Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = relict pine forests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11465 KB  
Article
Scots Pine at Its Southern Range in Siberia: A Combined Drought and Fire Influence on Tree Vigor, Growth, and Regeneration
by Viacheslav I. Kharuk, Il’ya A. Petrov, Alexander S. Shushpanov, Sergei T. Im and Sergei O. Ondar
Forests 2025, 16(5), 819; https://doi.org/10.3390/f16050819 - 14 May 2025
Viewed by 608
Abstract
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of [...] Read more.
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of the Pinus sylvestris range in Siberia. We hypothesize that (1) warming has stimulated pine growth under conditions of sufficient moisture supply, and (2) increased burning rate has threatened forest viability. We found that the increase in air temperature, combined with the decrease in soil and air drought, stimulated tree growth. Since the “warming restart” around 2000, the growth index (GI) of pines has exceeded its historical value by 1.4 times. The GI strongly correlates with the GPP and NPP of pine stands (r = 0.82). Despite the increased fire rate, the GPP/NPP and EVI index of both pine stands and surrounding bush–steppes are increasing, i.e., the pine habitat is “greening” since the warming restart. These results support the prediction (by climatic scenarios SSP4.5, SSP7.0, and SSP8.5) of improvement in tree habitat in the Siberian South. Meanwhile, warming has led to a reduction in the fire-return interval (up to 3–5 y). Although the post-fire density of seedlings on burns (ca. 10,000 per ha) is potentially sufficient for pine forest recovery, repeated surface fires have eliminated the majority of the undergrowth and afforestation. In a changing climate, the preservation of relict pine forests depends on a combination of moisture supply, burning rate, and fire suppression. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 11709 KB  
Article
Analysis of the Potential Range of Mountain Pine-Broadleaf Ecotone Forests and Its Changes under Moderate and Strong Climate Change in the 21st Century
by Nikolay Fedorov, Svetlana Zhigunova, Pavel Shirokikh, Elvira Baisheva and Vasiliy Martynenko
Plants 2023, 12(21), 3698; https://doi.org/10.3390/plants12213698 - 26 Oct 2023
Cited by 2 | Viewed by 1801
Abstract
Climatic changes have a significant impact on the composition and distribution of forests, especially on ecotone ones. In the Southern Ural, pine-broadleaf ecotone forests were widespread during the early Holocene time, but now have persisted as relic plant communities. This study aimed to [...] Read more.
Climatic changes have a significant impact on the composition and distribution of forests, especially on ecotone ones. In the Southern Ural, pine-broadleaf ecotone forests were widespread during the early Holocene time, but now have persisted as relic plant communities. This study aimed to analyze the current potential range and to model changes in habitat suitability of relic pine-broadleaf ecotone forests of the suballiance Tilio-Pinenion under scenarios of moderate (RCP4.5) and strong (RCP8.5) climate change. For modelling, we used MaxEnt software with the predictors being climate variables from CHELSA Bioclim, the global digital soil mapping system SoilGrids and the digital elevation model. In the Southern and Middle Urals, climate change is expected to increase the areas with suitable habitat conditions of these forests by the middle of the 21st century and decrease them in the second half of the century. By the middle of the 21st century, the eastern range boundary of these forests will shift eastward due to the penetration of broad-leaved tree species into coniferous forests of the Southern Ural. In the second half of the century, on the contrary, it is expected that climate aridization will again shift the potential range border of these forests to the west due to their gradual replacement by hemiboreal coniferous forests. The relationship between the floristic composition of pine-broadleaf forests and habitat suitability was identified. In low and medium habitat suitability, pine-broadleaf forests contain more nemoral species characteristic of deciduous forests of the temperate zone, and can be replaced by broadleaf forests after thinning and removal of pine. In the Volga Upland, suitable habitats are occupied by pine-broadleaf forests of the vicariant suballiance Querco robori-Tilienion cordatae. Projected climatic changes will have a significant impact on these ecotone forests, which remained completely unaltered for a long time. Full article
Show Figures

