Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = ricin vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 612 KB  
Review
Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies
by Arnaud Avril, Sophie Guillier and Christine Rasetti-Escargueil
Microorganisms 2024, 12(12), 2622; https://doi.org/10.3390/microorganisms12122622 - 18 Dec 2024
Cited by 2 | Viewed by 4379
Abstract
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to [...] Read more.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions. The Centers for Disease Control and Prevention (CDC) classify biological agents into three categories (A or Tier 1, B and C) according to the risk they pose to the public and national security. Category A or Tier 1 consists of the six pathogens with the highest risk to the population (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Several medical countermeasures, such as vaccines, antibodies and chemical drugs, have been developed to prevent or cure the diseases induced by these pathogens. This review presents an overview of the primary medical countermeasures, and in particular, of the antibodies available against the six pathogens on the CDC’s Tier 1 agents list, as well as against ricin. Full article
(This article belongs to the Special Issue Latest Review Papers in Medical Microbiology 2024)
17 pages, 2864 KB  
Article
Toxicity and Efficacy Evaluation of Soluble Recombinant Ricin Vaccine
by Hyeongseok Yun, Hae Eun Joe, Dong Hyun Song, Young-Jo Song, Sunghyun Hong, Chang-Hwan Kim, Na Young Kim, Gyeung Haeng Hur and Chi Ho Yu
Vaccines 2024, 12(10), 1116; https://doi.org/10.3390/vaccines12101116 - 29 Sep 2024
Viewed by 1657
Abstract
Background: Ricin, a toxin extracted from the seeds of Ricinus communis, is classified as a ribosome-inactivating protein. The A-subunit of ricin shows RNA N-glycosidase activity that cleaves ribosomal RNA (rRNA) and exhibits toxicity by inhibiting protein synthesis and inducing vascular leak [...] Read more.
Background: Ricin, a toxin extracted from the seeds of Ricinus communis, is classified as a ribosome-inactivating protein. The A-subunit of ricin shows RNA N-glycosidase activity that cleaves ribosomal RNA (rRNA) and exhibits toxicity by inhibiting protein synthesis and inducing vascular leak syndrome. Methods: In this study, we created a truncated version of the previously developed R51 ricin vaccine (RTA 1-194 D75C Y80C) through in silico analysis. Results: The resulting R51-3 vaccine showed a more-than-six-fold increase in soluble protein expression when compared to R51, with over 85% solubility. In a pilot toxicity test, no toxicity was observed in hematological and biochemical parameters in BALB/c mice and New Zealand white rabbits following five repeated administrations of R51-3. Furthermore, R51-3 successfully protected mice and rabbits from a 20 × LD50 ricin challenge after three intramuscular injections spaced 2 weeks apart. Similarly, monkeys that received three injections of R51-3 survived a 60 µg/kg ricin challenge. Conclusions: These findings support R51-3 as a promising candidate antigen for ricin vaccine development. Full article
Show Figures

Figure 1

28 pages, 4713 KB  
Article
A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning
by Loïs Lequesne, Julie Dano, Audrey Rouaix, Camille Kropp, Marc Plaisance, Stéphanie Gelhaye, Marie-Lou Lequesne, Paloma Piquet, Arnaud Avril, François Becher, Maria Lucia Orsini Delgado and Stéphanie Simon
Toxins 2024, 16(10), 412; https://doi.org/10.3390/toxins16100412 - 24 Sep 2024
Cited by 3 | Viewed by 2975
Abstract
Ricin is a highly potent toxin that has been used in various attempts at bioterrorism worldwide. Although a vaccine for preventing ricin poisoning (RiVax™) is in clinical development, there are currently no commercially available prophylaxis or treatments for ricin intoxication. Numerous studies have [...] Read more.
Ricin is a highly potent toxin that has been used in various attempts at bioterrorism worldwide. Although a vaccine for preventing ricin poisoning (RiVax™) is in clinical development, there are currently no commercially available prophylaxis or treatments for ricin intoxication. Numerous studies have highlighted the potential of passive immunotherapy using anti-ricin monoclonal antibodies (mAbs) and have shown promising results in preclinical models. In this article, we describe the neutralizing and protective efficacy of a new generation of high-affinity anti-ricin mAbs, which bind and neutralize very efficiently both ricin isoforms D and E in vitro through cytotoxicity cell assays. In vivo, protection assay revealed that one of these mAbs (RicE5) conferred over 90% survival in a murine model challenged intranasally with a 5 LD50 of ricin and treated by intravenous administration of the mAbs 6 h post-intoxication. Notably, a 35% survival rate was observed even when treatment was administered 24 h post-exposure. Moreover, all surviving mice exhibited long-term immunity to high ricin doses. These findings offer promising results for the clinical development of a therapeutic candidate against ricin intoxication and may also pave the way for novel vaccination strategies against ricin or other toxins. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

