Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = rubber grass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 841 KB  
Review
Rubber Crumb Infill in Synthetic Turf and Health Outcomes: A Review of the Literature on Polycyclic Aromatic Hydrocarbons and Metalloids
by Shamshad Karatela, Igor Popovic, Zahra Sobhani, Shiv Basant Kumar, Thava Palanisami, Li-Zi Lin and Gunther Paul
Epidemiologia 2025, 6(1), 4; https://doi.org/10.3390/epidemiologia6010004 - 25 Jan 2025
Cited by 1 | Viewed by 2848
Abstract
Synthetic turf has become a popular alternative to natural grass due to low upkeep costs; however, its health impacts have not been clearly elucidated. This review examines and consolidates the existing literature on rubber crumb in infill in synthetic turf and its associated [...] Read more.
Synthetic turf has become a popular alternative to natural grass due to low upkeep costs; however, its health impacts have not been clearly elucidated. This review examines and consolidates the existing literature on rubber crumb in infill in synthetic turf and its associated adverse health outcomes, along with recommendations for future research. A database search was conducted in PubMed, Web of Science, Scopus, Embase, and Google Scholar of studies on exposures to rubber crumb in infills in synthetic turf. The search focused on epidemiological and toxicological laboratory studies (including exposure simulation and animal studies), as well as government reports. Non-English studies and those addressing injuries (musculoskeletal and burn injuries) were not considered. Eighteen laboratory studies examined concentrations of PAHs found in synthetic turf rubber infill. The total level of PAHs detected in samples varied between 0.4 mg/kg and 3196 mg/kg. The PAH levels were influenced by the age of the synthetic turf, with the older synthetic surface fields containing lower concentrations (compared to newly laid turfs). Synthetic turfs composed of industrial rubber crumb infill also had a lower PAH composition relative to end-of-life tyre-derived infill. In the six studies that investigated the metal content and composition of rubber crumb infill, Aluminium (5382 mg/kg), Zinc (5165 mg/kg), and Iron (489.6 mg/kg) had the highest median concentrations. There were minor differences in heavy metal concentrations found in newly installed synthetic turf compared to older turfs and synthetic sporting fields exposed to direct sunlight (versus indoor fields). There were two epidemiological studies on synthetic turf rubber crumb infill (one ecological and one cross-sectional study), which found no significant associations between synthetic turf exposure and the incidence of leukemia, non-Hodgkin lymphoma, and Hodgkin lymphoma. Similarly, one metabolomic study of urine samples from athletes taken pre- and post-match on synthetic turf, and two studies simulating dermal, ingestion, and inhalation exposure concluded that there was no elevated health risk associated with playing on synthetic turf pitches. Currently, there is very limited evidence of an association between synthetic turf use and adverse health outcomes. Considering the ubiquitous use of synthetic grass globally and the scarcity of epidemiological studies, there is a vital need for further research based on longitudinal study designs and more robust exposure assessments, to help improve our understanding of any potential health risks associated with synthetic turf infill exposures. Full article
(This article belongs to the Section Environmental Epidemiology)
Show Figures

Figure 1

19 pages, 12307 KB  
Article
Study on Functional Effectiveness of Soil and Water Conservation Measures in Rubber Plantations on Hainan Island
by Xudong Lu, Jianchao Guo, Jiadong Chen, Hui Wu, Qin Zuo, Yizhuang Chen, Jinlin Lai, Shaodong Liu, Maoyuan Wang, Peng Zhang and Shi Qi
Forests 2024, 15(10), 1793; https://doi.org/10.3390/f15101793 - 12 Oct 2024
Cited by 1 | Viewed by 1372
Abstract
In rubber plantations, understory coverage is often disrupted by human activities, which increases the risk of soil erosion under intense rainfall typical of tropical islands. Evaluating the effectiveness of soil and water conservation measures (SWCMs) is crucial for effectively conserving subcanopy resources. This [...] Read more.
In rubber plantations, understory coverage is often disrupted by human activities, which increases the risk of soil erosion under intense rainfall typical of tropical islands. Evaluating the effectiveness of soil and water conservation measures (SWCMs) is crucial for effectively conserving subcanopy resources. This study focused on Hainan Island’s rubber plantations, where nine different SWCMs were implemented, and the runoff and sediment yield were monitored during the rainy season using runoff plots. Through correlation analysis, we identified the primary rainfall characteristic factors leading to soil and water loss on rubber plantation slopes. Path analysis was then used to quantify the impacts of these characteristic factors. The results showed that the SWCMs were significantly more effective in erosion reduction (68.55%) than in runoff reduction (58.95%). Of all the measures, comprehensive SWCMs proved most effective in controlling runoff (71.34%), followed by engineering SWCMs (62.03%) and biological SWCMs (43.51%). Comprehensive SWCMs were also found to be effective in erosion reduction, with a rate of 77.84%, surpassing engineering and biological SWCMs by 7.23% and 20.66%, respectively. Notably, the combination of narrow terraces, contour trenches, and grass planting was the most effective, achieving runoff-reduction rates of 80.94% and erosion-reduction rates of 85.27%. This combination is recommended as a primary prevention method. Rainfall and maximum 30-min intensity (I30) were identified as key variables affecting the efficacy of SWCMs, with rainfall positively correlating with runoff yield and I30 being more closely linked to sediment production. This study provides valuable insights for developing erosion control strategies for sloping garden lands in similar regions and lays theoretical foundations for future ecological restoration projects. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

