Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum
Abstract
:1. Introduction
2. Results
2.1. Field Measurement Results
2.2. Nodulation
2.3. Yield Components and Yield
2.4. Chemical Composition of the Seeds
2.5. Economic Results
3. Discussion
4. Materials and Methods
- C—Control (without inoculant and foliar fertilization);
- SI—Seeds inoculated before sowing;
- SC—Seeds inoculated (coated), Fix Fertig technology;
- FF—Foliar fertilization with molybdenum;
- SI + FF;
- SC + FF.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iturralde, E.T.; Covelli, J.M.; Álvarez, F.; Pérez-Giménez, J.; Arrese-Igor, C.; Lodeiro, A.R. Soybean-nodulating strains with low intrinsic competitiveness for nodulation, good symbiotic performance, and stress-tolerance isolated from soybean-cropped soils in Argentina. Front. Microbiol. 2019, 10, 1061. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Chapter Four—Grain legume production and use in European agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of soybean to selected abiotic stresses-photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Jarecki, W.; Migut, D. Comparison of yield and important seed quality traits of selected legume species. Agronomy 2022, 12, 2667. [Google Scholar] [CrossRef]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of soybean (Glycine max (L.) Merrill) to mineral nitrogen fertilization and Bradyrhizobium japonicum seed inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Narożna, D.; Pudełko, K.; Króliczek, J.; Golińska, B.; Sugawara, M.; Mądrzak, C.J.; Sadowsky, M.J. Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl. Environ. Microbiol. 2015, 81, 5552–5559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosini, V.G.; Fontoura, S.M.V.; de Moraes, R.P.; Tamagno, S.; Ciampitti, I.A.; Bayer, C. Soybean yield response to Bradyrhizobium strains in fields with inoculation history in Southern Brazil. J. Plant Nutr. 2019, 42, 1941–1951. [Google Scholar] [CrossRef]
- Pannecoucque, J.; Goormachtigh, S.; Ceusters, J.; Debode, J.; Van Waes, C.; Van Waes, J. Temperature as a key factor for successful inoculation of soybean with Bradyrhizobium spp. under cool growing conditions in Belgium. J. Agric. Sci. 2018, 156, 493–503. [Google Scholar] [CrossRef]
- Kühling, I.; Hüsing, B.; Bome, N.; Trautz, D. Soybeans in high latitudes: Effects of Bradyrhizobium inoculation in northwest Germany and southern west Siberia. Org. Agric. 2018, 8, 159–171. [Google Scholar] [CrossRef]
- Albareda, M.; Rodriguea-Navarro, D.N.; Temprano, F.J. Soybean inoculation: Dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Res. 2009, 113, 352–356. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Raizada, M.N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol. Biochem. 2017, 105, 177–196. [Google Scholar] [CrossRef]