18 pages, 378 KB  
Review
Medical Countermeasures against Ricin Intoxication
by Christine Rasetti-Escargueil and Arnaud Avril
Toxins 2023, 15(2), 100; https://doi.org/10.3390/toxins15020100 - 20 Jan 2023
Cited by 17 | Viewed by 6088
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, [...] Read more.
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies. Full article
10 pages, 1615 KB  
Brief Report
Novel Binding Mechanisms of Fusion Broad Range Anti-Infective Protein Ricin A Chain Mutant-Pokeweed Antiviral Protein 1 (RTAM-PAP1) against SARS-CoV-2 Key Proteins in Silico
by Yasser Hassan, Sherry Ogg and Hui Ge
Toxins 2020, 12(9), 602; https://doi.org/10.3390/toxins12090602 - 17 Sep 2020
Cited by 4 | Viewed by 8090
Abstract
The deadly pandemic named COVID-19, caused by a new coronavirus (SARS-CoV-2), emerged in 2019 and is still spreading globally at a dangerous pace. As of today, there are no proven vaccines, therapies, or even strategies to fight off this virus. Here, we describe [...] Read more.
The deadly pandemic named COVID-19, caused by a new coronavirus (SARS-CoV-2), emerged in 2019 and is still spreading globally at a dangerous pace. As of today, there are no proven vaccines, therapies, or even strategies to fight off this virus. Here, we describe the in silico docking results of a novel broad range anti-infective fusion protein RTAM-PAP1 against the various key proteins of SARS-CoV-2 using the latest protein-ligand docking software. RTAM-PAP1 was compared against the SARS-CoV-2 B38 antibody, ricin A chain, a pokeweed antiviral protein from leaves, and the lectin griffithsin using the special CoDockPP COVID-19 version. These experiments revealed novel binding mechanisms of RTAM-PAP1 with a high affinity to numerous SARS-CoV-2 key proteins. RTAM-PAP1 was further characterized in a preliminary toxicity study in mice and was found to be a potential therapeutic candidate. These findings might lead to the discovery of novel SARS-CoV-2 targets and therapeutic protein structures with outstanding functions. Full article
(This article belongs to the Special Issue Toxin and Immunotoxin Based Therapeutic Approaches)
Show Figures

Figure 1

37 pages, 2584 KB  
Review
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin
by Natalia Sowa-Rogozińska, Hanna Sominka, Jowita Nowakowska-Gołacka, Kirsten Sandvig and Monika Słomińska-Wojewódzka
Toxins 2019, 11(6), 350; https://doi.org/10.3390/toxins11060350 - 18 Jun 2019
Cited by 78 | Viewed by 15217
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical [...] Read more.
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin. Full article
(This article belongs to the Special Issue Ricin Toxins)
Show Figures

Figure 1

13 pages, 1051 KB  
Article
Generation of Highly Efficient Equine-Derived Antibodies for Post-Exposure Treatment of Ricin Intoxications by Vaccination with Monomerized Ricin
by Reut Falach, Anita Sapoznikov, Ron Alcalay, Moshe Aftalion, Sharon Ehrlich, Arik Makovitzki, Avi Agami, Avishai Mimran, Amir Rosner, Tamar Sabo, Chanoch Kronman and Yoav Gal
Toxins 2018, 10(11), 466; https://doi.org/10.3390/toxins10110466 - 12 Nov 2018
Cited by 12 | Viewed by 4358
Abstract
Ricin, a highly lethal toxin derived from the seeds of Ricinus communis (castor beans) is considered a potential biological threat agent due to its high availability, ease of production, and to the lack of any approved medical countermeasure against ricin exposures. To date, [...] Read more.
Ricin, a highly lethal toxin derived from the seeds of Ricinus communis (castor beans) is considered a potential biological threat agent due to its high availability, ease of production, and to the lack of any approved medical countermeasure against ricin exposures. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this work was to generate anti-ricin antitoxin that confers high level post-exposure protection against ricin challenge. Due to safety issues regarding the usage of ricin holotoxin as an antigen, we generated an inactivated toxin that would reduce health risks for both the immunizer and the immunized animal. To this end, a monomerized ricin antigen was constructed by reducing highly purified ricin to its monomeric constituents. Preliminary immunizing experiments in rabbits indicated that this monomerized antigen is as effective as the native toxin in terms of neutralizing antibody elicitation and protection of mice against lethal ricin challenges. Characterization of the monomerized antigen demonstrated that the irreversibly detached A and B subunits retain catalytic and lectin activity, respectively, implying that the monomerization process did not significantly affect their overall structure. Toxicity studies revealed that the monomerized ricin displayed a 250-fold decreased activity in a cell culture-based functionality test, while clinical signs were undetectable in mice injected with this antigen. Immunization of a horse with the monomerized toxin was highly effective in elicitation of high titers of neutralizing antibodies. Due to the increased potential of IgG-derived adverse events, anti-ricin F(ab’)2 antitoxin was produced. The F(ab’)2-based antitoxin conferred high protection to intranasally ricin-intoxicated mice; ~60% and ~34% survival, when administered 24 and 48 h post exposure to a lethal dose, respectively. In line with the enhanced protection, anti-inflammatory and anti-edematous effects were measured in the antitoxin treated mice, in comparison to mice that were intoxicated but not treated. Accordingly, this anti-ricin preparation is an excellent candidate for post exposure treatment of ricin intoxications. Full article
(This article belongs to the Special Issue Ricin Toxins)
Show Figures

