Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = residual limb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2087 KB  
Case Report
Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study
by Alexander Gardetto, Diane J. Atkins, Giulia Cannoletta, Giovanni Antonio Zappatore and Angelo Carrabba
Prosthesis 2025, 7(5), 111; https://doi.org/10.3390/prosthesis7050111 - 1 Sep 2025
Viewed by 691
Abstract
Background/Objectives: Upper limb amputation presents considerable physical and psychological challenges, especially in young, active individuals. This case study outlines the rehabilitation journey of a 33-year-old patient, an Italian national Paralympic snowboard cross athlete, who underwent elective transradial amputation followed by advanced surgical and [...] Read more.
Background/Objectives: Upper limb amputation presents considerable physical and psychological challenges, especially in young, active individuals. This case study outlines the rehabilitation journey of a 33-year-old patient, an Italian national Paralympic snowboard cross athlete, who underwent elective transradial amputation followed by advanced surgical and prosthetic interventions. The objective was to assess the combined impact of upper limb Targeted Sensory Reinnervation (ulTSR) and the Adam’s Hand prosthetic system on functional recovery and user satisfaction. Methods: After a partial brachial plexus injury caused complete paralysis of his right hand, the patient opted for transradial amputation. He subsequently underwent ulTSR, performed by plastic surgeon, Alexander Gardetto, MD, which involved rerouting sensory nerves to defined regions of the residual limb in order to reestablish a phantom limb map. This reinnervation was designed to facilitate improved prosthetic integration. The Adam’s Hand, a myoelectric prosthesis with AI-based pattern recognition, was selected for its compatibility with TSR and intuitive control. Outcomes were evaluated using the OPUS questionnaire, the DASH, and patient feedback. Results: ulTSR successfully restored meaningful sensory input, allowing intuitive and precise control of the prosthesis, with minimal cognitive and muscular effort. The patient regained the ability to perform numerous activities of daily living such as dressing, eating, lifting, and fine motor tasks—which had been impossible for over 15 years. OPUS results demonstrated significant improvements in both function and satisfaction. Conclusions: This case highlights the synergistic benefits of combining ulTSR with user-centered prosthetic technology. Surgical neurorehabilitation, paired with advanced prosthetic design, led to marked improvements in autonomy, performance, and quality of life in a high-performance amputee athlete. Full article
Show Figures

Figure 1

18 pages, 3256 KB  
Article
Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation
by Huimin Hu, Yi Luo, Ling Min, Lei Li and Xing Wang
Sensors 2025, 25(17), 5277; https://doi.org/10.3390/s25175277 - 25 Aug 2025
Viewed by 665
Abstract
(1) Background: Integrating assessment with training helps to enhance precision prosthetic rehabilitation of trans-radial amputees. This study aimed to validate a self-developed closed-loop rehabilitation platform combining accurate measurement in comprehensive assessment and immediate interaction in virtual reality (VR) training in refining patient-centered myoelectric [...] Read more.
(1) Background: Integrating assessment with training helps to enhance precision prosthetic rehabilitation of trans-radial amputees. This study aimed to validate a self-developed closed-loop rehabilitation platform combining accurate measurement in comprehensive assessment and immediate interaction in virtual reality (VR) training in refining patient-centered myoelectric prosthesis rehabilitation. (2) Methods: The platform consisted of two modules, a multimodal assessment module and an sEMG-driven VR game training module. The former included clinical scales (OPUS, DASH), task performance metrics (modified Box and Block Test), kinematics analysis (inertial sensors), and surface electromyography (sEMG) recording, verified on six trans-radial amputees and four healthy subjects. The latter aimed for muscle coordination training driven by four-channel sEMG, tested on three amputees. Post 1-week training, task performance and sEMG metrics (wrist flexion/extension activation) were re-evaluated. (3) Results: The sEMG in the residual limb of the amputees upgraded by 4.8%, either the subjects’ number of gold coins or game scores after 1-week training. Subjects uniformly agreed or strongly agreed with all the items on the user questionnaire. In reassessment after training, the average completion time (CT) of all three amputees in both tasks decreased. CTs of the A1 and A3 in the placing tasks were reduced by 49.52% and 50.61%, respectively, and the CTs for the submitting task were reduced by 19.67% and 55.44%, respectively. Average CT of all three amputees in the ADL task after training was 9.97 s, significantly lower than the pre-training time of 15.17 s. (4) Conclusions: The closed-loop platform promotes patients’ prosthesis motor-control tasks through accurate measurement and immediate interaction according to the sensorimotor recalibration principle, demonstrating a potential tool for precision rehabilitation. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