- Duzan, H.M.; Zhou, X.; Souleimanov, A.; Smith, D.L. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 2004, 55, 2641–2646. [Google Scholar] [CrossRef] [Green Version]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhao, Q.; Li, S.; Yao, X.; Xie, F.; Zhao, M. Shoot/Root Interactions Affect Soybean Photosynthetic Traits and Yield Formation: A Case Study of Grafting with Record-Yield Cultivars. Front. Plant Sci. 2019, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.L. A delayed flowering barrier to higher soybean yields. Field Crops Res. 2003, 82, 27–35. [Google Scholar] [CrossRef]
- Jarecki, W. Physiological response of soybean plants to seed coating and inoculation under pot experiment conditions. Agronomy 2022, 12, 1095. [Google Scholar] [CrossRef]
- Althabegoiti, M.J.; López-García, S.L.; Piccinetti, C.; Mongiardini, E.J.; Perez-Gimenez, J.; Quelas, J.I.; Perticari, A.; Lodeiro, A.R. Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. FEMS Microbiol. Lett. 2008, 282, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Wächter, K.; Gruber, S.; Claupein, W. Do soybean inoculants differ in their inoculation efficacy? J. Kult. 2013, 65, 401–410. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.J.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Rosso, L.H.M.; Secchi, M.A.; Torres, A.R.; Naeve, S.; Casteel, S.N.; Kovács, P.; Davidson, D.; Purcell, L.C.; Archontoulis, S.; et al. Soybean yield, biological N2 fixation and seed composition responses to additional inoculation in the United States. Sci. Rep. 2019, 9, 19908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-García, S.L.; Perticari, A.; Piccinetti, C.; Ventimiglia, L.; Arias, N.; De Battista, J.J.; Althabegoiti, M.J.; Mongiardini, E.J.; Pérez-Giménez, J.; Quelas, J.I.; et al. In-Furrow inoculation and selection for higher motility enhances the efficacy of Bradyrhizobium japonicum nodulation. Agron. J. 2009, 101, 357–363. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beiranvand, J.P.; Pourbabaee, A.A.; Shirmardi, S.P.; Alikhani, H.A.; Abbasi, R.A.; Motesharezadeh, B. Symbiotic nitrogen fixation, phosphorus and potassium uptake capacity of a number of soybean mutant lines in a calcareous soil. J. Agric. Sci. Tech. 2018, 20, 1555–1564. [Google Scholar]
- Egamberdieva, D.; Jabborova, D.; Wirth, S.J.; Alam, P.; Alyemeni, M.N.; Ahmad, P. Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Front. Microbiol. 2018, 9, 1000. [Google Scholar] [CrossRef] [Green Version]
- Dass, A.; Rajanna, G.A.; Babu, S.; Lal, S.K.; Choudhary, A.K.; Singh, R.; Rathore, S.S.; Kaur, R.; Dhar, S.; Singh, T.; et al. Foliar Application of Macro- and Micronutrients Improves the Productivity, Economic Returns, and Resource-Use Efficiency of Soybean in a Semiarid Climate. Sustainability 2022, 14, 5825. [Google Scholar] [CrossRef]
- Hara, Y. Comparison of the effects of seed coating with tungsten and molybdenum compounds on seedling establishment rates of rice, wheat, barley, and soybean under flooded conditions. Plant Prod. Sci. 2017, 20, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Purbasha, P.P.; Pattanayak, S.K. Effect of Lime Coating and Molybdenum Seed Treatment on Nodulation, Growth and Yield of Different Pulses Grown in Alfisols. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 1417–1426. [Google Scholar] [CrossRef]
