Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = rooftop retrofitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2659 KB  
Article
Retrofitting Design of Residential Building Rooftops with Attached Solar Photovoltaic Panels and Thermal Collectors: Weighing Carbon Emissions Against Cost Benefits
by Sheng Yao, Ying Wu, Xuan Liu, Jing Wu, Shiya Zhao and Min Li
Buildings 2025, 15(17), 3012; https://doi.org/10.3390/buildings15173012 - 25 Aug 2025
Viewed by 374
Abstract
To reduce the carbon emissions of existing residential buildings while pursuing maximum cost benefits, a multi-optimization design method for the existing residential building rooftops, retrofitted by attaching the solar photovoltaic panels and thermal collectors, was proposed in the study. At first, the life [...] Read more.
To reduce the carbon emissions of existing residential buildings while pursuing maximum cost benefits, a multi-optimization design method for the existing residential building rooftops, retrofitted by attaching the solar photovoltaic panels and thermal collectors, was proposed in the study. At first, the life cycle carbon emission and cost benefit of the retrofitted buildings were assigned as the optimization objectives, and the models of carbon emission and cost benefit were developed. Furthermore, a typical existing residential community located in the cold zone of China was selected to perform the multi-optimization based on the Grasshopper platform. Meanwhile, the laying area, laying angle, and allocation ratio of the solar photovoltaic panels and thermal collectors were selected as the design parameters. And then the best retrofitting solution suitable for the existing residential buildings was proposed. The results show that the weightings of the carbon emission of retrofitting life cycle are 42.68%, and that for the cost benefit is 57.32%. Significantly, there is a 31% reduction in carbon emissions compared to the building before retrofitting, and a 24.7% reduction in cost benefit. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 5883 KB  
Article
Microclimatic Effects of Retrofitting a Green Roof Beneath an East–West PV Array: A Two-Year Field Study in Austria
by Leonie Möslinger, Erich Streit, Azra Korjenic and Abdulah Sulejmanoski
Sustainability 2025, 17(16), 7495; https://doi.org/10.3390/su17167495 - 19 Aug 2025
Viewed by 487
Abstract
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic [...] Read more.
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic effects of retrofitting an extensive green roof beneath such an existing PV array. Over a two-year period, continuous measurements of sub-panel air temperature, relative humidity, and module surface temperature were conducted. Results show that the green roof reduced average midday sub-panel air temperatures by 1.7–2.2 °C, with peak reductions up to 8 °C during summer, while nighttime temperatures were higher above the green roof. Relative humidity increased by up to 8.1 percentage points and module surface temperatures beneath the green roof were lowered by 0.4–1.5 °C, though with greater variability. Computational fluid dynamics simulations confirmed that evaporative cooling was spatially confined beneath the panels and highlighted the influence of structural features on airflow and convective cooling. Despite limited vegetation beneath the panels, the green roof retained moisture longer than the gravel roof, resulting in particularly strong cooling effects in the days following rainfall. The study highlights the retrofitting potential for improving rooftop climates, while showing key design recommendations for enhanced system performance. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

35 pages, 6795 KB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Viewed by 683
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

19 pages, 3080 KB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Cited by 1 | Viewed by 497
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

25 pages, 27045 KB  
Article
Photovoltaic Strings on Large, Flat Roofs: Experimental Wind Loads on Representative Configurations
by Giacomo Scrinzi, Enrico Sergio Mazzucchelli and Sara Muggiasca
Sustainability 2025, 17(13), 5914; https://doi.org/10.3390/su17135914 - 27 Jun 2025
Viewed by 497
Abstract
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under [...] Read more.
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under various representative configurations and the correlation between characteristic geometric parameters such as tilt angle, bottom clearance, row spacing, and wind direction. Following a literature review, a detailed 1:10 scaled model with geometric adjustment capabilities was developed and eventually tested in a boundary-layer wind tunnel. High-resolution pressure measurements were processed to derive force and moment resultants normalised by reference wind pressure. Envelopes of force/moment resultants are presented for each representative geometric configuration and for each wind exposure angle. The results present severe variations in local wind actions, particularly significant at the strings’ free ends and for oblique wind angles. The severe underestimation of local wind loads by standard codes is discussed. The findings underline the importance of detailed wind-load assessment for both new constructions and retrofits, suggesting that reliance solely on code provisions might result in unsafe designs. Full article
Show Figures