Figure 1

13 pages, 1074 KB  
Article
Composition and Ecological Structure of the Fauna of Litter and Soil True Bugs (Insecta, Heteroptera) in Kazakh Upland (Central Kazakhstan) Pine Forests
by Veronika S. Abukenova, Nadezhda P. Slavchenko, Gulnaz T. Kartbayeva, Amanay B. Myrzabayev, Aliya B. Yeshmagambetova, Nazira M. Duzbayeva, Malika T. Kabbassova and Almira K. Abukenova
Diversity 2022, 14(8), 618; https://doi.org/10.3390/d14080618 - 31 Jul 2022
Cited by 2 | Viewed by 2423
Abstract
We assessed true bugs among aboveground and soil inhabitants of four different biocoenoses of pine forests representing the intrazone flora and fauna areas of the Kazakh Upland. True bugs were collected from litter according to the methods of soil zoological studies. The results [...] Read more.
We assessed true bugs among aboveground and soil inhabitants of four different biocoenoses of pine forests representing the intrazone flora and fauna areas of the Kazakh Upland. True bugs were collected from litter according to the methods of soil zoological studies. The results of a comparative analysis of the similarities and differences of the dominant and ecological structures of Heteroptera complexes of aboriginal and derived forest types are presented. Fourteen species and subspecies of three families were listed for the Central Kazakhstan region for the first time. The species Eremocoris podagricus was not previously registered for the territory of Kazakhstan. Fifteen species (50%) were true aboveground inhabitants or live on grass, whereas other species use soil surfaces and ground litter as temporary habitats. Drymus brunneus and Eremocoris fenestratus play a key role in the structure and function of the true bug assemblages in the studied biotopes. The ecological success of typical forest and boreal inhabitants in biotopes of arid regions is explained by the relict nature of forests and ancient connections with the taiga zone of Western Siberia and the mountain forests of the Urals and Altai. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

24 pages, 2950 KB  
Article
Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils
by Jarosław Lasota, Ewa Błońska, Tomasz Babiak, Wojciech Piaszczyk, Hanna Stępniewska, Robert Jankowiak, Piotr Boroń and Anna Lenart-Boroń
Forests 2021, 12(11), 1488; https://doi.org/10.3390/f12111488 - 29 Oct 2021
Cited by 20 | Viewed by 3726
Abstract
Relict charcoal hearths (RCHs) increases soil fertility in forest ecosystems. However, the effects of RCHs on the activity and abundance of soil microorganisms remain unknown. In this paper, we analysed the impact of relict charcoal production on the soil enzymatic activity and composition [...] Read more.
Relict charcoal hearths (RCHs) increases soil fertility in forest ecosystems. However, the effects of RCHs on the activity and abundance of soil microorganisms remain unknown. In this paper, we analysed the impact of relict charcoal production on the soil enzymatic activity and composition of soil bacterial and fungal communities in Scots pine forests of the Manowo Forest District in northern Poland. Moreover, we determined the effect of relict charcoal production on the soil properties. Our research was conducted by comparing the physical, chemical, enzymatic and microbiological properties of charcoal-enriched and charcoal-free soils. Significant differences in physical properties were found between these two soil types in terms of their structure and water holding capacity. As expected, horizons enriched with charcoal were characterised by a significantly higher organic carbon content (4.7% on average compared to 2.2% in control horizons), and also by a considerably higher content of available phosphorus (an average of 64.07 mg·kg−1 compared to 36.21 mg·kg−1 in the control). Similarly, RCH horizons displayed a higher pH and higher contents of Ca and Na cations. These results indicated that RCH soils provided more favourable conditions for the soil microbiome, as reflected by the higher enzymatic activity and diversity of the microorganisms. Moreover, bacterial and fungal communities in RCH soils were more diverse and had greater species/genera richness, especially in the case of fungi. Members of the genus Rhodoplanes dominated the bacterial community at both RCH and non-RCH sites, followed by Streptomyces, Burkholderia, Skermanella, Tsukamurella and Candidatus Solibacter. Both culture- and next generation sequencing (NGS)-based analyses showed that soil fungal communities were dominated by Ascomycota, with Penicillium as the most abundant genus. Our results showed that hearth soils may represent a significant C pool in the forest ecosystem. This study supports the strategy of safeguarding such charcoal-enriched soils as precious C reservoirs and ecologically important biodiversity hotspots. Moreover, the application of charcoal may effectively increase the microbial diversity of forest soils, especially during the reforestation or re-cultivation of disturbed habitats. Full article
(This article belongs to the Special Issue Carbon Stock and Sequestration in Forest Ecosystems)
Show Figures