16 pages, 1087 KB  
Review
The Role of Pharmacogenomics in Optimizing Ketamine Therapy for Post-Amputation Pain
by Alix Tappe, Emily Burzynski, Jhanvi Patel, Ithamar Cheyne and Małgorzata Mikaszewska-Sokolewicz
Reports 2025, 8(3), 156; https://doi.org/10.3390/reports8030156 - 22 Aug 2025
Viewed by 408
Abstract
Context and objective: Post-amputation pain (PAP) is an umbrella term that includes residual limb pain (RLP) and phantom limb pain (PLP), posing a significant challenge to recovery and quality of life after limb loss. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has gained interest [...] Read more.
Context and objective: Post-amputation pain (PAP) is an umbrella term that includes residual limb pain (RLP) and phantom limb pain (PLP), posing a significant challenge to recovery and quality of life after limb loss. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has gained interest for its potential to manage PAP, particularly in refractory cases. This narrative review explores the efficacy of ketamine for PAP and the emerging role of pharmacogenomics in guiding its use. Methods: A literature review of PubMed, Embase, and Cochrane databases was conducted, focusing on clinical trials, systematic reviews, and genetic influences on ketamine metabolism and response. Studies suggest that perioperative ketamine can reduce PAP severity and opioid use. However, outcomes vary, with some patients experiencing transient relief and others achieving prolonged benefit. Results: This variability may be linked to genetic differences in CYP2B6, CYP3A4/5, COMT Val158Met, SLC6A2, and KCNS1, which affect ketamine’s metabolism, efficacy and side effect profile. Understanding these pharmacogenomic factors could enable more personalized and effective ketamine therapy. Conclusion: Despite its promise, inconsistent dosing regimens and limited integration of genetic data hinder standardization. Further research into genotype-guided ketamine protocols may improve treatment outcomes and support precision analgesia in amputee care. Full article
(This article belongs to the Section Anaesthesia)
Show Figures