Figure 1

18 pages, 7828 KB  
Article
Study on Roof Ventilation and Optimized Layout of Photovoltaics for Semi-Outdoor Main Transformer Rooms in Substations
by Xiaohui Wu, Yanfeng Wang, Zhiwen Cai and Ping Su
Appl. Sci. 2025, 15(11), 6223; https://doi.org/10.3390/app15116223 - 31 May 2025
Viewed by 822
Abstract
In the context of global decarbonization goals and increasing urban electricity demand, the green transformation of power industry buildings to enhance the utilization of renewable energy represents a significant contribution to sustainable social development. Rooftop photovoltaic (PV) systems can reduce unnecessary radiative heat [...] Read more.
In the context of global decarbonization goals and increasing urban electricity demand, the green transformation of power industry buildings to enhance the utilization of renewable energy represents a significant contribution to sustainable social development. Rooftop photovoltaic (PV) systems can reduce unnecessary radiative heat gain and generate clean electricity to support this transition; however, they also alter the rooftop wind environment. Deploying rooftop PV systems requires well-planned design strategies to optimize renewable energy production while ensuring adequate natural ventilation, particularly for semi-outdoor main transformer rooms where ventilation and heat dissipation are crucial for safe substation operations. This concept was tested at a 220 kV substation in Guangzhou, China, using Computational Fluid Dynamics (CFD) and PVSYST to assess the impact of different rooftop PV systems on natural ventilation and power generation. The analysis showed that while the horizontal PV system achieved the highest energy output, it also resulted in a wind speed reduction of 13.2% or 11.8%. In contrast, the 10° symmetrical PV system offers the most balanced solution, with only a 0.6% decrease in ventilation performance but at the cost of a 13.87% reduction in PV output. The unilateral pitched PV system results in ventilation losses of less than 4%, and the power generation loss is also kept below 4%. However, this configuration may lead to increased wind loads. This approach can be developed into a practical design tool to further support the integration of PV systems in substation green retrofitting projects. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

19 pages, 27219 KB  
Article
A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery
by Junqi Wang, Linlin Cheng, Yang Zheng, Huizhen Cui and Mengyao Zhu
Sensors 2025, 25(3), 770; https://doi.org/10.3390/s25030770 - 27 Jan 2025
Viewed by 1059
Abstract
Green roofs and photovoltaic (PV) roofs are important forms of roof retrofitting, and unused rural roofs provide favorable conditions for the development of green roofs and PV roofs. Here, this study proposes a new method for assessing the potential of multifunctional retrofitting of [...] Read more.
Green roofs and photovoltaic (PV) roofs are important forms of roof retrofitting, and unused rural roofs provide favorable conditions for the development of green roofs and PV roofs. Here, this study proposes a new method for assessing the potential of multifunctional retrofitting of rural roofs. Firstly, rural roof types were classified into three categories based on GF-2 imagery: flat roofs, east–west pitched roofs, and north–south pitched roofs. The roof types were extracted based on the revised U-Net model, which aims to enhance the extracted features of the buildings and improve the perception of the buildings. Secondly, three types of retrofits—PV roofs, green roofs, and PV-green roofs—were designed taking into account the type, orientation, and area of the roofs. Finally, the potential electricity and carbon benefits of the different retrofit types of roofs were calculated separately, with the aim of realizing an assessment of the potential for roof retrofitting in the rural areas of Mentougou, Beijing. The results of the study showed that 35,407 (281.97 ha) roofs could be used for multifunctional retrofitting. If rural roofs are retrofitted with multifunctionality according to the methodology of this paper, they can absorb an additional 4.66 × 104 kg/yr of CO2 and increase biomass production by 0.99 × 104 kg/yr compared to retrofitting only PV roofs, and they can generate an additional 34.1 GWh/yr of electricity and reduce CO2 emissions by an additional 3.3 × 107 kg/yr compared to retrofitting to both PV roofs and green roofs. The assessment methodology of this study provides decision makers with data references on the multifunctional potential of rural rooftops for retrofitting, which can optimize the use of rural rooftops, and at the same time is important for promoting the energy transition in rural areas. Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
Show Figures

