Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = rhizobium–legume symbiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 798 KiB  
Review
Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review
by Liudmyla Yeremko, Katarzyna Czopek, Mariola Staniak, Mykola Marenych and Volodymyr Hanhur
Biomolecules 2025, 15(1), 118; https://doi.org/10.3390/biom15010118 - 14 Jan 2025
Cited by 1 | Viewed by 2450
Abstract
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence [...] Read more.
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability. These factors affect key processes, including rhizobia survival, nodule formation, and nitrogenase activity, ultimately determining the growth and productivity of legumes. This review summarizes current knowledge on legume-rhizobia interactions under varying abiotic conditions. It highlights the impact of salinity and acidity in limiting nodule development, soil temperature in regulating microbial community dynamics, and moisture availability in modulating metabolic and hormonal responses during drought and waterlogging. Moreover, the role of essential nutrients, including nitrogen, phosphorus, potassium, and trace elements such as iron, molybdenum, and boron, in optimizing symbiosis is critically analyzed. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

12 pages, 1053 KiB  
Review
TtsI: Beyond Type III Secretion System Activation in Rhizobia
by Irene Jiménez-Guerrero, Sebastián Acosta-Jurado, Pilar Navarro-Gómez, Francisco Fuentes-Romero, Cynthia Alías-Villegas, Francisco-Javier López-Baena and José-María Vinardell
Appl. Microbiol. 2025, 5(1), 4; https://doi.org/10.3390/applmicrobiol5010004 - 5 Jan 2025
Viewed by 857
Abstract
The expression of the rhizobial symbiotic genes is controlled by various transcriptional regulators. After induction with appropriate plant flavonoids, NodD is responsible for the activation of the expression of genes related to Nod factor synthesis and secretion, but also, in most rhizobia harbouring [...] Read more.
The expression of the rhizobial symbiotic genes is controlled by various transcriptional regulators. After induction with appropriate plant flavonoids, NodD is responsible for the activation of the expression of genes related to Nod factor synthesis and secretion, but also, in most rhizobia harbouring a symbiotic type III secretion system (T3SS), the expression of ttsI. The ttsI gene encodes the positive regulator of the expression of T3SS-related genes, including those coding for structural components and for type III-secreted effector proteins. However, besides this general role among T3SS-harbouring rhizobia, different works have shown additional functions of TtsI in the regulation (positive or negative) of other bacterial traits such as the production of modified lipopolysaccharides or different types of motility (swimming or surface spreading). Interestingly, these additional functions appear to be rather specific than general among rhizobia. Moreover, in Sinorhizobium fredii HH103, TtsI affects the expression of various genes belonging to the nod regulon, including several transcriptional regulators. This review summarizes all the well-known bacterial traits affected by TtsI and describes other rhizobial genes that are regulated by TtsI but whose function remains to be established. Full article
Show Figures

Figure 1

15 pages, 15476 KiB  
Article
Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea (Pisum sativum L.) Symbiotic Nodules
by Anna V. Tsyganova, Artemii P. Gorshkov, Maxim G. Vorobiev, Igor A. Tikhonovich, Nicholas J. Brewin and Viktor E. Tsyganov
Plants 2024, 13(20), 2923; https://doi.org/10.3390/plants13202923 - 18 Oct 2024
Viewed by 1112
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium–legume symbiosis, hydrogen peroxide plays an important [...] Read more.
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium–legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes. Full article
Show Figures