- Brzezińska, A.; Mrozek-Niećko, A. Effect of selected micronutrient seed fertilizers on the viability of Bradyrhizobium japonicum. Prog. Plant Prot. 2021, 61, 17–23. [Google Scholar] [CrossRef]
- Bagale, S. Nutrient Management for Soybean Crops. Int. J. Agron. 2021, 2021, 3304634. [Google Scholar] [CrossRef]
- Teklić, T.; Vratarić, M.; Sudarić, A.; Kovačević, V.; Vukadinović, V.; Bertić, B. Relationships among chloroplast pigments concentration and chlorophyllmeter readings in soybean under influence of foliar magnesium application. Commun. Soil Sci. Plant Anal. 2009, 40, 706–725. [Google Scholar] [CrossRef]
- Latifinia, E.; Eisvand, H.R. Soybean Physiological Properties and Grain Quality Responses to Nutrients, and Predicting Nutrient Deficiency Using Chlorophyll Fluorescence. J. Soil Sci. Plant Nutr. 2022, 22, 1942–1954. [Google Scholar] [CrossRef]
- Nasar, J.; Wang, G.Y.; Zhou, F.J.; Gitari, H.; Zhou, X.B.; Tabl, K.M.; Hasan, M.E.; Ali, H.; Waqas, M.M.; Ali, I.; et al. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. Front. Plant Sci. 2022, 13, 1014640. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.L.; Crusciol, C.A.C.; Rodrigues, V.A.; Galeriani, T.M.; Portugal, J.R.; Bossolani, J.W.; Moretti, L.G.; Calonego, J.C.; Cantarella, H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. Front. Plant Sci. 2022, 13, 887682. [Google Scholar] [CrossRef]
- Thapa, S.; Bhandari, A.; Ghimire, R.; Xue, Q.; Kidwaro, F.; Ghatrehsamani, S.; Maharjan, B.; Goodwin, M. Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability 2021, 13, 11766. [Google Scholar] [CrossRef]
- Banerjee, P.; Nath, R. Prospects of molybdenum fertilization in grain legumes—A review. J. Plant Nutr. 2022, 45, 1425–1440. [Google Scholar] [CrossRef]
- Weisany, W.; Raey, Y.; Allahverdipoor, K.H. Role of some of mineral nutrients in biological nitrogen fixation. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 77–84. [Google Scholar]
- Otieno, H.M.O.; Chemining’wa, G.N.; Zingore, S. Effect of farmyard manure, lime and inorganic fertilizer applications on soil pH, nutrients uptake, growth and nodulation of soybean in acid soils of western Kenya. J. Agric. Sci. 2018, 10, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Kuchlan, P.; Kuchlan, M.K.; Ansari, M.M. Efficient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Res. 2019, 42, 250–259. [Google Scholar] [CrossRef]
- Macák, M.; Candráková, E. The effect of fertilization on yield components and quality parameters of soybeans [(Glycine max (L.) Merr.)] seeds. J. Cent. Eur. Agric. 2013, 14, 1232–1242. [Google Scholar] [CrossRef] [Green Version]
- Sharratt, B.S.; Gesch, R.W. Emergence of polymer-coated corn and soybean influenced by tillage and sowing date. Agron. J. 2008, 100, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Vollmann, J.; Walter, H.; Sato, T.; Schweiger, P. Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput. Electron. Agric. 2011, 75, 190–195. [Google Scholar] [CrossRef]