Figure 1

26 pages, 3003 KB  
Article
Research on the Carbon Reduction Potential of the Life Cycle of Building Roofs Retrofit Designs
by Dawei Mu, Wenjin Dai, Yixian Zhang, Yixu Shen, Zhi Luo and Shurui Fan
Buildings 2025, 15(2), 299; https://doi.org/10.3390/buildings15020299 - 20 Jan 2025
Cited by 1 | Viewed by 1389
Abstract
This study examines existing buildings in Haikou in China under tropical island climate conditions. It presents three retrofit design models for greenhouses roofs (GHR), green roofs (GR) and photovoltaic roofs (PVR). The carbon cost of each retrofit roof model is calculated in the [...] Read more.
This study examines existing buildings in Haikou in China under tropical island climate conditions. It presents three retrofit design models for greenhouses roofs (GHR), green roofs (GR) and photovoltaic roofs (PVR). The carbon cost of each retrofit roof model is calculated in the production and transportation phases of building materials, construction, and demolition. The changes in electricity consumption, water consumption, and plant carbon reduction are coupled to calculate the carbon reduction generated by each phase of the use of the retrofitted roofs. The carbon reduction per unit area for GHR, GR and PVR over the life cycle (20 years) is then comprehensively calculated. The life cycle carbon reduction per unit area is 262.57 kg·m−2 for GHR, 127.41 kg·m−2 for GR and 2567.12 kg·m−2 for PVR. Among the three retrofit methods, PVR has the greatest potential for reducing carbon emissions. The study can as a guide for implementing carbon reduction measures in tropical island areas. Domestic research on rooftop greenhouses also focuses on technology, yield, and energy consumption, mostly for northern regions with cold winters, and less research on rooftop greenhouses applied to regions with hot summers and warm winters. But domestic and foreign studies on the potential of rooftop greenhouses to reduce emissions have not yet been combined with plant cultivation of hydroelectric carbon emissions and plant carbon sequestration. Full article
(This article belongs to the Special Issue Indoor Climate and Energy Efficiency in Buildings)
Show Figures

Figure 1

35 pages, 4772 KB  
Article
Optimised Sizing and Control of Non-Invasive Retrofit Options for More Sustainable Heat and Power Supply to Multi-Storey Apartment Buildings
by Jevgenijs Kozadajevs, Ivars Zalitis, Anna Mutule and Lubova Petrichenko
Sustainability 2025, 17(1), 236; https://doi.org/10.3390/su17010236 - 31 Dec 2024
Viewed by 1140
Abstract
Considering the ambitious climate goals defined by the European Union, the significant share of energy demand represented by buildings, the slow process of their renovation due to challenges such as a need for majority consent from residents and limited available space in dense [...] Read more.
Considering the ambitious climate goals defined by the European Union, the significant share of energy demand represented by buildings, the slow process of their renovation due to challenges such as a need for majority consent from residents and limited available space in dense urban areas, this study aims to foster retrofitting of energy supply systems of multi-storey apartment buildings, improving their sustainability. This entails making the transition to sustainable energy systems more socially acceptable and practical in urban contexts by proposition and demonstration of the potential of a power and heat supply system retrofit that minimises disruptions felt by residents. It integrates rooftop renewable power sources, heat storage with an electric heater, heat pumps, and existing connections to public utility networks. Furthermore, simulation results of both single- and multi-objective optimisation (performed by the genetic algorithm) for equipment selection, as well as conventional and smart control (implemented as a gradient-based optimisation) for daily scheduling, are compared, defining the main scientific contribution of the study. It is found possible to achieve a net present value of up to almost twice the annual energy expenses of the unrenovated building or self-sufficiency rate of up to 41.6% while using conventional control. These benefits can reach 2.6 times or 49.8% if the smart control is applied, demonstrating both the profitability and improved self-sufficiency achievable with the proposed approach in Latvian conditions. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 5783 KB  
Article
Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
by Angeliki Kitsopoulou, Dimitris Pallantzas, Evangelos Bellos and Christos Tzivanidis
Designs 2024, 8(4), 68; https://doi.org/10.3390/designs8040068 - 4 Jul 2024
Cited by 4 | Viewed by 2196
Abstract
The present study investigates the incorporation of renewable rooftop photovoltaic systems in fully electrified residential buildings and estimates the zero-energy demand building potential in relation to the climatic data of Greece. Specifically, the aim of the analysis is to calculate the maximum possible [...] Read more.
The present study investigates the incorporation of renewable rooftop photovoltaic systems in fully electrified residential buildings and estimates the zero-energy demand building potential in relation to the climatic data of Greece. Specifically, the aim of the analysis is to calculate the maximum possible number of stories and therefore the total building height for a complete transformation to zero-net-energy building. The energy analysis, which is conducted using the DesignBuilder software, focuses on single-floor up to seven-story buildings. The importance of the present work lies in the acknowledgment of the diversity of the Greek residential sector, the adherence to national energy policies, and the European goal of fully electrified buildings. The examined case studies are equipped with electrically driven air-to-air heat pumps serving the space heating and cooling demands and with an air-to-water heat pump covering the domestic hot water requirements. The investigated locations are the four main cities of Greece, Athens, Thessaloniki, Chania, and Kastoria, which represent the country’s four climatic categories. The conducted analysis allows for the mapping of the zero-energy building potential for the climatic data of Greece, demonstrating the possibility of striking a positive building energy balance through the integration of on-site renewable energy sources and the production of necessary electrical energy. The novelty of the present work lies in the identification of a key factor, namely, the building height, which determines the feasibility of transforming multifamily buildings into zero-energy buildings. According to the analysis results, the critical number of stories is calculated at six for Chania, five for Athens, four for Thessaloniki, and two for Kastoria. Regarding a three-story residential building, the incorporation of a renewable photovoltaic system can result in an annual surplus electricity production of 13,741 kWh (Chania), 10,424 kWh (Athens), and 6931 kWh (Thessaloniki), and a corresponding coverage of 100% (Chania), 69.0% (Athens), 38.9% (Thessaloniki) and 0% (Kastoria). Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