20 pages, 2562 KB  
Article
Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts
by Lukas Zeilerbauer, Johannes Lindorfer, Pauline Fuchs, Melanie Knöbl, Asle Ravnås, Trygve Maldal, Eimund Gilje, Christian Paulik and Jörg Fischer
Sustainability 2024, 16(8), 3487; https://doi.org/10.3390/su16083487 - 22 Apr 2024
Cited by 6 | Viewed by 3899
Abstract
Recently, the European Commission announced their intention to restrict intentionally added microplastics to reduce the amount emitted by 0.5 million tons per year. Findings on microplastics indicate toxic behavior for biota, yet many mechanisms remain in the dark. Microplastics also pose a challenge [...] Read more.
Recently, the European Commission announced their intention to restrict intentionally added microplastics to reduce the amount emitted by 0.5 million tons per year. Findings on microplastics indicate toxic behavior for biota, yet many mechanisms remain in the dark. Microplastics also pose a challenge in life cycle assessment as methods are actively being developed. Considering this recent decision, an anticipatory life cycle assessment was performed, comparing the impacts of natural grass pitches with artificial grass pitches using bio-based infill materials as well as polymeric ones made from recycled and virgin materials. The aim was to confirm if microplastics are in fact a considerable environmental hazard when compared to more traditional impacts. The microplastics’ impact was modeled after the MarILCA group’s work on the new midpoint of physical effects on biota. The results showed that the influence of the microplastics remains negligible when using the method provided. For most midpoint categories, the wood-based infill showed the best results, often closely tied with the infill made from recycled rubber from tires. A sensitivity analysis revealed that neither the physical effects on biota nor the greenhouse gas emissions from degradation in a marine environment are deciding factors when assessing the endpoint of ecosystem damage. Full article
(This article belongs to the Special Issue Microplastic Pollution and Impact)
Show Figures

Figure 1

17 pages, 6202 KB  
Technical Note
Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand
by Gang Chen, Colleen Hammelman, Sutee Anantsuksomsri, Nij Tontisirin, Amelia R. Todd, William W. Hicks, Harris M. Robinson, Miles G. Calloway, Grace M. Bell and John E. Kinsey
Remote Sens. 2024, 16(6), 1035; https://doi.org/10.3390/rs16061035 - 14 Mar 2024
Cited by 3 | Viewed by 3276
Abstract
This study aims to understand the spatiotemporal changes in patterns of tropical crop cultivation in Eastern Thailand, encompassing the periods before, during, and after the COVID-19 pandemic. Our approach involved assessing the efficacy of high-resolution (10 m) Sentinel-2 dense image time series for [...] Read more.
This study aims to understand the spatiotemporal changes in patterns of tropical crop cultivation in Eastern Thailand, encompassing the periods before, during, and after the COVID-19 pandemic. Our approach involved assessing the efficacy of high-resolution (10 m) Sentinel-2 dense image time series for mapping smallholder farmlands. We integrated harmonic regression and random forest to map a diverse array of tropical crop types between summer 2017 and summer 2023, including durian, rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen, coconut, and other crops. The results revealed an overall mapping accuracy of 85.6%, with several crop types exceeding 90%. High-resolution imagery demonstrated particular effectiveness in situations involving intercropping, a popular practice of simultaneously growing two or more plant species in the same patch of land. However, we observed overestimation in the majority of the studied cash crops, primarily those located in young plantations with open tree canopies and grass-covered ground surfaces. The adverse effects of the COVID-19 pandemic were observed in specific labor-intensive crops, including rubber and durian, but were limited to the short term. No discernible impact was noted across the entirety of the study timeframe. In comparison, financial gain and climate change appeared to be more pivotal in influencing farmers’ decisions regarding crop cultivation. Traditionally dominant crops such as rice and oil palm have witnessed a discernible decline in cultivation, reflecting a decade-long trend of price drops preceding the pandemic. Conversely, Thai durian has seen a significant upswing even over the pandemic, which ironically served as a catalyst prompting Thai farmers to adopt e-commerce to meet the surging demand, particularly from China. Full article
Show Figures