Figure 1

19 pages, 6045 KB  
Article
Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives
by Deborah A. Sarkes, Margaret M. Hurley and Dimitra N. Stratis-Cullum
Molecules 2016, 21(11), 1504; https://doi.org/10.3390/molecules21111504 - 9 Nov 2016
Cited by 7 | Viewed by 5954
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture [...] Read more.
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide–protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates. Full article
Show Figures

Figure 1

16 pages, 2042 KB  
Article
Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus
by Xianliang Ji, Zhiguang Ren, Na Xu, Lingnan Meng, Zhijun Yu, Na Feng, Xiaoyu Sang, Shengnan Li, Yuanguo Li, Tiecheng Wang, Yongkun Zhao, Hualei Wang, Xuexing Zheng, Hongli Jin, Nan Li, Songtao Yang, Jinshan Cao, Wensen Liu, Yuwei Gao and Xianzhu Xia
Viruses 2016, 8(4), 115; https://doi.org/10.3390/v8040115 - 21 Apr 2016
Cited by 8 | Viewed by 5806
Abstract
Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either [...] Read more.
Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 951 KB  
Article
Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates
by Tal Noy-Porat, Ronit Rosenfeld, Naomi Ariel, Eyal Epstein, Ron Alcalay, Anat Zvi, Chanoch Kronman, Arie Ordentlich and Ohad Mazor
Toxins 2016, 8(3), 64; https://doi.org/10.3390/toxins8030064 - 3 Mar 2016
Cited by 38 | Viewed by 6519
Abstract
Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. [...] Read more.
Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Graphical abstract

13 pages, 4731 KB  
Article
Clinical and Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin
by Seth H. Pincus, Manoj Bhaskaran, Robert N. Brey, Peter J. Didier, Lara A. Doyle-Meyers and Chad J. Roy
Toxins 2015, 7(6), 2121-2133; https://doi.org/10.3390/toxins7062121 - 9 Jun 2015
Cited by 49 | Viewed by 7914
Abstract
Ricin is a potential bioweapon that could be used against civilian and military personnel. Aerosol exposure is the most likely route of contact to ricin toxin that will result in the most severe toxicity. Early recognition of ricin exposure is essential if specific [...] Read more.
Ricin is a potential bioweapon that could be used against civilian and military personnel. Aerosol exposure is the most likely route of contact to ricin toxin that will result in the most severe toxicity. Early recognition of ricin exposure is essential if specific antidotes are to be applied. Initial diagnosis will most likely be syndromic, i.e., fitting clinical and laboratory signs into a pattern which then will guide the choice of more specific diagnostic assays and therapeutic interventions. We have studied the pathology of ricin toxin in rhesus macaques exposed to lethal and sublethal ricin aerosols. Animals exposed to lethal ricin aerosols were followed clinically using telemetry, by clinical laboratory analyses and by post-mortem examination. Animals exposed to lethal aerosolized ricin developed fever associated with thermal instability, tachycardia, and dyspnea. In the peripheral blood a marked neutrophilia (without immature bands) developed at 24 h. This was accompanied by an increase in monocytes, but depletion of lymphocytes. Red cell indices indicated hemoconcentration, as did serum chemistries, with modest increases in sodium and blood urea nitrogen (BUN). Serum albumin was strikingly decreased. These observations are consistent with the pathological observations of fluid shifts to the lungs, in the form of hemorrhages, inflammatory exudates, and tissue edema. In macaques exposed to sublethal aerosols of ricin, late pathologic consequences included chronic pulmonary fibrosis, likely mediated by M2 macrophages. Early administration of supportive therapy, specific antidotes after exposure or vaccines prior to exposure have the potential to favorably alter this outcome. Full article
(This article belongs to the Special Issue Plant Toxins)
Show Figures