23 pages, 16241 KB  
Article
Analysis of Peak Demand Reduction and Energy Saving in a Mixed-Use Community through Urban Building Energy Modeling
by Wenxian Zhao, Zhang Deng, Yanfei Ji, Chengcheng Song, Yue Yuan, Zhiyuan Wang and Yixing Chen
Energies 2024, 17(5), 1214; https://doi.org/10.3390/en17051214 - 3 Mar 2024
Cited by 5 | Viewed by 2400
Abstract
Energy saving in buildings is essential as buildings’ operational energy use constitutes 30% of global energy consumption. Urban building energy modeling (UBEM) effectively understands urban energy consumption. This paper applied UBEM to assess the potential of peak demand reduction and energy saving in [...] Read more.
Energy saving in buildings is essential as buildings’ operational energy use constitutes 30% of global energy consumption. Urban building energy modeling (UBEM) effectively understands urban energy consumption. This paper applied UBEM to assess the potential of peak demand reduction and energy saving in a mixed-use community, using 955 residential buildings, 35 office buildings and 7 hotels in Shenzhen, China, as a case study. The building type and period were collected based on the GIS dataset. Then, the baseline models were generated by the UBEM tool—AutoBPS. Five scenarios were analyzed: retrofit-window, retrofit-air conditioner (AC), retrofit-lighting, rooftop photovoltaic (PV), and demand response. The five scenarios replaced the windows, enhanced the AC, upgraded the lighting, covered 60% of the roof area with PV, and had a temperature reset from 17:00 to 23:00, respectively. The results show that using retrofit-windows is the most effective scenario for reducing peak demand at 19.09%, and PV reduces energy use intensity (EUI) best at 29.96%. Demand response is recommended when further investment is not desired. Retrofit-lighting is suggested for its low-cost, low-risk investment, with the payback period (PBP) not exceeding 4.54 years. When the investment is abundant, retrofit-windows are recommended for public buildings, while PV is recommended for residential buildings. The research might provide practical insights into energy policy formulation. Full article
(This article belongs to the Special Issue Sustainable Heating and Cooling Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