Figure 1

11 pages, 890 KB  
Article
Addition of Lateral Extra-Articular Tenodesis to Primary Anterior Cruciate Ligament Reconstruction in Competitive Athletes with High-Grade Pivot-Shift Is Associated with Lower Graft Failure and Faster Return to Sport: A Propensity Score-Matched Multicentre Cohort Study
by Gabriele Giuca, Danilo Leonetti, Andrea Pace, Filippo Familiari, Michele Mercurio, Katia Corona, Roberto Simonetta and Michelangelo Palco
Surgeries 2025, 6(3), 70; https://doi.org/10.3390/surgeries6030070 - 21 Aug 2025
Viewed by 567
Abstract
Aim of the Study: To determine whether adding a lateral extra-articular tenodesis (LET) to primary anterior cruciate ligament reconstruction (ACLR) lowers graft-failure risk and improves functional recovery in competitive athletes with high-grade pivot-shift. Methods: Multicentre retrospective cohort with 1:1 propensity-score matching (age, sex, [...] Read more.
Aim of the Study: To determine whether adding a lateral extra-articular tenodesis (LET) to primary anterior cruciate ligament reconstruction (ACLR) lowers graft-failure risk and improves functional recovery in competitive athletes with high-grade pivot-shift. Methods: Multicentre retrospective cohort with 1:1 propensity-score matching (age, sex, sport, graft, centre). Competitive athletes with pivot-shift grade ≥ 2 who underwent primary ACLR with hamstring or bone–patellar tendon–bone (BPTB) autografts (2018–2024) were eligible. The primary outcome was graft failure within 24 months (composite of revision ACLR, symptomatic rotatory laxity with pivot-shift ≥ 2 plus KT-1000 > 5 mm, or MRI-confirmed rupture). Time-to-event was summarised with Kaplan–Meier (KM) curves and log-rank tests. Secondary outcomes included residual rotatory laxity and functional performance (single-leg hop, side hop, Y-Balance) analysed as the proportion achieving Limb Symmetry Index ≥ 90% at 6 and 24 months and as continuous LSI means. Two-sided α = 0.05; secondary outcomes were prespecified without multiplicity adjustment. Results: Of 1368 ACL reconstructions screened, 97 eligible athletes were identified; 92 were analysed after matching (46 isolated ACLR; 46 ACLR + LET; mean follow-up 30.0 ± 4.2 months). KM survival at 24 months was 95.7% after ACLR + LET versus 82.6% after isolated ACLR (log-rank p = 0.046). The absolute risk reduction was 13.0% (Number Needed to Treat 8; 95% CI 4→∞). In graft-type subgroups, failures were 6/32 vs. 1/30 for hamstring and 2/14 vs. 1/16 for BPTB (ACLR vs. ACLR + LET, respectively); there was no evidence of interaction (Breslow–Day p = 0.56). At 6 months, a higher proportion of ACLR + LET athletes achieved LSI ≥ 90% across tests—single-leg hop 77.8% vs. 40.9% (p = 0.0005), side hop 62.2% vs. 34.9% (p = 0.012), Y-Balance 84.4% vs. 59.1% (p = 0.010), with a larger mean LSI (between-group differences +8.2 to +9.1, all p < 0.001). By 24 months, threshold attainment largely converged (all p ≥ 0.06), while mean LSI differences persisted but were smaller (+3.9 to +4.9, all p ≤ 0.001). Conclusion: In competitive athletes with high-grade pivot-shift undergoing accelerated, criteria-based rehabilitation, adding LET to primary ACLR was associated with lower graft-failure risk and earlier functional symmetry, with consistent effects across hamstring and BPTB autografts. Given the observational design, causal inference is limited; confirmation in randomized and longer-term studies is warranted. Full article
Show Figures

Figure 1

9 pages, 838 KB  
Review
Merging Neuroscience and Engineering Through Regenerative Peripheral Nerve Interfaces
by Melanie J. Wang, Theodore A. Kung, Alison K. Snyder-Warwick and Paul S. Cederna
Prosthesis 2025, 7(4), 97; https://doi.org/10.3390/prosthesis7040097 - 6 Aug 2025
Viewed by 750
Abstract
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering [...] Read more.
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering advancement in neuroengineering that combines surgical techniques with biocompatible materials to create an interface for individuals with limb loss. RPNIs are surgically constructed from autologous muscle grafts that are neurotized by the residual peripheral nerves of an individual with limb loss. RPNIs amplify neural signals and demonstrate long term stability. In this narrative review, the terms “Regenerative Peripheral Nerve Interface (RPNI)” and “RPNI surgery” are used interchangeably to refer to the same surgical and biological construct. This narrative review specifically focuses on RPNIs as a targeted approach to enhance prosthetic control through surgically created nerve–muscle interfaces. This area of research offers a promising solution to overcome the limitations of existing prosthetic control systems and could help improve the quality of life for people suffering from limb loss. It allows for multi-channel control and bidirectional communication, while enhancing the functionality of prosthetics through improved sensory feedback. RPNI surgery holds significant promise for improving the quality of life for individuals with limb loss by providing a more intuitive and responsive prosthetic experience. Full article
Show Figures