Figure 1

18 pages, 3572 KB  
Article
Impact of Mixing on the Structural Diversity of Serbian Spruce and Macedonian Pine Endemic to Relict Forest Communities in the Balkan Peninsula
by Aleksandar Popović, Damjan Pantić, Milan Medarević, Biljana Šljukić and Snežana Obradović
Forests 2021, 12(8), 1095; https://doi.org/10.3390/f12081095 - 16 Aug 2021
Cited by 3 | Viewed by 2461
Abstract
The aim of this paper is to analyze the effect of different degrees of mixing on the diversity structure in stands left to spontaneous development. The research included two communities of species endemic to the Balkan Peninsula—the Serbian spruce (Picea omorika Pančić [...] Read more.
The aim of this paper is to analyze the effect of different degrees of mixing on the diversity structure in stands left to spontaneous development. The research included two communities of species endemic to the Balkan Peninsula—the Serbian spruce (Picea omorika Pančić Purk.) and the Macedonian pine (Pinus peuce Griseb). Data from eight sample plots were used in the research. The changes in diameter and height structure, spatial arrangement of trees, and diameter differentiation were analyzed. The analyzed parameters of structural diversity show relatively low to moderate values. Results showed an increase in mixing was reflected in the width and shape of distributions. A spatial analysis of stands with a higher degree of mixing showed a tendency towards a random to regular distribution of individuals, in contrast to stands with a lower degree of mixing which showed a tendency towards a clump distribution. The pronounced species’ dimensional and spatial diversity confirms their importance to the condition of modern forest management. Significant differences in the change of structure are shown by stands with a share of admixed species of above 20% by volume. The obtained results refer to stands left to spontaneous development, suggesting than an active research and management approach must be assumed to realize the goal of protecting rare forest ecosystems. Full article
(This article belongs to the Special Issue Patterns of Tree Species Diversity and Forest Structure)
Show Figures

Figure 1

12 pages, 19954 KB  
Article
Historical Fires Induced Deforestation in Relict Scots Pine Forests during the Late 19th Century
by J. Julio Camarero, Gabriel Sangüesa-Barreda, Cristina Montiel-Molina, Reyes Luelmo-Lautenschlaeger, Paula Ortega, Mar Génova and José Antonio López-Sáez
Fire 2021, 4(2), 29; https://doi.org/10.3390/fire4020029 - 18 May 2021
Cited by 2 | Viewed by 3660
Abstract
Mountain forests are subjected to several pressures including historical land-use changes and climate warming which may lead to shifts in wildfire severity negatively impacting tree species with low post-fire growth resilience. This is the case of relict Mediterranean Scots pine (Pinus sylvestris [...] Read more.
Mountain forests are subjected to several pressures including historical land-use changes and climate warming which may lead to shifts in wildfire severity negatively impacting tree species with low post-fire growth resilience. This is the case of relict Mediterranean Scots pine (Pinus sylvestris) forests in the Sierra de Gredos mountains (central Spain). We reconstructed the historical fire regime of these forests since 1700 by using paleoecology, historical ecology and dendroecology. We detected an increase in charcoal accumulation rate and coprophilous fungi in peat bogs during the late 19th century when the pine pollen percentage sharply decreased, historical records of fire peaked and many trees showed growth suppressions. We inferred an increased wildfire incidence during the late 19th century, which could have shaped the current distribution of Scots pine forests. This shift in fire-forest interactions can be explained by the uncontrolled use of mountain forests and grasslands due to the dissolution of “Mesta”, one of the major and lasting transhumance livestock associations in Europe. Integrating historical human and climate influences on fire regimes allows decomposing the resilience and conservation components of relict forests. Full article
Show Figures