Figure 1

27 pages, 1535 KiB  
Review
Sustainable Strategy to Boost Legumes Growth under Salinity and Drought Stress in Semi-Arid and Arid Regions
by Roukaya Ben Gaied, Clarisse Brígido, Imed Sbissi and Mohamed Tarhouni
Soil Syst. 2024, 8(3), 84; https://doi.org/10.3390/soilsystems8030084 - 23 Jul 2024
Cited by 3 | Viewed by 2711
Abstract
The escalating risks of drought and salinization due to climate change and anthropogenic activities are a major global concern. Rhizobium–legume (herb or tree) symbiosis is proposed as an ideal solution for improving soil fertility and rehabilitating arid lands, representing a crucial direction for [...] Read more.
The escalating risks of drought and salinization due to climate change and anthropogenic activities are a major global concern. Rhizobium–legume (herb or tree) symbiosis is proposed as an ideal solution for improving soil fertility and rehabilitating arid lands, representing a crucial direction for future research. Consequently, several studies have focused on enhancing legume tolerance to drought and salinity stresses using various techniques, including molecular-based approaches. These methods, however, are costly, time-consuming, and cause some environmental issues. The multiplicity of beneficial effects of soil microorganisms, particularly plant growth-promoting bacteria (PGPB) or plant-associated microbiomes, can play a crucial role in enhancing legume performance and productivity under harsh environmental conditions in arid zones. PGPB can act directly or indirectly through advanced mechanisms to increase plant water uptake, reduce ion toxicity, and induce plant resilience to osmotic and oxidative stress. For example, rhizobia in symbiosis with legumes can enhance legume growth not only by fixing nitrogen but also by solubilizing phosphates and producing phytohormones, among other mechanisms. This underscores the need to further strengthen research and its application in modern agriculture. In this review, we provide a comprehensive description of the challenges faced by nitrogen-fixing leguminous plants in arid and semi-arid environments, particularly drought and salinity. We highlight the potential benefits of legume–rhizobium symbiosis combined with other PGPB to establish more sustainable agricultural practices in these regions using legume–rhizobium–PGPB partnerships. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

19 pages, 5975 KiB  
Article
Bacterial Endophytes from Legumes Native to Arid Environments Are Promising Tools to Improve Mesorhizobium–Chickpea Symbiosis under Salinity
by Roukaya Ben Gaied, Imed Sbissi, Mohamed Tarhouni and Clarisse Brígido
Biology 2024, 13(2), 96; https://doi.org/10.3390/biology13020096 - 3 Feb 2024
Cited by 8 | Viewed by 2736
Abstract
Symbiotic nitrogen fixation is a major contributor of N in agricultural ecosystems, but the establishment of legume–rhizobium symbiosis is highly affected by soil salinity. Our interest is focused on the use of non-rhizobial endophytes to assist the symbiosis between chickpea and its microsymbiont [...] Read more.
Symbiotic nitrogen fixation is a major contributor of N in agricultural ecosystems, but the establishment of legume–rhizobium symbiosis is highly affected by soil salinity. Our interest is focused on the use of non-rhizobial endophytes to assist the symbiosis between chickpea and its microsymbiont under salinity to avoid loss of production and fertility. Our aims were (1) to investigate the impact of salinity on both symbiotic partners; including on early events of the Mesorhizobium-chickpea symbiosis, and (2) to evaluate the potential of four non-rhizobial endophytes isolated from legumes native to arid regions (Phyllobacterium salinisoli, P. ifriqiyense, Xanthomonas translucens, and Cupriavidus respiraculi) to promote chickpea growth and nodulation under salinity. Our results show a significant reduction in chickpea seed germination rate and in the microsymbiont Mesorhizobium ciceri LMS-1 growth under different levels of salinity. The composition of phenolic compounds in chickpea root exudates significantly changed when the plants were subjected to salinity, which in turn affected the nod genes expression in LMS-1. Furthermore, the LMS-1 response to root exudate stimuli was suppressed by the presence of salinity (250 mM NaCl). On the contrary, a significant upregulation of exoY and otsA genes, which are involved in exopolysaccharide and trehalose biosynthesis, respectively, was registered in salt-stressed LMS-1 cells. In addition, chickpea co-inoculation with LMS-1 along with the consortium containing two non-rhizobial bacterial endophytes, P. salinisoli and X. translucens, resulted in significant improvement of the chickpea growth and the symbiotic performance of LMS-1 under salinity. These results indicate that this non-rhizobial endophytic consortium may be an appropriate ecological and safe tool to improve chickpea growth and its adaptation to salt-degraded soils. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