Figure 1

12 pages, 569 KB  
Systematic Review
Intravascular Lithotripsy in the Aorta and Iliac Vessels: A Literature Review of the Past Decade
by Nicola Troisi, Giulia Bertagna, Sofia Pierozzi, Valerio Artini and Raffaella Berchiolli
J. Clin. Med. 2025, 14(15), 5493; https://doi.org/10.3390/jcm14155493 - 4 Aug 2025
Viewed by 458
Abstract
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in [...] Read more.
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in treating severe aortic and aorto-iliac calcifications. The aim of this study is to report current available data about the use of IVL in treating aortic and aorto-iliac calcified lesions and its application in facilitating other endovascular procedures. Methods: the present review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines. Preliminary searches were conducted on MEDLINE and Pubmed from January 2015 to February 2025. Studies were divided into 3 main categories depending on the location of calcifications and the type of treatment: IVL in visceral and infrarenal obstructive disease (group 1), IVL in aorto-iliac obstructive disease (group 2), IVL used to facilitate other endovascular procedures. Main primary outcomes in the perioperative period were technical and clinical successes and perioperative complications. Primary outcomes at 30 days and mid-term (2 years) were overall survival, limb salvage rate, primary patency, primary assisted patency, secondary patency, and residual stenosis. Results: Sixteen studies were identified for a total of 1674 patients. Technical and clinical successes were 100%, with low rates of perioperative complications. Dissection rate reaches up to 16.1% in some studies, without any differences compared to plain old balloon angioplasty (POBA) alone (22.8%; p = 0.47). At 30 days, limb salvage and survival rates were 100%. At 2 years, primary patency, assisted primary patency, and secondary patency were 95%, 98%, and 100%, respectively, with no difference compared to IVL + stenting. Conclusions: IVL has emerged as a novel approach to treat severe calcified lesions in visceral and aorto-iliac atherosclerotic disease and to facilitate other endovascular procedures. This technique seems to offer satisfactory early and mid-term outcomes in terms of primary, primary assisted patency, and secondary patency with low complication rates. Full article
(This article belongs to the Special Issue Endovascular Surgery: State of the Art and Clinical Perspectives)
Show Figures

Figure 1

13 pages, 1454 KB  
Article
Lower Limb Inter-Joint Coordination and End-Point Control During Gait in Adolescents with Early Treated Unilateral Developmental Dysplasia of the Hip
by Chu-Fen Chang, Tung-Wu Lu, Chia-Han Hu, Kuan-Wen Wu, Chien-Chung Kuo and Ting-Ming Wang
Bioengineering 2025, 12(8), 836; https://doi.org/10.3390/bioengineering12080836 - 31 Jul 2025
Viewed by 502
Abstract
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This [...] Read more.
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This study investigated lower limb inter-joint coordination and swing foot control during level walking in adolescents with early-treated unilateral DDH. Methods: Eleven female adolescents treated early for DDH using Pemberton osteotomy were compared with 11 age-matched healthy controls. The joint angles and angular velocities of the hip, knee, and ankle were measured, and the corresponding phase angles and continuous relative phase (CRP) for hip–knee and knee–ankle coordination were obtained. The variability of inter-joint coordination was quantified using the deviation phase values obtained as the time-averaged standard deviations of the CRP curves over multiple trials. Results: The DDH group exhibited a flexed posture with increased variability in knee–ankle coordination of the affected limb throughout the gait cycle compared to the control group. In contrast, the unaffected limb compensated for the kinematic alterations of the affected limb with reduced peak angular velocities but increased knee–ankle CRP over double-limb support and trajectory variability over the swing phase. Conclusions: The identified changes in inter-joint coordination in adolescents with early treated DDH provide a plausible explanation for the previously reported increased GRF loading rates in the unaffected limb, a risk factor of premature OA. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

18 pages, 1696 KB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 370
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

