Topic Menu
► Topic MenuTopic Editors


2. C-MAST - Center for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal

2. C-MAST - Center for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal
Solar Thermal Energy and Photovoltaic Systems
Topic Information
Dear Colleagues,
Solar energy is a clean and reliable source of energy for the production of electric and thermal power to satisfy the increasing demand for power and simultaneously overcome the challenges posed by the climate-friendly environment that is required for the Earth’s sustainable development. The energy conversion efficiency of electric energy generation through photovoltaic (PV) panels is very low. Most of the radiation is converted into heat, which results in a higher operating temperature and a lower photovoltaic efficiency. On the other hand, solar thermal collectors (TCs) are widely used to supply hot water for residential, commercial, and industrial applications. In addition, thermal energy can be converted into electricity by the Seebeck effect using thermoelectric generators (TEGs). TEGs are reliable, robust, and environmentally friendly. Thus, the combination of PV, TC, and TE technologies can improve the performance of both electric and thermal energy generation. This Topic will focus on recent research accomplishments in, and the different approaches to, optimizing the operation, performance, efficiency, and feasibility of hybrid solar photovoltaic, thermoelectric, and thermal modules by experimental, numerical, or analytical techniques. It will also review the optimization and development challenges that need to be overcome in order to extend their effective spectrum range. Therefore, we invite you to contribute to this Special Issue with an original research or review article on a topic relevant to the further improvement of hybrid solar photovoltaic, thermoelectric, and thermal modules. Articles may describe innovative technical developments, present experimental, numerical modeling, case, or analytical studies, or assess the future prospects of and make suggestions on potential approaches to emerging technology solutions.
Prof. Dr. Pedro Dinis Gaspar
Prof. Dr. Pedro Dinho da Silva
Prof. Dr. Luís C. Pires
Topic Editors
Keywords
- hybrid
- solar
- photovoltaic
- thermoelectric
- thermal
- operation
- performance
- efficiency
- feasibility
- optimization
- development
- challenges
Participating Journals
Journal Name | Impact Factor | CiteScore | Launched Year | First Decision (median) | APC |
---|---|---|---|---|---|
![]()
Energies
|
3.0 | 6.2 | 2008 | 16.8 Days | CHF 2600 |
![]()
Solar
|
- | - | 2021 | 23.4 Days | CHF 1000 |
![]()
Materials
|
3.1 | 5.8 | 2008 | 13.9 Days | CHF 2600 |
Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.
MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:
- Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
- Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
- Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
- Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
- Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.