Graphical abstract

25 pages, 912 KB  
Article
Disruption of the Putative Vascular Leak Peptide Sequence in the Stabilized Ricin Vaccine Candidate RTA1-33/44-198
by Laszlo Janosi, Jaimee R. Compton, Patricia M. Legler, Keith E. Steele, Jon M. Davis, Gary R. Matyas and Charles B. Millard
Toxins 2013, 5(2), 224-248; https://doi.org/10.3390/toxins5020224 - 30 Jan 2013
Cited by 4 | Viewed by 7191
Abstract
Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within [...] Read more.
Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(−) variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C) along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the Tm was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond. Full article
Show Figures

Figure 1

9 pages, 468 KB  
Article
Detection of Ricin Intoxication in Mice Using Serum Peptide Profiling by MALDI-TOF/MS
by Siyan Zhao, Wen-Sen Liu, Meng Wang, Jiping Li, Yucheng Sun, Nan Li, Feng Hou, Jia-Yu Wan, Zhongyi Li, Jun Qian and Linna Liu
Int. J. Mol. Sci. 2012, 13(10), 13704-13712; https://doi.org/10.3390/ijms131013704 - 22 Oct 2012
Cited by 8 | Viewed by 6593
Abstract
Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as [...] Read more.
Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as test subjects, and used the technique of Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and ClinProt™ microparticle beads to set up an effective detection model with an accuracy of almost 100%. Eighty-two peaks in the mass range 1000–10,000 m/z were detected by ClinProTools software, and five different peaks with m/z of 4982.49, 1333.25, 1537.86, 4285.05 and 2738.88 had the greatest contribution to the accuracy and sensitivity of this model. They may therefore provide biomarkers for ricin intoxication. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Organ-Specific Toxicity)
Show Figures

22 pages, 804 KB  
Article
Passive and Active Vaccination Strategies to Prevent Ricin Poisoning
by Seth H. Pincus, Joan E. Smallshaw, Kejing Song, Jody Berry and Ellen S. Vitetta
Toxins 2011, 3(9), 1163-1184; https://doi.org/10.3390/toxins3091163 - 15 Sep 2011
Cited by 34 | Viewed by 10771
Abstract
Ricin toxin (RT) is derived from castor beans, produced by the plant Ricinus communis. RT and its toxic A chain (RTA) have been used therapeutically to arm ligands that target disease-causing cells. In most cases these ligands are cell-binding monoclonal antibodies (MAbs). [...] Read more.
Ricin toxin (RT) is derived from castor beans, produced by the plant Ricinus communis. RT and its toxic A chain (RTA) have been used therapeutically to arm ligands that target disease-causing cells. In most cases these ligands are cell-binding monoclonal antibodies (MAbs). These ligand-toxin conjugates or immunotoxins (ITs) have shown success in clinical trials [1]. Ricin is also of concern in biodefense and has been classified by the CDC as a Class B biothreat. Virtually all reports of RT poisoning have been due to ingestion of castor beans, since they grow abundantly throughout the world and are readily available. RT is easily purified and stable, and is not difficult to weaponize. RT must be considered during any “white powder” incident and there have been documented cases of its use in espionage [2,3]. The clinical syndrome resulting from ricin intoxication is dependent upon the route of exposure. Countermeasures to prevent ricin poisoning are being developed and their use will depend upon whether military or civilian populations are at risk of exposure. In this review we will discuss ricin toxin, its cellular mode of action, the clinical syndromes that occur following exposure and the development of pre- and post-exposure approaches to prevent of intoxication. Full article
(This article belongs to the Special Issue Ricin Toxin)
Show Figures

Figure 1

34 pages, 894 KB  
Review
AB Toxins: A Paradigm Switch from Deadly to Desirable
by Oludare Odumosu, Dequina Nicholas, Hiroshi Yano and William Langridge
Toxins 2010, 2(7), 1612-1645; https://doi.org/10.3390/toxins2071612 - 25 Jun 2010
Cited by 82 | Viewed by 18318
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. [...] Read more.
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity. Full article
(This article belongs to the Special Issue Enterotoxins)
Show Figures

Figure 1

Back to TopTop