Figure 1

23 pages, 2690 KB  
Article
Phytosociological Analysis of Natural and Artificial Pine Forests of the Class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 in the Sudetes and Their Foreland (Bohemian Massif, Central Europe)
by Kamila Reczyńska, Paweł Pech and Krzysztof Świerkosz
Forests 2021, 12(1), 98; https://doi.org/10.3390/f12010098 - 18 Jan 2021
Cited by 6 | Viewed by 3224
Abstract
Research Highlights: Differentiation of Scots pine forests of the class Vaccinio-Piceetea in Poland has been the subject of numerous studies, including revisions. Despite that, the area of southwestern Poland was hitherto practically unexplored in this respect. Background and Objectives: The aim of this [...] Read more.
Research Highlights: Differentiation of Scots pine forests of the class Vaccinio-Piceetea in Poland has been the subject of numerous studies, including revisions. Despite that, the area of southwestern Poland was hitherto practically unexplored in this respect. Background and Objectives: The aim of this work was therefore (i) to present the diversity of the pine forests in the Sudetes and their foreland; (ii) to compare the ecology of studied communities. Materials and Methods: We analyzed 175 phytosociological relevés collected between 1991 and 2020 in natural and anthropogenic pine stands. To identify vegetation types, we used the modified TWINSPAN algorithm; principal coordinate analysis, distance-based redundancy analysis and permutational tests were applied to identify the variation explained and the main environmental gradients shaping the studied plant communities. Results: Five associations were distinguished: thermophilous Asplenio cuneifolii-Pinetum sylvestris Pišta ex Husová in Husová et al. 2002, which develops on shallow soils over ultrabasic substrates, Hieracio pallidi-Pinetum sylvestris Stöcker 1965, which prefers outcrops of acidic rocks; Betulo carpaticae-Pinetum sylvestris Mikyška 1970, which is relict in origin and occurs on the upper Cretaceous sandstones, the peatland pine–birch forests of the Vaccinio uliginosi-Betuletum pubescentis Libbert 1933 and the Vaccinio myrtilli-Pinetum sylvestris Juraszek 1928. Moreover, community Brachypodium sylvaticum-Pinus sylvestris with the occurrence of many thermophilous and basiphilous species was also found on limestone substratum. The analysis of the species composition of pine plantations established on deciduous and mixed forests habitats revealed that these anthropogenic communities were marked by a random combination of species in which a certain group of common forest generalists participated. The distinguished communities differed clearly among each other also in habitat characteristics. Particularly important for their differentiation were soil reaction and nutrients, supported by differences in moisture, temperature and light availability. Apart from the edaphic factors, altitude and the bedrock type proved to be equally important. Conclusions: Our study provides new remarks to the typology and synecology of pine forest communities in SW Poland. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 4657 KB  
Article
Genetic Diversity and Spatial Genetic Structure in Isolated Scots Pine (Pinus sylvestris L.) Populations Native to Eastern and Southern Carpathians
by Nicolae Șofletea, Georgeta Mihai, Elena Ciocîrlan and Alexandru Lucian Curtu
Forests 2020, 11(10), 1047; https://doi.org/10.3390/f11101047 - 28 Sep 2020
Cited by 19 | Viewed by 3626
Abstract
Small, isolated populations are more vulnerable to natural disturbances and loss of genetic diversity. Scots pine, an abundant tree species in the boreal forest of Eurasia, has a scattered natural distribution across Eastern and Southern Carpathian Mountains, where only a few relict populations [...] Read more.