19 pages, 2611 KB  
Article
Rooftop PV or Hybrid Systems and Retrofitted Low-E Coated Windows for Energywise and Self-Sustainable School Buildings in Bangladesh
by Mohammad Nur-E-Alam, Mohammad Khairul Basher, Iftekharuzzaman, Kazi Zehad Mostofa, Mohammad Aminul Islam, A. H. M. Ahashanul Haque and Narottam Das
Solar 2022, 2(4), 540-558; https://doi.org/10.3390/solar2040032 - 16 Nov 2022
Cited by 17 | Viewed by 4603
Abstract
The electricity crisis is a common issue in Bangladesh; however, recently the electricity scenario has been getting worse due to various reasons including power generation and distribution all over the country. Meanwhile, the large number of people requires a huge amount of energy [...] Read more.
The electricity crisis is a common issue in Bangladesh; however, recently the electricity scenario has been getting worse due to various reasons including power generation and distribution all over the country. Meanwhile, the large number of people requires a huge amount of energy which is not possible to be met by the national grid due to the limited power generation from different plants. Among all renewable energy sources, the solar photovoltaics (PV) system is the best choice as a generation source, either off-grid or with a grid-tied connection, to reduce the pressure on the national grid. In Bangladesh, there are more than 175,000 schools, and it is possible to generate a huge amount of renewable (solar) power to supply all the schools by using rooftop PV systems. We propose a new approach that combines solar energy harvesting and savings to make the schools self-sufficient and energywise. We performed a Hybrid Optimization Model for Multiple Energy Resources (HOMER) pro simulation and find that it was possible to generate approximately 200 megawatts (MW) of power. We conducted a feasibility study on generating power from rooftop PV systems on school buildings and reduced the power consumption using retrofitted thin-film-coated glass by around 16–20% per day depending on the school size, which can help the national power grid system by either making all the schools off-grid or grid-connected to supply power to the national grid. In addition, we perform a HelioScope simulation to investigate the maximum upscaling of PV sizing for the rooftops of school buildings in Bangladesh to realize how to make each school a mini solar power station in the future. The HelioScope simulation performance showed that it was possible to generate approximately 96,993 kWh per year from one school building. Full article
(This article belongs to the Special Issue Recent Advances in Solar Thermal Energy)
Show Figures

Graphical abstract

25 pages, 6748 KB  
Article
Accurate Recognition of Building Rooftops and Assessment of Long-Term Carbon Emission Reduction from Rooftop Solar Photovoltaic Systems Fusing GF-2 and Multi-Source Data
by Shaofu Lin, Chang Zhang, Lei Ding, Jing Zhang, Xiliang Liu, Guihong Chen, Shaohua Wang and Jinchuan Chai
Remote Sens. 2022, 14(13), 3144; https://doi.org/10.3390/rs14133144 - 30 Jun 2022
Cited by 16 | Viewed by 4441
Abstract
Rooftop solar photovoltaic (PV) retrofitting can greatly reduce the emissions of greenhouse gases, thus contributing to carbon neutrality. Effective assessment of carbon emission reduction has become an urgent challenge for the government and for business enterprises. In this study, we propose a method [...] Read more.
Rooftop solar photovoltaic (PV) retrofitting can greatly reduce the emissions of greenhouse gases, thus contributing to carbon neutrality. Effective assessment of carbon emission reduction has become an urgent challenge for the government and for business enterprises. In this study, we propose a method to assess accurately the potential reduction of long-term carbon emission by installing solar PV on rooftops. This is achieved using the joint action of GF-2 satellite images, Point of Interest (POI) data, and meteorological data. Firstly, we introduce a building extraction method that extends the DeepLabv3+ by fusing the contextual information of building rooftops in GF-2 images through multi-sensory fields. Secondly, a ridgeline detection algorithm for rooftop classification is proposed, based on the Hough transform and Canny edge detection. POI semantic information is used to calculate the usable area under different subsidy policies. Finally, a multilayer perceptron (MLP) is constructed for long-term PV electricity generation series with regional meteorological data, and carbon emission reduction is estimated for three scenarios: the best, the general, and the worst. Experiments were conducted with GF-2 satellite images collected in Daxing District, Beijing, China in 2021. Final results showed that: (1) The building rooftop recognition method achieved overall accuracy of 95.56%; (2) The best, the general and the worst amount of annual carbon emission reductions in the study area were 7,705,100 tons, 6,031,400 tons, and 632,300 tons, respectively; (3) Multi-source data, such as POIs and climate factors play an indispensable role for long-term estimation of carbon emission reduction. The method and conclusions provide a feasible approach for quantitative assessment of carbon reduction and policy evaluation. Full article
(This article belongs to the Special Issue Remote Sensing Image and Urban Information Visualization)
Show Figures