6 pages, 197 KiB  
Data Descriptor
Draft Genome Sequence of the Commercial Strain Rhizobium ruizarguesonis bv. viciae RCAM1022
by Olga A. Kulaeva, Evgeny A. Zorin, Anton S. Sulima, Gulnar A. Akhtemova and Vladimir A. Zhukov
Data 2024, 9(2), 19; https://doi.org/10.3390/data9020019 - 23 Jan 2024
Cited by 1 | Viewed by 2255
Abstract
Legume plants enter a symbiosis with soil nitrogen-fixing bacteria (rhizobia), thereby gaining access to assimilable atmospheric nitrogen. Since this symbiosis is important for agriculture, biofertilizers with effective strains of rhizobia are created for crop legumes to increase their yield and minimize the amounts [...] Read more.
Legume plants enter a symbiosis with soil nitrogen-fixing bacteria (rhizobia), thereby gaining access to assimilable atmospheric nitrogen. Since this symbiosis is important for agriculture, biofertilizers with effective strains of rhizobia are created for crop legumes to increase their yield and minimize the amounts of mineral fertilizers required. In this work, we sequenced and characterized the genome of Rhizobium ruizarguesonis bv. viciae strain RCAM1022, a component of the ‘Rhizotorfin’ biofertilizer produced in Russia and used for pea (Pisum sativum L.). Full article
10 pages, 2130 KiB  
Article
CRISPR/Cas9-Mediated Knock-Out of the MtCLE35 Gene Highlights Its Key Role in the Control of Symbiotic Nodule Numbers under High-Nitrate Conditions
by Maria A. Lebedeva, Daria A. Dobychkina and Lyudmila A. Lutova
Int. J. Mol. Sci. 2023, 24(23), 16816; https://doi.org/10.3390/ijms242316816 - 27 Nov 2023
Cited by 3 | Viewed by 1645
Abstract
Legume plants have the ability to establish a symbiotic relationship with soil bacteria known as rhizobia. The legume–rhizobium symbiosis results in the formation of symbiotic root nodules, where rhizobia fix atmospheric nitrogen. A host plant controls the number of symbiotic nodules to meet [...] Read more.
Legume plants have the ability to establish a symbiotic relationship with soil bacteria known as rhizobia. The legume–rhizobium symbiosis results in the formation of symbiotic root nodules, where rhizobia fix atmospheric nitrogen. A host plant controls the number of symbiotic nodules to meet its nitrogen demands. CLE (CLAVATA3/EMBRYO SURROUNDING REGION) peptides produced in the root in response to rhizobial inoculation and/or nitrate have been shown to control the number of symbiotic nodules. Previously, the MtCLE35 gene was found to be upregulated by rhizobia and nitrate treatment in Medicago truncatula, which systemically inhibited nodulation when overexpressed. In this study, we obtained several knock-out lines in which the MtCLE35 gene was mutated using the CRISPR/Cas9-mediated system. M. truncatula lines with the MtCLE35 gene knocked out produced increased numbers of nodules in the presence of nitrate in comparison to wild-type plants. Moreover, in the presence of nitrate, the expression levels of two other nodulation-related MtCLE genes, MtCLE12 and MtCLE13, were reduced in rhizobia-inoculated roots, whereas no significant difference in MtCLE35 gene expression was observed between nitrate-treated and rhizobia-inoculated control roots. Together, these findings suggest the key role of MtCLE35 in the number of nodule numbers under high-nitrate conditions, under which the expression levels of other nodulation-related MtCLE genes are reduced. Full article
(This article belongs to the Special Issue Plant Genome Editing)
Show Figures