15 pages, 2173 KB  
Review
Optimal Sites for Upper Extremity Amputation: Comparison Between Surgeons and Prosthetists
by Brandon Apagüeño, Sara E. Munkwitz, Nicholas V. Mata, Christopher Alessia, Vasudev Vivekanand Nayak, Paulo G. Coelho and Natalia Fullerton
Bioengineering 2025, 12(7), 765; https://doi.org/10.3390/bioengineering12070765 - 15 Jul 2025
Viewed by 839
Abstract
Upper extremity amputations significantly impact an individual’s physical capabilities, psychosocial well-being, and overall quality of life. The level at which an amputation is performed influences residual limb function, prosthetic compatibility, and long-term patient satisfaction. While surgical guidelines traditionally emphasize maximal limb preservation, prosthetists [...] Read more.
Upper extremity amputations significantly impact an individual’s physical capabilities, psychosocial well-being, and overall quality of life. The level at which an amputation is performed influences residual limb function, prosthetic compatibility, and long-term patient satisfaction. While surgical guidelines traditionally emphasize maximal limb preservation, prosthetists often advocate for amputation sites that optimize prosthetic fit and function, highlighting the need for a collaborative approach. This review examines the discrepancies between surgical and prosthetic recommendations for optimal amputation levels, from digit amputations to shoulder disarticulations, and explores their implications for prosthetic design, functionality, and patient outcomes. Various prosthetic options, including passive functional, body-powered, myoelectric, and hybrid devices, offer distinct advantages and limitations based on the level of amputation. Prosthetists emphasize the importance of residual limb length, not only for mechanical efficiency but also for achieving symmetry with the contralateral limb, minimizing discomfort, and enhancing control. Additionally, emerging technologies such as targeted muscle reinnervation (TMR) and advanced myoelectric prostheses are reshaping rehabilitation strategies, further underscoring the need for precise amputation planning. By integrating insights from both surgical and prosthetic perspectives, this review highlights the necessity of a multidisciplinary approach involving surgeons, prosthetists, rehabilitation specialists, and patients in the decision-making process. A greater emphasis on preoperative planning and interprofessional collaboration can improve prosthetic outcomes, reduce device rejection rates, and ultimately enhance the functional independence and well-being of individuals with upper extremity amputations. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

14 pages, 6959 KB  
Article
Power–Cadence Relationships in Cycling: Building Models from a Limited Number of Data Points
by David M. Rouffet, Briar L. Rudsits, Michael W. Daniels, Temi Ariyo and Christophe A. Hautier
Signals 2025, 6(3), 32; https://doi.org/10.3390/signals6030032 - 10 Jul 2025
Viewed by 832
Abstract
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models [...] Read more.
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models and the accuracy of Pmax estimation is potentially compromised by the inclusion of non-maximal data points. This study evaluated a novel residual-based filtering method that selects five strategically located, maximal data points to improve model fit and Pmax prediction. Twenty-three recreationally active male participants (age: 26 ± 5 years; height: 178 ± 5 cm; body mass: 73 ± 11 kg) completed a Force–Velocity test consisting of multiple maximal cycling efforts on a stationary ergometer. Power and cadence data were used to generate third-order polynomial models: from all data points (High Number, HN), from the highest power value in each 5-RPM interval (Moderate Number, MN), and from five selected data points (Low Number, LN). The LN model yielded the best goodness of fit (R2 = 0.995 ± 0.008; SEE = 29 ± 15 W), the most accurate estimates of experimentally measured peak power (mean absolute percentage error = 1.45%), and the highest Pmax values (1220 ± 168 W). Selecting a limited number of maximal data points improves the modeling of individual power–cadence relationships and Pmax assessment. Full article
Show Figures

