and implement effective approaches for defining alternative and sustainable solutions to couple primary resources with supporting methods of energy generation. In the field of effective water distribution network (WDN) management, the suitability of combining pressure regulation with small-scale hydropower generation is attracting even more interest, given that it can possibly reduce water leakages, as well as produce attractive rates of renewable energy. Specifically, pumps as turbines (PATs) are widely considered a viable solution because they combine hydraulic benefits with affordable investment and management costs. Nevertheless, despite several approaches available in the literature for the optimal selection and management of PATs, choosing the most suitable device to be installed in the network is still a challenge, especially when electrical regulation is arranged to modulate the PAT rotational speed and optimize the produced energy. Several approaches in the literature provide interesting solutions for assessing the effectiveness of electrical regulation when a PAT is installed within a water network. However, most of them require specific knowledge of the PAT mechanical features or huge computational efforts and do not support swift PAT selection. To overcome this lack of tools, in this work, an operative framework for the preliminary assessment of the main features (the head drop and the produced power at the best efficiency point (BEP), the impeller diameter and the rotational speed) of a PAT is proposed, aimed at both maximizing the daily produced energy and performing challenging economic selection. Then, it is assessed by estimations of the corresponding payback period (PP) and the net present value (NPV). Full article
(This article belongs to the Special Issue Increasing the Efficiency of Urban Water Supply)
Show Figures

Figure 1

20 pages, 7438 KB  
Article
Improved Method for Testing Integrity Loss of Wells with Sustained Casing Pressure
by Mohammad Kazemi and Andrew K. Wojtanowicz
Energies 2022, 15(10), 3632; https://doi.org/10.3390/en15103632 - 16 May 2022
Cited by 5 | Viewed by 2814
Abstract
The pressure bleed-down/build-up (B/B) testing is enforced by the Bureau of Safty and Environmental Enforcement (BSEE) regulations in the US for gas-leaking wells with recurrent casing head annular pressure dubbed “Sustained Casing Pressure” (SCP). The bleed down test involves bleeding the pressure with [...] Read more.
The pressure bleed-down/build-up (B/B) testing is enforced by the Bureau of Safty and Environmental Enforcement (BSEE) regulations in the US for gas-leaking wells with recurrent casing head annular pressure dubbed “Sustained Casing Pressure” (SCP). The bleed down test involves bleeding the pressure with a needle valve. Once the pressure reached to zero or stabilized, the valve is closedand a 24-h pressure monitoring starts. Analysis of the tests mandated by regulations involves merely a qualitative assessment of the low or high level of environmental risk measured by leak size. A quantitative analysis—based on mathematical models—has been already proposed and used for sizing cement leaks but the models give ambiguous results due to oversimplifying assumptions of the cement leak system and disregard for the testing procedure. This work addresses shortcomings of the current B/B testing and analysis methods by approaching the testing procedure as a source of useful information about the system of annular well leakage. We demonstrate that using a mathematical model for globally matching all stages of the B/B test data would prioritize the pressure bleed-down stage over the buildup stage thus making the latter stage mostly irrelevant in providing information on the whole gas migration system. We verify the hypothesis that a stage-wise analysis would improve the results by separately considering three stages of the B/B test: pressure bleed down, constant flow (steady-state), and pressure buildup, and, then, comparatively reconciling values of the system parameters. The stage-by-stage approach is feasible because—as shown by the sensitivity analysis—each stage is controlled mostly by a single parameter. Also presented is the development of an improved procedure for performing the B-B test. The study shows that the operational parameters controlled by the test operator—duration and size of the needle valve opening, and pressure recording time step, might significantly change values of the test output—the minimum bleed down, and the maximum 24-h buildup pressures. It is also found that the zero bleed-down pressure does not necessarily indicate that the leak is small as it also depends upon the length and properties of the annular fluid column above the cement top. Full article
Show Figures

Figure 1

14 pages, 2812 KB  
Article
A New Low-Cost Technology Based on Pump as Turbines for Energy Recovery in Peripheral Water Networks Branches
by Armando Carravetta, Giuseppe Del Giudice, Oreste Fecarotta, Maria Cristina Morani and Helena M. Ramos
Water 2022, 14(10), 1526; https://doi.org/10.3390/w14101526 - 10 May 2022
Cited by 15 | Viewed by 3794
Abstract
The recovery of excess energy in water supply networks has been a topic of paramount importance in recent literature. In pressurized systems, a pump used in inverse mode (Pump As Turbine, PAT) demonstrated to be a very economical and reliable solution, compared to [...] Read more.
The recovery of excess energy in water supply networks has been a topic of paramount importance in recent literature. In pressurized systems, a pump used in inverse mode (Pump As Turbine, PAT) demonstrated to be a very economical and reliable solution, compared to traditional energy production devices (EPDs). Due to the large variability of flow rate and head drop within water distribution networks, the operation of PATs could be performed by a series-parallel regulation system based on an electronic or a hydraulic principle. Despite the low cost of the PATs and of regulation and control systems, a great barrier to the diffusion of a small hydro power plant in water distribution is represented by the necessity of additional civil works to host the whole plant. Based on laboratory and numerical experiments, the present paper proposes a new low-cost technology, overcoming most of the limitations of the present technologies when low energy is available and high discharge variation occurs. The operating conditions of the plant are properly optimized with reference to the working conditions of a case study. Despite the laboratory prototype having exhibited a significantly low efficiency (i.e., 16%), due to the use of small centrifugal pumps suitable for the analyzed case study, in larger power plants relying on more efficient semi-axial submersed pumps, the energy conversion ratio can increase up to 40%. The results of this research could be useful for network managers and technicians interested in increasing the energy efficiency of the network and in recovering energy in the peripheral branches of the network were a large variability of small flow rates are present. Full article
Show Figures