Small, isolated populations are more vulnerable to natural disturbances and loss of genetic diversity. Scots pine, an abundant tree species in the boreal forest of Eurasia, has a scattered natural distribution across Eastern and Southern Carpathian Mountains, where only a few relict populations still exist. We estimated genetic diversity and spatial genetic structure in Scots pine on the basis of microsatellite nuclear markers (nSSR) data. We found a relatively high level of genetic diversity (He = 0.697) within populations and no evidence of recent bottlenecks. Genetic diversity was lower in peat bog populations, as compared to populations that grow on rocky slopes or acidic soils and nutrient-poor sites. Population genetic structure was weak, and genetic discontinuities among populations were detected. Spatial genetic structure (SGS) was observed in nearly all Scots pine populations. The strength of SGS, quantified by Sp statistics, varied greatly among populations, ranging from 0.0011 to 0.0207, with an average of 0.01. Our study highlights that Eastern and Southern Carpathian populations still possess high within-population diversity in spite of the recent fragmentation and reduction of the Scots pine natural distribution range. We discuss the importance of spatial patterns of genetic diversity for developing strategies of conservation and sustainable use of Scots pine genetic resources in the Carpathian region. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 1610 KB  
Article
Effective Seed Dispersal and Fecundity Variation in a Small and Marginal Population of Pinus pinaster Ait. Growing in a Harsh Environment: Implications for Conservation of Forest Genetic Resources
by Jesús Charco, Martin Venturas, Luis Gil and Nikos Nanos
Forests 2017, 8(9), 312; https://doi.org/10.3390/f8090312 - 26 Aug 2017
Cited by 8 | Viewed by 4563
Abstract
Small-size, relict and marginal tree-species populations are a priority for conservation of forest genetic resources. In-situ conservation of these populations relies on adequate forest management planning based on knowledge and understanding of both ecological (i.e., recruitment or dispersal dynamics) and population-genetic processes (i.e., [...] Read more.
Small-size, relict and marginal tree-species populations are a priority for conservation of forest genetic resources. In-situ conservation of these populations relies on adequate forest management planning based on knowledge and understanding of both ecological (i.e., recruitment or dispersal dynamics) and population-genetic processes (i.e., female reproductive success, gene flow or inbreeding). Here, we estimate the fecundity (or female reproductive success) of adult trees (i.e., the number of successfully established offspring/adult tree) and the effective dispersal distance distribution in the pine forest of Fuencaliente (southern Spain), a small-sized, marginal and relict population of maritime pine growing on a steep, craggy hill with just 312 reproductively active individuals. Previous studies have shown the population to present reduced allelic richness and suffer from genetic introgression from nearby exotic plantations of unknown origin. Between 2003 and 2004, we surveyed all adults and recruits and we measured several adult-specific covariates, including the number of cones of all adults. The population was found to be distributed into two nuclei with 268 (Stand 1) and 44 adults (Stand 2). We used inverse modeling to adjust several dispersal-and-fecundity models including a model with random variation in fecundity among adults (Unrestricted Fecundity or UF model). Results show that: (i) the average fecundity is 2.5–3.2 recruits/adult; (ii) the mean effective dispersal distance is restricted to 13–24 m and (iii) fecundity is most likely controlled by the spatial location of adult trees in Stand ,1 but it should be considered randomly distributed in Stand 2 (in this stand five adults mothered 80% of recruits). We conclude that the low fecundity in Stand 1 and the unequal fecundity in Stand 2 may decrease the population genetic diversity and lead to lower effective population size while the low average dispersal distance may reduce the probability of this population expanding to adjacent areas. In light of the results, we define the management priorities for in-situ conservation of this population. Full article
(This article belongs to the Special Issue Genetics and Genomics of Forest Trees)
Show Figures

Figure 1

Back to TopTop