Figure 1

26 pages, 2589 KiB  
Review
Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change
by Mohamed Hemida Abd-Alla, Salem M. Al-Amri and Abdel-Wahab Elsadek El-Enany
Agriculture 2023, 13(11), 2092; https://doi.org/10.3390/agriculture13112092 - 3 Nov 2023
Cited by 55 | Viewed by 15392
Abstract
This review article explores the impact of nitrogen fertilizers on the symbiotic relationship between Rhizobium bacteria and legume plants. Nitrogen fixation has the potential to address the global protein shortage by increasing nitrogen supply in agriculture. However, the excessive use of synthetic fertilizers [...] Read more.
This review article explores the impact of nitrogen fertilizers on the symbiotic relationship between Rhizobium bacteria and legume plants. Nitrogen fixation has the potential to address the global protein shortage by increasing nitrogen supply in agriculture. However, the excessive use of synthetic fertilizers has led to environmental consequences and high energy consumption. To promote sustainable agriculture, alternative approaches such as biofertilizers that utilize biological nitrogen fixation have been introduced to minimize ecological impact. Understanding the process of biological nitrogen fixation, where certain bacteria convert atmospheric nitrogen into ammonia, is crucial for sustainable agriculture. This knowledge helps reduce reliance on synthetic fertilizers and maintain soil fertility. The symbiotic relationship between Rhizobium bacteria and leguminous plants plays a vital role in sustainable agriculture by facilitating access to atmospheric nitrogen, improving soil fertility, and reducing the need for chemical fertilizers. To achieve optimal nitrogen fixation and plant growth, it is important to effectively manage nitrogen availability, soil conditions, and environmental stressors. Excessive nitrogen fertilization can negatively affect the symbiotic association between plants and rhizobia, resulting in reduced soil health, altered mutualistic relationships, and environmental concerns. Various techniques can be employed to enhance symbiotic efficiency by manipulating chemotaxis, which is the ability of rhizobia to move towards plant roots. Plant-specific metabolites called (iso)flavonoids play a crucial role in signaling and communication between legume plants and rhizobia bacteria, initiating the symbiotic relationship and enhancing nitrogen fixation and plant growth. Excessive nitrogen fertilizer application can disrupt the communication between rhizobia and legumes, impacting chemotaxis, root exudation patterns, nodulation, and the symbiotic relationship. High levels of nitrogen fertilizers can inhibit nitrogenase, a critical enzyme for plant growth, leading to reduced nitrogenase activity. Additionally, excessive nitrogen can compromise the energy demands of nitrogen fixation, resulting in decreased nitrogenase activity. This review discusses the disadvantages of using nitrogenous fertilizers and the role of symbiotic biological nitrogen fixation in reducing the need for these fertilizers. By using effective rhizobial strains with compatible legume cultivars, not only can the amounts of nitrogenous fertilizers be reduced, but also the energy inputs and greenhouse gas emissions associated with their manufacturing and application. This approach offers benefits in terms of reducing greenhouse gas emissions and saving energy. In conclusion, this paper provides a comprehensive overview of the current understanding of the impact of nitrogen fertilizers on the symbiotic relationship between Rhizobium and legume plants. It also discusses potential strategies for sustainable agricultural practices. By managing nitrogen fertilizers carefully and improving our understanding of the symbiotic relationship, we can contribute to sustainable agriculture and minimize environmental impact. Full article
(This article belongs to the Special Issue Advances in Legume Nitrogen Fixation in Agroecosystems)
Show Figures