Graphical abstract

15 pages, 20170 KB  
Article
A Simplified Method for BIPV Retrofitting of Emirati Public Housing with Preserved Architectural Identity: A Pilot Study
by Khaled Galal Ahmed and Mona Megahed
Sustainability 2022, 14(9), 5227; https://doi.org/10.3390/su14095227 - 26 Apr 2022
Cited by 4 | Viewed by 3998
Abstract
The United Arab Emirates (UAE) has tailored its own sustainability initiatives and a local agenda for realizing Sustainable Development Goals (SDGs) by 2030. This Agenda includes providing clean sustainable energy and achieving sustainable communities. In accordance with these efforts, this ‘pilot’ study aims [...] Read more.
The United Arab Emirates (UAE) has tailored its own sustainability initiatives and a local agenda for realizing Sustainable Development Goals (SDGs) by 2030. This Agenda includes providing clean sustainable energy and achieving sustainable communities. In accordance with these efforts, this ‘pilot’ study aims at, first, exploring an appropriate, simplified method of integrating photovoltaic (PV) panels in existing single-family public housing in the UAE without compromising the architectural style and identity of the original designs. Second, it aims at assessing the sufficiency of the generated electricity through this proposed Building Integrated Photovoltaic (BIPV) system. Finally, it aims at conducting a pilot survey to explore the Emirati residents’ acceptance of the proposed BIPV system. A frequently developed design model of single-family public housing projects in the UAE was selected to undertake the research investigations where the most suitable architectural elements of its envelope were defined for accommodating the integrated PV panels. Afterwards, a complete set of BIPV panel designs tailored to fit with the defined architectural elements of the selected house was prepared. The dimensions and areas of the BIPV panels were defined and digitally constructed through Building Information Modeling (BIM) software. After considering the efficiency and adequacy of the selected type of BIPV panels and figuring out the expected system losses, the PVWatts Calculator was used for simulating the expected electricity output in kilowatt hours (kWh) for the four façades of the selected model house in their four possible different orientations, as well as the overall average electricity output from the whole BIPV system. The results of the yearly electricity output were very close regardless of the orientation of the four façades of the retrofitted model house, with the total average annual output exceeding the estimated yearly average electricity consumption of this model house. This obviously indicates the potential benefit of the proposed BIPV system, especially with the continuous decrease in the capital cost of the PV panels and their increasing efficiency. With the Emirati residents’ clear acceptance of the proposed BIPV system, it might be also considered as an efficient alternative to the currently limited application of rooftop PV solutions in the UAE. Full article
(This article belongs to the Collection ZEMCH International Research Series)
Show Figures

Figure 1

29 pages, 5153 KB  
Article
Interaction of a House’s Rooftop PV System with an Electric Vehicle’s Battery Storage and Air Source Heat Pump
by George Stamatellos, Olympia Zogou and Anastassios Stamatelos
Solar 2022, 2(2), 186-214; https://doi.org/10.3390/solar2020011 - 8 Apr 2022
Cited by 11 | Viewed by 13374
Abstract
Understanding the implications of introducing increasing shares of low-carbon technologies such as heat pumps and electric vehicles on the electricity network demand patterns is essential in today’s fast changing energy mixture. Application of heat pumps for heating and cooling, combined with the rooftop [...] Read more.
Understanding the implications of introducing increasing shares of low-carbon technologies such as heat pumps and electric vehicles on the electricity network demand patterns is essential in today’s fast changing energy mixture. Application of heat pumps for heating and cooling, combined with the rooftop installation of photovoltaic panels, is already considered as a convenient retrofitting strategy towards building electrification. This may further profit from the parallel, rapid electrification of the automotive powertrain, as demonstrated in the present study. Exploitation of the combined battery storage of the house owners’ electric car(s) may help cover, to a significant degree, the building’s and cars’ electricity needs. To this end, an efficient single family house’s energy system with an optimized rooftop PV installation, heat pump heating and cooling, and two high efficiency electric cars is studied by transient simulation. The use of TRNSYS simulation environment makes clear the interaction of the house’s heating, ventilation, and air conditioning (HVAC) system, the house’s and cars’ batteries, and the rooftop PV system in transient operation. The building’s and EV’s energy performance on a daily, monthly, and seasonal level is compared with the respective demand curves and energy sources of the Greek electricity network. The specific design of the house’s energy system makes it a net exporter of electricity to the grid, to an annual amount of 5000 kWh. On the other hand, electricity imports are slightly exceeding 400 kWh and limited to the first two months of the year. In addition to the self-sufficiency of the household, the impact to the electricity grid becomes favorable due to the phase shift of the electricity export towards the late afternoon hours, thus assisting the evening ramp-up and adding to the grid’s stability and resilience. Based on the results of this study, the possibility of combining the financial incentives for the purchase of an EV with those for the installation of rooftop PV in the owners’ house is very promising and worth considering, due to the demonstrated synergy of electrical storage with the rooftop photovoltaic installations. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

Back to TopTop