- Gwata, E.T.; Wofford, D.S.; Pfahler, P.L.; Boote, K.J. Genetics of promiscuous nodulation in soybean: Nodule dry weight and leaf color score. J. Hered. 2004, 95, 154–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.A.; Schweitzer, L.E.; Nelson, R.L. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean. Photosynth. Res. 1996, 49, 1–10. [Google Scholar] [CrossRef]
- Wiatrak, P. Effect of polymer seed coating with micronutrients on soybeans in Southeastern coastal plains. Am. J. Agric. Biol. Sci. 2013, 8, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Solomon, T.; Pant, L.M.; Angaw, T. Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitisols of Bako, western Ethiopia. Int. Sch. Res. Not. 2012, 2012, 261475. [Google Scholar] [CrossRef] [Green Version]
- Marinković, J.B.; Bjelić, D.Đ.; Tintor, B.B.; Ignjatov, M.V.; Nikolić, Z.T.; Đukić, V.H.; Balešević-Tubić, S.N. Molecular identification of Bradyrhizobium japonicum strains isolated from root nodules of soybean (Glycine max L.). Matica Srpska J. Nat. Sci. 2017, 132, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Kaschuk, G.; Nogueira, M.A.; de Luca, M.J.; Hungria, M. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Mmbaga, G.W.; Mtei, K.M.; Ndakidemi, P.A. Extrapolations on the use of rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of Legumes. Agric. Sci. 2014, 5, 1207–1226. [Google Scholar] [CrossRef] [Green Version]
- Sogut, T. Rhizobium inoculation improves yield and nitrogen accumulation in soybean (Glycine max) cultivars better than fertilizer. N. Z. J. Crop Hortic. Sci. 2006, 34, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Gewehr, E.; Corrêa, O.O.; Suñé, A.S.; Duarte, G.B.; Amarante, L.; Tunes, L.V.M.; Rodrigues, D.B. Treatment of soybean seeds with molybdenum and inoculant: Nitrate reductase activity and agronomic performance. Comun. Sci. 2019, 10, 186–194. [Google Scholar] [CrossRef]
- Sessitsch, A.; Howieson, J.G.; Perret, X.; Antoun, H.; Martínez-Romero, E. Advances in rhizobium research. Crit. Rev. Plant Sci. 2002, 21, 323–378. [Google Scholar] [CrossRef]
- Leggett, M.; Diaz-Zorita, M.; Koivunen, M.; Bowman, R.; Pesek, R.; Stevenson, C.; Leister, T. Soybean response to inoculation with in the United States and Argentina. Agron. J. 2017, 109, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Jarecki, W.; Wietecha, J. Effect of seed coating on the yield of soybean Glycine max (L.) Merr. Plant Soil Environ. 2021, 67, 468–473. [Google Scholar] [CrossRef]
- Jeyabal, A.; Kuppuswamy, G.; Lakshmanan, A. Effect of seed coating on yield attributes and yield of soybean (Glycine max L.). J. Agron. Crop Sci. 1992, 169, 145–150. [Google Scholar] [CrossRef]
- Silva, A.; Franzini, V.I.; Piccolla, C.D.; Muraoka, T. Molybdenum supply and biological fixation of nitrogen by two Brazilian common bean cultivars. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Omer, F.A.; Abbas, D.N.; Khalaf, A.S. Effect of molybdenum and potassium application on nodulation, growth and yield of lentil (Lens culinaris Medic). Pak. J. Bot. 2016, 48, 2255–2259. [Google Scholar]
- Jaybhay, S.A.; Varghese, P.; Taware, S.P. Influence of Foliar Application of Nutrient on Growth, Yield, Economics, Soil Nutritional Status and Nutrient Uptake of Soybean. Legume Res. 2021, 44, 1322–1327. [Google Scholar] [CrossRef]