Graphical abstract

12 pages, 210 KB  
Review
Targeted Interventional Therapies for the Management of Postamputation Pain: A Comprehensive Review
by Dunja Savicevic, Jovana Grupkovic, Uros Dabetic, Dejan Aleksandric, Nikola Bogosavljevic, Uros Novakovic, Ljubica Spasic and Slavisa Zagorac
Biomedicines 2025, 13(7), 1575; https://doi.org/10.3390/biomedicines13071575 - 27 Jun 2025
Viewed by 649
Abstract
Postamputation pain (PAP), including residual limb pain (RLP) and phantom limb pain (PLP), remains a significant and debilitating complication after limb loss. Despite advances in pharmacological management, many patients experience inadequate pain relief, underscoring the need for alternative therapeutic strategies. Objective: This narrative [...] Read more.
Postamputation pain (PAP), including residual limb pain (RLP) and phantom limb pain (PLP), remains a significant and debilitating complication after limb loss. Despite advances in pharmacological management, many patients experience inadequate pain relief, underscoring the need for alternative therapeutic strategies. Objective: This narrative review critically synthesizes current interventional therapies for PAP, focusing on mechanisms, clinical efficacy and practical application. Methods: A literature search was conducted in PubMed, EMBASE, Scopus and Web of Science databases for studies published between 2015 and 2025. Relevant articles on peripheral nerve interventions as well as different neuromodulation techniques were included. Results: Peripheral interventions (such as alcohol neurolysis, radiofrequency ablation (RFA) and cryoneurolysis (CNL)) and neuromodulation techniques (including spinal cord stimulation (SCS), dorsal root ganglion (DRG) stimulation and cauda equina stimulation (CES)) demonstrate promising outcomes for PAP. Peripheral nerve stimulation (PNS) shows favorable safety and efficacy profiles and may help prevent the chronification of pain. Conclusions: Contemporary interventional therapies represent valuable options in the multidisciplinary management of PAP. Nevertheless, further research is required to standardize clinical algorithms, optimize therapeutic decision-making and improve long-term outcomes and quality of life for individuals with PAP. Full article
13 pages, 1945 KB  
Article
Comparison of Infrapatellar and Suprapatellar Intramedullary Nails with New Clinical Score for Fixation of Tibial Shaft Fractures
by Giacomo Papotto, Vito Pavone, Gianluca Testa, Rocco Ortuso, Antonio Kory, Enrica Rosalia Cuffaro, Ignazio Prestianni, Emanuele Salvatore Marchese, Saverio Comitini, Alessandro Pietropaolo, Alessio Ferrara, Gianfranco Longo and Marco Ganci
J. Funct. Morphol. Kinesiol. 2025, 10(2), 222; https://doi.org/10.3390/jfmk10020222 - 9 Jun 2025
Viewed by 1016
Abstract
Objectives: Tibial shaft fractures (TSFs) represent the most common diaphyseal fractures in adults. The gold-standard treatment is intramedullary nailing. Recently, the suprapatellar technique has been increasingly adopted due to its ability to reduce complications associated with the infrapatellar approach. Currently, no clinical [...] Read more.
Objectives: Tibial shaft fractures (TSFs) represent the most common diaphyseal fractures in adults. The gold-standard treatment is intramedullary nailing. Recently, the suprapatellar technique has been increasingly adopted due to its ability to reduce complications associated with the infrapatellar approach. Currently, no clinical score for leg fractures comprehensively assesses the entire lower limb. Therefore, we reviewed the main lower-limb scores available in the literature and developed a new clinical evaluation tool for tibial shaft fractures. The aim of our study was to report our experience with both techniques, to compare the outcomes of our prospective study with the international literature, and to propose a new, easy-to-apply, and reproducible clinical score that evaluates the specific functions of the entire lower limb. Methods: We conducted a prospective analysis of 920 tibial shaft fractures treated with intramedullary nailing via either a suprapatellar or infrapatellar approach. Patients were divided into two groups: Group A, including 420 patients treated with the infrapatellar approach; Group B, including 500 patients treated with the suprapatellar approach. Follow-up included clinical and radiographic assessments at 1, 3, and 6 months, and annually thereafter. We evaluated differences in patient positioning, operation time, radiation exposure, healing rate, incidence of pseudarthrosis and infection, return to ambulation, residual knee pain and fracture site, persistent lameness, and deformities. For the clinical assessment, we devised a new score—the Catania Hospital Score (CHS)—by integrating the most relevant clinical items from existing lower-limb evaluation tools. The CHS includes anterior knee pain (20 points), lameness (5 points), swelling (10 points), stair-climbing ability (10 points), tibial pain (15 points), the ability to perform daily activities (20 points), and evaluation of deformities (varus/valgus, shortening, rotation, and recurvatum/procurvatum (40 points)), for a total of 120 points. Results: Statistically significant differences were observed in Group B regarding a shorter surgical time, a reduced patient positioning time, and decreased radiation exposure. The CHSs were significantly better for Group B at the 3- and 6-month follow-ups. No statistically significant differences were found in infection or pseudarthrosis rates between the two groups. Notably, no cases of chronic knee pain were reported in patients treated with the suprapatellar approach. Conclusions: Both surgical approaches are valid and effective. However, our findings indicate that the suprapatellar approach reduces the complications of the infrapatellar technique, improves postoperative outcomes, and does not result in chronic knee pain. The CHS provides a comprehensive, practical, and reproducible tool to assess functional recovery in patients treated with intramedullary tibial nailing. Full article
(This article belongs to the Special Issue Role of Exercises in Musculoskeletal Disorders—7th Edition)
Show Figures