Graphical abstract

20 pages, 4055 KiB  
Article
Diversity, Genomics and Symbiotic Characteristics of Sinorhizobia That Nodulate Desmanthus spp. in Northwest Argentina
by Nicolás Emilio Zuber, Laura Viviana Fornasero, Sofía Agostina Erdozain Bagolín, Mauricio Javier Lozano, Juan Sanjuán, María Florencia Del Papa and Antonio Lagares
Biology 2023, 12(7), 958; https://doi.org/10.3390/biology12070958 - 4 Jul 2023
Viewed by 1671
Abstract
Desmanthus spp. are legumes with the ability to associate with diverse α-proteobacteria—a microsymbiont—in order to establish nitrogen-fixing root nodules. A previous investigation from our laboratory revealed that the main bacteria associated with Desmanthus paspalaceus in symbiosis in central Argentina (Province of Santa Fe) [...] Read more.
Desmanthus spp. are legumes with the ability to associate with diverse α-proteobacteria—a microsymbiont—in order to establish nitrogen-fixing root nodules. A previous investigation from our laboratory revealed that the main bacteria associated with Desmanthus paspalaceus in symbiosis in central Argentina (Province of Santa Fe) were quite diverse and belonged to the genera Rhizobium and Mesorhizobium. To achieve a more extensive view of the local microsymbionts associated with Desmanthus spp., we sampled three different sites in Jujuy and Salta, in northwest Argentina. Matrix-assisted Laser-Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF) typing, 16S-rDNA analysis, and genome sequencing demonstrated that the dominant root-nodule microsymbionts belonged to the genus Sinorhizobium, with some sequenced genomes related to Sinorhizobium mexicanum, Sinorhizobium chiapanecum, and Sinorhizobium psoraleae. An analysis of nodA and nodC markers indicated that, in some of the isolates, horizontal gene transfer appeared to be responsible for the lack of congruence between the phylogenies of the chromosome and of the symbiotic region. These results revealed diverse evolutionary strategies for reaching the current Desmanthus-microsymbiont diversity. What is remarkable beside their observed genetic diversity is that the tolerance profiles of these isolates to abiotic stresses (temperature, salt concentration, pH) were quite coincident with the separation of the sinorhizobia according to place of origin, suggesting possible ecoedaphic adaptations. This observation, together with the higher aerial dry-weight matter that some isolates generated in Desmanthus virgatus cv. Marc when compared to the biomass generated by the commercial strain Sinorhizobium terangae CB3126, distinguish the collected sinorhizobia as constituting valuable germplasm for evaluation in local fields to select for more efficient symbiotic pairs. Full article
Show Figures

Figure 1

14 pages, 624 KiB  
Article
Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum
by Wacław Jarecki
Plants 2023, 12(13), 2431; https://doi.org/10.3390/plants12132431 - 23 Jun 2023
Cited by 6 | Viewed by 2560
Abstract
Soybean is one of the most important legumes in the world, and its advantages and disadvantages are well known. As a result of symbiosis with the bacterium Bradyrhizobium japonicum, soybean can assimilate nitrogen from the air and is therefore not fertilized with [...] Read more.
Soybean is one of the most important legumes in the world, and its advantages and disadvantages are well known. As a result of symbiosis with the bacterium Bradyrhizobium japonicum, soybean can assimilate nitrogen from the air and is therefore not fertilized with this element, or if it is, only at small doses. In soybean agriculture practice, an important treatment is the inoculation of seeds with symbiotic bacteria and optimal fertilization with selected nutrients. Therefore, a three-year (2019–2021) field experiment was carried out to investigate the effects of soybean in the field to a seed Rhizobium inoculation or coating and molybdenum foliar fertilization. There were no significant interactions between the tested treatments over the years. It was demonstrated that the best variant was seed inoculation before sowing in combination with foliar molybdenum application. As a result of this treatment, a significant increase in nodulation, soil plant analysis development (SPAD) index, leaf area index (LAI) and seed yield (by 0.61 t·ha−1) was obtained compared to the control. In addition, the content of total protein in the seeds increased, while the content of crude fat decreased, which significantly modified the yield of both components. Sowing coated seeds in the Fix Fertig technology was less effective compared to inoculation, but it was significantly better than that in the control. Coating seeds with B. japonicum, in combination with foliar fertilization with molybdenum, could be recommended for agricultural practice, which was confirmed by economic calculations. Future experiments will assess the soybean’s response to seed inoculation or coating and fertilization with other micronutrients. Full article
Show Figures