- Bambara, S.; Ndakidemi, P.A. The potential roles of lime and molybdenum on the growth, nitrogen fixation and assimilation of metabolites in nodulated legume: A special reference to Phaseolus vulgaris L. Afr. J. Biotechnol. 2010, 8, 2482–2489. [Google Scholar]
- Flajšman, M.; Šantavec, I.; Kolmanič, A.; Kocjan Ačko, D. Bacterial seed inoculation and row spacing affect the nutritional composition and agronomic performance of soybean. Int. J. Plant Prod. 2019, 13, 183–192. [Google Scholar] [CrossRef]
- Cafaro La Menza, N.; Monzon, J.P.; Specht, J.E.; Grassini, P. Is soybean yield limited by nitrogen supply? Field Crops Res. 2017, 213, 204–212. [Google Scholar] [CrossRef]
- Kafeel, U.; Jahan, U.; Khan, F.A. Chapter five—Role of mineral nutrients in biological nitrogen fixation. In Sustainable Plant Nutrition; Academic Press: Cambridge, MA, USA, 2023; pp. 87–106. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Berlin/Braunschweig, Germany, 2018; p. 158. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In Word Reference Base for Soil Resources 2014, Update 2015; Word Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
Specification | Emergence Phase (Days from Sowing) | Plant Density before Harvest (pcs·m−2) | SPAD | LAI (m2/m2) |
---|---|---|---|---|
Factor (F) | ||||
C | 11.2 ± 2.12 b | 43.58 ± 4.76 a | 39.08 ± 2.94 b | 3.94 ± 0.66 b |
SI | 11.2 ± 1.90 b | 44.75 ± 5.05 a | 41.17 ± 2.48 ab | 4.15 ± 0.55 ab |
SC | 12.2 ± 2.29 a | 44.33 ± 4.87 a | 39.92 ± 2.31 bc | 3.97 ± 0.65 b |
FF | 11.3 ± 2.14 b | 44.08 ± 5.33 a | 40.08 ± 3.21 bc | 3.96 ± 0.66 b |
SI + FF | 11.2 ± 1.85 b | 44.92 ± 4.23 a | 42.08 ± 2.39 a | 4.22 ± 0.55 a |
SC + FF | 12.2 ± 2.21 a | 44.58 ± 5.38 a | 40.75 ± 2.34 abc | 4.03 ± 0.65 ab |
Years (Y) | ||||
2019 | 11.67 ± 1.05 b | 43.25 ± 2.21 b | 38.54 ± 1.77 b | 3.55 ± 0.18 |
2020 | 13.75 ± 0.79 a | 39.67 ± 2.06 c | 43.42 ± 1.69 a | 3.73 ± 0.21 |
2021 | 9.13 ± 0.54 c | 50.21 ± 1.38 a | 39.58 ± 1.74 b | 4.85 ± 0.19 |
Interaction | ||||
F x Y | r.n. | r.n. | r.n. | r.n. |
Treatments | 2019 | 2020 | 2021 | Mean |
---|---|---|---|---|
C | 0.56 g | 0.84 g | 0.69 g | 0.70 |
SI | 16.03 cde | 20.7 ab | 17.45 abc | 18.06 |
SC | 11.28 f | 16.45 cd | 12.95 def | 13.56 |
FF | 0.57 g | 0.87 g | 0.72 g | 0.72 |
SI + FF | 17.3 bc | 21.45 a | 18.2 abc | 18.98 |
SC + FF | 12.28 ef | 17.45 abc | 14.95 cdef | 14.89 |
Mean | 9.67 | 12.96 | 10.83 | 11.15 |
Specification | The Number of Pods on the Plant | The Number of Seeds in the Pod | Thousand Seed Weight (g) | Seed Yield (t·ha−1) |
---|---|---|---|---|
Factor (F) | ||||
C | 29.75 ± 3.41 b | 1.95 ± 0.05 a | 131.7 ± 9.75 a | 3.34 ± 0.62 d |
SI | 31.92 ± 3.70 ab | 1.98 ± 0.07 a | 130.8 ± 10.59 a | 3.70 ± 0.64 b |
SC | 31.08 ± 3.68 ab | 1.97 ± 0.07 a | 130.6 ± 10.64 a | 3.54 ± 0.60 bc |
FF | 30.67 ± 3.70 ab | 1.99 ± 0.06 a | 130.2 ± 10.97 a | 3.49 ± 0.64 cd |
SI + FF | 33.42 ± 3.39 a | 2.01 ± 0.07 a | 131.5 ± 10.24 a | 3.95 ± 0.61 a |
SC + FF | 32.00 ± 3.49 ab | 1.98 ± 0.08 a | 132.1 ± 9.96 a | 3.74 ± 0.72 b |