Figure 1

16 pages, 4905 KB  
Article
Adaptive Cutting Control for Roadheaders Based on Performance Optimization
by Qingyun Liu, Chao Lu, Tao Liu and Zhangbao Xu
Machines 2021, 9(3), 46; https://doi.org/10.3390/machines9030046 - 24 Feb 2021
Cited by 8 | Viewed by 3334
Abstract
Aiming at addressing the problems of high specific energy consumption for cutting and slow response to the change of hardness in the control of existing mining roadheaders, an adaptive variable speed cutting control method based on cutting performance optimization is proposed by analyzing [...] Read more.
Aiming at addressing the problems of high specific energy consumption for cutting and slow response to the change of hardness in the control of existing mining roadheaders, an adaptive variable speed cutting control method based on cutting performance optimization is proposed by analyzing the working principle of roadheaders. Firstly, cylinder pressure and motor current are invoked as the criteria to judge load changes. Particle swarm optimization is utilized to optimize the cutting parameters under different impedance. Then, the relation between cutting speed, motor current and cylinder pressure is established by using fuzzy neural network to train cutting parameters and identification parameters under different conditions. Finally, the vector control of motor and electro-hydraulic servo valve is used to control the cutting speed. The results show that the cutting unit can adapt to different load signals and always keep the roadheader in the optimal working state. The rotation speed regulation of the cutting head reaches the stable state after 0.05 s, with the overshoot of 1.42%. The swing speed regulation of the cutting head reaches the stable state after 1 s, with the overshoot of 5.3%. Conclusions provide a basis for improving the cutting efficiency and prolonging the working life of the roadheader. Full article
Show Figures

Figure 1

19 pages, 2562 KB  
Article
Hydropower Generation Through Pump as Turbine: Experimental Study and Potential Application to Small-Scale WDN
by Matteo Postacchini, Giovanna Darvini, Fiorenza Finizio, Leonardo Pelagalli, Luciano Soldini and Elisa Di Giuseppe
Water 2020, 12(4), 958; https://doi.org/10.3390/w12040958 - 28 Mar 2020
Cited by 29 | Viewed by 20846
Abstract
Pump-As-Turbine (PAT) technology is a smart solution to produce energy in a sustainable way at small scale, e.g., through its exploitation in classical Water Distribution Networks (WDNs). PAT application may actually represent a suitable solution to obtain both pressure regulation and electrical energy [...] Read more.
Pump-As-Turbine (PAT) technology is a smart solution to produce energy in a sustainable way at small scale, e.g., through its exploitation in classical Water Distribution Networks (WDNs). PAT application may actually represent a suitable solution to obtain both pressure regulation and electrical energy production. This technology enables one to significantly reduce both design and maintenance costs if compared to traditional turbine applications. In this work, the potential hydropower generation was evaluated through laboratory tests focused on the characterization of a pump working in reverse mode, i.e., as a PAT. Both hydrodynamic (pressure and discharge) and mechanical (rotational speed and torque) conditions were varied during the tests, with the aim to identify the most efficient PAT configurations and provide useful hints for possible real-world applications. The experimental findings confirm the good performances of the PAT system, especially when rotational speed and water demand are, respectively, larger than 850 rpm and 8 L/s, thus leading to efficiencies greater than 50%. Such findings were applied to a small municipality, where daily distribution of pressure and discharge were recorded upstream of the local WDN, where a Pressure Reducing Valve (PRV) is installed. Under the hypothesis of PRV replacement with the tested PAT, three different scenarios were studied, based on the mean recorded water demand and each characterized by specific values of PAT rotational speed. The best performances were observed for the largest tested speeds (1050 and 1250 rpm), which lead to pressure drops smaller than those actually due to the PRV, thus guaranteeing the minimum pressure for users, but also to mechanical powers smaller than 100 W. When a larger mean water demand is assumed, much better performances are reached, especially for large speeds (1250 rpm) that lead to mechanical powers larger than 1 kW combined to head drops a bit larger than those observed using the PRV. A suitable design is thus fundamental for the real-world PAT application. Full article
Show Figures

Figure 1

5 pages, 240 KB  
Proceeding Paper
Small-Scale Hydropower Generation in Water Distribution Networks by Using Pumps as Turbines
by Francesco Pugliese, Francesco De Paola, Nicola Fontana, Gustavo Marini and Maurizio Giugni
Proceedings 2018, 2(23), 1486; https://doi.org/10.3390/proceedings2231486 - 31 Oct 2018
Cited by 2 | Viewed by 1711
Abstract
In this work, a procedure for the optimal design of Pumps As Turbines in Water Distribution Networks was applied, aimed at both maximizing the hydropower generation and exploiting the excess pressure. The design of the main characteristic PAT parameters, namely the flow rate [...] Read more.
In this work, a procedure for the optimal design of Pumps As Turbines in Water Distribution Networks was applied, aimed at both maximizing the hydropower generation and exploiting the excess pressure. The design of the main characteristic PAT parameters, namely the flow rate and the head drop at Best Efficiency Point, the rotational speed and the impeller’s diameter was assessed, under the hypothesis of applying the Electrical Regulation. The procedure allowed to estimate both the produced power and the exploited head at any simulated time-step, as well as the overall daily energy, in compliance with the hydraulic and technical constraints of the system. The model was tested on a simplified Water Distribution Network and a preliminary Cost-Benefit analysis was performed, showing interesting reliefs against short Payback Period. Full article
Show Figures

Figure 1

Back to TopTop