Figure 1

21 pages, 1575 KiB  
Review
Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms
by Sara Fahde, Said Boughribil, Badreddine Sijilmassi and Ahmed Amri
Agriculture 2023, 13(7), 1279; https://doi.org/10.3390/agriculture13071279 - 21 Jun 2023
Cited by 66 | Viewed by 15895
Abstract
For over a century, the scientific community has had a comprehensive understanding of how rhizobia can promote the growth of legumes by forming nitrogen fixing nodules. Despite this knowledge, the interaction of rhizobia with non-legumes has remained largely ignored as a subject of [...] Read more.
For over a century, the scientific community has had a comprehensive understanding of how rhizobia can promote the growth of legumes by forming nitrogen fixing nodules. Despite this knowledge, the interaction of rhizobia with non-legumes has remained largely ignored as a subject of study until more recent decades. In the last few years, research has shown that rhizobia can also associate with non-legume roots, which ultimately leads to the stimulation of growth through diverse direct and indirect mechanisms. For example, rhizobia can enhance growth through phytohormones production, the improvement of plant nutrient uptake, such as the solubilization of precipitated phosphorus, the production of siderophores to address iron needs, and also the reduction of ethylene levels through the ACC deaminase enzyme to cope with drought stress. Additionally, rhizobia can improve, indirectly, non-legume growth through biocontrol of pathogens and the induction of systemic resistance in the host plant. It can also increase root adherence to soil by releasing exopolysaccharides, which regulate water and soil nutrient movement. The objective of this review is to assess and analyze the existing knowledge and information regarding the mechanisms through which rhizobia promote the growth of non-legumes. By conducting a comprehensive analysis of these findings, we aim to gain new insights into the development of Rhizobium/non-legume interactions. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

23 pages, 17959 KiB  
Article
Effect of Triazole Fungicides Titul Duo and Vintage on the Development of Pea (Pisum sativum L.) Symbiotic Nodules
by Artemii P. Gorshkov, Pyotr G. Kusakin, Yaroslav G. Borisov, Anna V. Tsyganova and Viktor E. Tsyganov
Int. J. Mol. Sci. 2023, 24(10), 8646; https://doi.org/10.3390/ijms24108646 - 12 May 2023
Cited by 9 | Viewed by 2965
Abstract
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation [...] Read more.
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-β-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use. Full article
(This article belongs to the Special Issue Advances in Research for Legume Genomics, Genetics, and Breeding)
Show Figures

Figure 1

19 pages, 4078 KiB  
Article
The T6SS-Dependent Effector Re78 of Rhizobium etli Mim1 Benefits Bacterial Competition
by Bruna Fernanda Silva De Sousa, Lucía Domingo-Serrano, Alvaro Salinero-Lanzarote, José Manuel Palacios and Luis Rey
Biology 2023, 12(5), 678; https://doi.org/10.3390/biology12050678 - 4 May 2023
Cited by 6 | Viewed by 3815
Abstract
The genes of the type VI secretion system (T6SS) from Rhizobium etli Mim1 (ReMim1) that contain possible effectors can be divided into three modules. The mutants in them indicated that they are not required for effective nodulation with beans. To analyze T6SS expression, [...] Read more.
The genes of the type VI secretion system (T6SS) from Rhizobium etli Mim1 (ReMim1) that contain possible effectors can be divided into three modules. The mutants in them indicated that they are not required for effective nodulation with beans. To analyze T6SS expression, a putative promoter region between the tssA and tssH genes was fused in both orientations to a reporter gene. Both fusions are expressed more in free living than in symbiosis. When the module-specific genes were studied using RT-qPCR, a low expression was observed in free living and in symbiosis, which was clearly lower than the structural genes. The secretion of Re78 protein from the T6SS gene cluster was dependent on the presence of an active T6SS. Furthermore, the expression of Re78 and Re79 proteins in E. coli without the ReMim1 nanosyringe revealed that these proteins behave as a toxic effector/immunity protein pair (E/I). The harmful action of Re78, whose mechanism is still unknown, would take place in the periplasmic space of the target cell. The deletion of this ReMim1 E/I pair resulted in reduced competitiveness for bean nodule occupancy and in lower survival in the presence of the wild-type strain. Full article
Show Figures