Figure 1

14 pages, 682 KB  
Article
Anterolateral Ligament Reconstruction Combined with Anterior Cruciate Ligament Reconstruction: Clinical and Functional Outcomes
by Giuseppe Danilo Cassano, Lorenzo Moretti, Michele Coviello, Ilaria Bortone, Mariapia Musci, Ennio Favilla and Giuseppe Solarino
Medicina 2025, 61(6), 1011; https://doi.org/10.3390/medicina61061011 - 28 May 2025
Viewed by 683
Abstract
Background and Objectives: The anterior cruciate ligament (ACL) is crucial for knee stability, preventing anterior displacement of the tibia and rotation relative to the femur. Despite ACL reconstruction (ACLR), residual instability is common, affecting knee function. Anterolateral ligament reconstruction (ALLR) alongside ACLR [...] Read more.
Background and Objectives: The anterior cruciate ligament (ACL) is crucial for knee stability, preventing anterior displacement of the tibia and rotation relative to the femur. Despite ACL reconstruction (ACLR), residual instability is common, affecting knee function. Anterolateral ligament reconstruction (ALLR) alongside ACLR improves outcomes, as the ALL plays a significant role in rotational stability. This study aims to assess the clinical and functional outcomes of the ACLR+ALLR combination using biomechanical testing in patients with at least ten months of follow-up. Materials and Methods: This cross-sectional comparative cohort study involves patients with ACLR. Inclusion criteria were adult patients who underwent ACLR within the last 3 years, with the same surgical technique performed by a single operator. Patients underwent anamnestic and clinical evaluation and completed Lysholm and KOOS questionnaires. Biomechanical tests included a Unilateral Drop Jump, a Countermovement Jump with knee rotation, and a five-repetition Sit-To-Stand. Force platforms, a camera, and surface electromyography were used to assess biomechanical stability and joint function. Results: This study included 18 subjects, 5 with ACLR and ALLR, and 13 with ACLR alone. The groups showed no significant differences in the KOOS and Lysholm scales and clinical outcomes. Muscle trophism reduction compared to the contralateral limb was noted in both groups. Biomechanical evaluations showed no difference in Quadriceps muscle activity during the landing phase of the Drop Jump. However, the ACL-ALL group exhibited fewer spikes and fewer knee joint angular excursions during ground impact stabilization. In the 5-STS task, a significant difference was observed in the vertical force peak. Differences in muscle activity during foot rotation and force components during the jumping phase were noted in the Countermovement Jump. Conclusions: ACLR combined with ALLR shows similar perceived joint function but improved biomechanical joint stability. Further studies with larger samples and longer follow-ups are needed for validation. Full article
(This article belongs to the Special Issue Updates on Risk Factors, Prevention and Treatment of Knee Disease)
Show Figures