Years (Y) | ||||
2019 | 28.29 ± 2.93 c | 2.00 ± 0.06 a | 124.0 ± 3.94 b | 3.03 ± 0.40 c |
2020 | 31.17 ± 1.93 b | 1.96 ± 0.05 a | 143.5 ± 5.06 a | 3.48 ± 0.23 b |
2021 | 34.96 ± 2.26 a | 1.98 ± 0.07 a | 125.9 ± 5.31 b | 4.38 ± 0.32 a |
Interaction | ||||
F x Y | r.n. | r.n. | r.n. | r.n. |
Specification | Protein (% DM) | Fat (% DM) | Protein Yield (t·ha−1) | Fat Yield (t·ha−1) |
---|---|---|---|---|
Factor (F) | ||||
C | 37.93 ± 0.76 c | 19.38 ± 0.27 ab | 1.27 ± 0.26 c | 0.65 ± 0.11 c |
SI | 38.93 ± 0.76 ab | 19.16 ± 0.25 bc | 1.44 ± 0.28 ab | 0.71 ± 0.12 abc |
SC | 38.48 ± 0.79 bc | 19.25 ± 0.26 ab | 1.37 ± 0.26 bc | 0.68 ± 0.11 bc |
FF | 38.13 ± 0.71 bc | 19.49 ± 0.28 a | 1.33 ± 0.27 bc | 0.67 ± 0.12 bc |
SI + FF | 39.23 ± 0.83 a | 18.90 ± 0.33 c | 1.55 ± 0.27 a | 0.74 ± 0.11 a |
SC + FF | 38.65 ± 0.86 abc | 19.10 ± 0.30 bc | 1.45 ± 0.31 ab | 0.71 ± 0.13 ab |
Years (Y) | ||||
2019 | 37.85 ± 0.63 c | 19.40 ± 0.36 a | 1.15 ± 0.16 c | 0.59 ± 0.07 c |
2020 | 38.38 ± 0.59 b | 19.26 ± 0.29 a | 1.33 ± 0.11 b | 0.67 ± 0.04 b |
2021 | 39.45 ± 0.53 a | 18.99 ± 0.19 b | 1.73 ± 0.14 a | 0.83 ± 0.06 a |
Interaction | ||||
F x Y | r.n. | r.n. | r.n. | r.n. |
Factor | Mean Yield (t·ha−1) | Mean Yield (EUR·ha−1) | Foliar Fertilization Cost (EUR·ha−1) | Inoculation Cost (EUR·ha−1) | Economic Result (EUR·ha−1) |
---|---|---|---|---|---|
C | 3.34 | 1761.52 | - | - | 1761.52 |
SI | 3.70 | 1951.38 | - | 30.80 | 1920.58 |
SC | 3.54 | 1867.00 | - | 21.10 | 1845.90 |
FF | 3.49 | 1840.63 | 48.90 | - | 1791.73 |
SI + FF | 3.95 | 2083.23 | 48.90 | 30.80 | 2003.53 |
SC + FF | 3.74 | 1972.48 | 48.90 | 21.10 | 1902.48 |
Parameter | Unit | Year | ||
---|---|---|---|---|
2019 | 2020 | 2021 | ||
pH in 1 mol/L KCl | - | 6.3 | 6.1 | 5.8 |
Nmin | kg∙ha−1 | 68 | 74 | 71 |
Humus | % | 1.4 | 1.1 | 1.2 |
K2O | mg·100 g−1 soil | 21.7 | 20.2 | 19.8 |
P2O5 | 18.8 | 17.5 | 16.9 | |
Mg | 6.5 | 5.9 | 5.6 | |
Fe | mg·kg−1 soil | 2015.3 | 2183.2 | 2415.4 |
Mn | 221.6 | 308.8 | 345.4 | |
Zn | 11.8 | 12.4 | 12.8 | |
Cu | 4.6 | 5.8 | 5.9 | |
B | 1.1 | 1.3 | 0.9 |
Month | Sum of Precipitation (mm) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |
April | 21.4 | 10.0 | 49.4 | 9.9 | 9.2 | 6.5 |
May | 73.5 | 83.3 | 63.9 | 13.1 | 11.3 | 12.8 |
June | 30.8 | 162.9 | 47.3 | 21.5 | 18.1 | 18.8 |
July | 49.8 | 18.9 | 55.0 | 19.1 | 18.8 | 21.6 |
August | 60.9 | 7.3 | 107.4 | 20.3 | 19.9 | 17.5 |
September | 32.0 | 44.1 | 85.9 | 14.7 | 15.0 | 13.1 |
Sum/Mean | 268.4 | 326.5 | 408.9 | 16.4 | 15.4 | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W. Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. Plants 2023, 12, 2431. https://doi.org/10.3390/plants12132431
Jarecki W. Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. Plants. 2023; 12(13):2431. https://doi.org/10.3390/plants12132431
Chicago/Turabian StyleJarecki, Wacław. 2023. "Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum" Plants 12, no. 13: 2431. https://doi.org/10.3390/plants12132431
APA StyleJarecki, W. (2023). Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. Plants, 12(13), 2431. https://doi.org/10.3390/plants12132431