Graphical abstract

13 pages, 336 KiB  
Article
Responses in Nodulated Bean (Phaseolus vulgaris L.) Plants Grown at Elevated Atmospheric CO2
by Enrique Bellido, Purificación de la Haba and Eloísa Agüera
Plants 2023, 12(9), 1828; https://doi.org/10.3390/plants12091828 - 29 Apr 2023
Cited by 2 | Viewed by 1721
Abstract
The increase in the concentration of CO2 in the atmosphere is currently causing metabolomic and physiological changes in living beings and especially in plants. Future climate change may affect crop productivity by limiting the uptake of soil resources such as nitrogen (N) [...] Read more.
The increase in the concentration of CO2 in the atmosphere is currently causing metabolomic and physiological changes in living beings and especially in plants. Future climate change may affect crop productivity by limiting the uptake of soil resources such as nitrogen (N) and water. The contribution of legume–rhizobia symbioses to N2 fixation increases the available biological N reserve. Elevated CO2 (eCO2) has been shown to enhance the amount of fixed N2 primarily by increasing biomass. Greater leaf biomass under eCO2 levels increases N demand, which can stimulate and increase N2 fixation. For this reason, bean plants (Phaseolus vulgaris L.) were used in this work to investigate how, in a CO2-enriched atmosphere, inoculation with rhizobia (Rhizobium leguminosarum) affects different growth parameters and metabolites of carbon and nitrogen metabolism, as well as enzymatic activities of nitrogen metabolism and the oxidative state of the plant, with a view to future scenarios, where the concentration of CO2 in the atmosphere will increase. The results showed that bean symbiosis with R. leguminosarum improved N2 fixation, while also decreasing the plant’s oxidative stress, and provided the plant with a greater defense system against eCO2 conditions. In conclusion, the nodulation with rhizobia potentially replaced the chemical fertilization of bean plants (P. vulgaris L.), resulting in more environmentally friendly agricultural practices. However, further optimization of symbiotic activities is needed to improve the efficiency and to also develop strategies to improve the response of legume yields to eCO2, particularly due to the climate change scenario in which there is predicted to be a large increase in the atmospheric CO2 concentration. Full article
25 pages, 6748 KiB  
Article
Exopolysaccharide Biosynthesis in Rhizobium leguminosarum bv. trifolii Requires a Complementary Function of Two Homologous Glycosyltransferases PssG and PssI
by Kamil Żebracki, Aleksandra Horbowicz, Małgorzata Marczak, Anna Turska-Szewczuk, Piotr Koper, Klaudia Wójcik, Marceli Romańczuk, Magdalena Wójcik and Andrzej Mazur
Int. J. Mol. Sci. 2023, 24(4), 4248; https://doi.org/10.3390/ijms24044248 - 20 Feb 2023
Cited by 3 | Viewed by 2664
Abstract
The Pss-I region of Rhizobium leguminosarum bv. trifolii TA1 comprises more than 20 genes coding for glycosyltransferases, modifying enzymes, and polymerization/export proteins, altogether determining the biosynthesis of symbiotically relevant exopolysaccharides. In this study, the role of homologous PssG and PssI glycosyltransferases in exopolysaccharide [...] Read more.
The Pss-I region of Rhizobium leguminosarum bv. trifolii TA1 comprises more than 20 genes coding for glycosyltransferases, modifying enzymes, and polymerization/export proteins, altogether determining the biosynthesis of symbiotically relevant exopolysaccharides. In this study, the role of homologous PssG and PssI glycosyltransferases in exopolysaccharide subunit synthesis were analyzed. It was shown that the glycosyltransferase-encoding genes of the Pss-I region were part of a single large transcriptional unit with potential downstream promoters activated in specific conditions. The ΔpssG and ΔpssI mutants produced significantly lower amounts of the exopolysaccharide, while the double deletion mutant ΔpssIΔpssG produced no exopolysaccharide. Complementation of double mutation with individual genes restored exopolysaccharide synthesis, but only to the level similar to that observed for the single ΔpssI or ΔpssG mutants, indicating that PssG and PssI serve complementary functions in the process. PssG and PssI interacted with each other in vivo and in vitro. Moreover, PssI displayed an expanded in vivo interaction network comprising other GTs involved in subunit assembly and polymerization/export proteins. PssG and PssI proteins were shown to interact with the inner membrane through amphipathic helices at their C-termini, and PssG also required other proteins involved in exopolysaccharide synthesis to localize in the membrane protein fraction. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in Poland)
Show Figures

Figure 1

Back to TopTop