Figure 1

13 pages, 1330 KB  
Article
Variant Ataxia–Telangiectasia Presenting as Tremor–Dystonia Syndrome in a Bulgarian Religious Minority
by Teodora Chamova, Tihomir Todorov, Paulius Palaima, Petya Yankova, Iliyana Pacheva, Ivan Ivanov, Bilyana Georgieva, Sylvia Cherninkova, Alexey Savov, Dora Zlatareva, Elisaveta Naumova, Albena Todorova, Albena Jordanova and Ivailo Tournev
Genes 2025, 16(6), 641; https://doi.org/10.3390/genes16060641 - 27 May 2025
Viewed by 592
Abstract
Background: Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder due to mutations in the ATM gene. Given the residual kinase activity and the type of ATM mutation, its clinical spectrum varies from a severe classic phenotype to a variant atypical form. Material and [...] Read more.
Background: Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder due to mutations in the ATM gene. Given the residual kinase activity and the type of ATM mutation, its clinical spectrum varies from a severe classic phenotype to a variant atypical form. Material and methods: This study included 28 patients belonging to four big Bulgarian Muslim pedigrees with tremor and dystonia. Whole-exome sequencing was performed in seven affected individuals from two unrelated pedigrees, followed by Sanger sequencing of the coding sequences and exon–intron borders of the ATM gene. Results: Twenty-four of the affected individuals were homozygous for c.8147T>C (p.Val2716Ala) in ATM, while four of the affected individuals were compound heterozygous. The targeted Sanger sequencing along the ATM gene revealed as a second mutation in three of the patients the splice-site variant c.4909+1G>A and in one patient a synonymous pathogenic variant with a splicing effect, c.3576G>A, p.Lys1192. The age at onset in our group varied between 14 days and 40 years. The main symptoms were dystonia and tremor, more prominent in the upper limbs and the neck, and dystonic dysarthria and dysphagia. The clinical course was very slowly progressive. Brain imaging was normal in the majority of the patients. Conclusion: Clinical features due to mutations in the ATM gene can be very broad. The disease may appear as dystonia, especially of early onset, without frank cerebellar involvement and also normal cerebral imaging. A-T should be considered in all patients with unexplained, even mild movement disorders and elevated α fetoprotein. Full article
(This article belongs to the Special Issue Advances in Neurogenetics and Neurogenomics)
Show Figures

Figure 1

10 pages, 1181 KB  
Article
Treating Popliteal Fossa Perforating Vein Varicosis with Endovenous Laser Ablation: A Single-Center Observational Study
by Lars Müller, Isabel Schmitz-Rode, Bachar el Jamal, Syrus Karsai and Eike Sebastian Debus
J. Clin. Med. 2025, 14(10), 3524; https://doi.org/10.3390/jcm14103524 - 18 May 2025
Viewed by 686
Abstract
Background: Treating varicosities originating from a popliteal fossa perforating vein (PFPV) is challenging due to their proximity to nerves and complex morphology. Data on endovenous laser ablation (EVLA) for PFPV varicosis are limited. Methods: This retrospective, single-center study reviewed all primary varicose vein [...] Read more.
Background: Treating varicosities originating from a popliteal fossa perforating vein (PFPV) is challenging due to their proximity to nerves and complex morphology. Data on endovenous laser ablation (EVLA) for PFPV varicosis are limited. Methods: This retrospective, single-center study reviewed all primary varicose vein surgeries from May 2021 to December 2024. Only primary PFPV varicosis cases with CEAP stage C2s or higher were included. Patients with recurrent disease or primary truncal insufficiency due to reflux from the saphenopopliteal junction were excluded. EVLA was performed using 1470 nm radial laser catheters, targeting the reflux source and downstream varicose segments. Tumescent solution was applied to protect the surrounding structures. The primary outcome was early technical success via duplex ultrasound; the secondary outcome was the complication rate. Results: Of the 2375 limbs treated, 44 (1.9%) involved PFPV. The cohort included 16 men (36%) and 28 women (64%), with a mean age of 54. The median follow-up was 14 days. Technical success was achieved in 41 cases (93.2%). Foam sclerotherapy with polidocanol was performed in eight patients (18.2%), exclusively for superficial residual varicosities and never simultaneously with EVLA. Three treatment failures required re-operation, two of which were successfully re-treated. Minor postoperative complications occurred in two patients (4.5%). No nerve injuries or thrombotic events were observed. Conclusions: EVLA shows promising very early technical efficacy, with low morbidity, for treating PFPV varicosis. Based on our findings, prospective studies investigating the mid- and long-term outcomes of this technique are warranted to further validate its clinical utility. Full article
Show Figures

Figure 1

Back to TopTop