Graphical abstract

12 pages, 252 KB  
Article
Factors Associated with Atopic Dermatitis among Children Aged 6 to 14 Years in Alimosho Local Government, Lagos, Nigeria
by Olubunmi A. Kayode, Charlotte M. Mokoatle, Phoka C. Rathebe and Thokozani P. Mbonane
Children 2023, 10(5), 893; https://doi.org/10.3390/children10050893 - 17 May 2023
Cited by 5 | Viewed by 2206
Abstract
There has been a rise in the prevalence of atopic dermatitis (AD) globally, especially in low-and middle-income countries such as Nigeria. The condition has been linked to genetic predisposes, living conditions, and environmental factors. Environmental factors are considered a significant contributor to AD [...] Read more.
There has been a rise in the prevalence of atopic dermatitis (AD) globally, especially in low-and middle-income countries such as Nigeria. The condition has been linked to genetic predisposes, living conditions, and environmental factors. Environmental factors are considered a significant contributor to AD in low- and middle-income countries. This study determined the prevalence of AD in south-western Nigeria and identified risk factors in home and school environments that children aged 6 to 14 years are exposed to. A cross-sectional study was adopted, and the total sample size was 349. Four randomly selected health facilities were used for the study. A questionnaire was used to determine the risk factors in the population. Data analysis was performed using the latest version of Statistical Package for Social Science (SPSS). The prevalence of atopic dermatitis in this study is 25%. Atopic dermatitis was found to be common in females (27%). According to the univariate analysis, children who lived where trucks pass on the street almost daily had the highest cases of atopic dermatitis (28%). Children with rugs in their houses (26%) and those whose houses are surrounded by bushes (26%) had higher cases of atopic dermatitis. Children who played on school grass (26%), attended creche with rubber toys (28%), and attended school where wooden chairs (28%) and chalkboards (27%) are used had a higher number of AD. Bivariate analysis showed an association between AD with a mother’s monthly income (p = 0.012) and eating potatoes (p = 0.005), fruits (p = 0.040), and cereal (p = 0.057). In the multivariate analysis, the consumption of fruits (p = 0.02), potatoes (p < 0.001), and cereal (p = 0.04) were identified as risk factors associated with AD. It is envisaged that the study will serve as a basis for possible research on evidence-based and primary prevention options. Hence, we recommend health education activities to empower communities to protect themselves against environmental risk factors that are preventable. Full article
(This article belongs to the Section Global Pediatric Health)
20 pages, 9638 KB  
Article
Grass Cutting Robot for Inclined Surfaces in Hilly and Mountainous Areas
by Yuki Nishimura and Tomoyuki Yamaguchi
Sensors 2023, 23(1), 528; https://doi.org/10.3390/s23010528 - 3 Jan 2023
Cited by 10 | Viewed by 7403
Abstract
Grass cutting is necessary to prevent grass from diverting essential nutrients and water from crops. Usually, in hilly and mountainous areas, grass cutting is performed on steep slopes with an inclination angle of up to 60° (inclination gradient of 173%). However, such grass [...] Read more.
Grass cutting is necessary to prevent grass from diverting essential nutrients and water from crops. Usually, in hilly and mountainous areas, grass cutting is performed on steep slopes with an inclination angle of up to 60° (inclination gradient of 173%). However, such grass cutting tasks are dangerous owing to the unstable positioning of workers. For robots to perform these grass cutting tasks, slipping and falling must be prevented on inclined surfaces. In this study, a robot based on stable propeller control and four-wheel steering was developed to provide stable locomotion during grass cutting tasks. The robot was evaluated in terms of locomotion for different steering methods, straight motion on steep slopes, climbing ability, and coverage area. The results revealed that the robot was capable of navigating uneven terrains with steep slope angles. Moreover, no slipping actions that could have affected the grass cutting operations were observed. We confirmed that the proposed robot is able to cover 99.95% and 98.45% of an area on a rubber and grass slope, respectively. Finally, the robot was tested on different slopes with different angles in hilly and mountainous areas. The developed robot was able to perform the grass cutting task as expected. Full article
(This article belongs to the Special Issue Sensors and Robotic Systems for Agriculture Applications)
Show Figures

Figure 1

20 pages, 1682 KB  
Review
Why Is the Grass the Best Surface to Prevent Lameness? Integrative Analysis of Functional Ranges as a Key for Dairy Cows’ Welfare
by Paul Medina-González, Karen Moreno and Marcelo Gómez
Animals 2022, 12(4), 496; https://doi.org/10.3390/ani12040496 - 17 Feb 2022
Cited by 4 | Viewed by 3842
Abstract
Lameness is a painful clinical condition of the bovine locomotor system that results in alterations of movement. Together with mastitis and infertility, lameness is the main welfare, health, and production problem found in intensive dairy farms worldwide. The clinical assessment of lameness results [...] Read more.
Lameness is a painful clinical condition of the bovine locomotor system that results in alterations of movement. Together with mastitis and infertility, lameness is the main welfare, health, and production problem found in intensive dairy farms worldwide. The clinical assessment of lameness results in an imprecise diagnosis and delayed intervention. Hence, the current approach to the problem is palliative rather than preventive. The five main surfaces used in free housing systems in dairy farms are two natural (grass and sand) and three artificial (rubber, asphalt, and concrete). Each surface presents a different risk potential for lameness, with grass carrying the lowest threat. The aim of the present study is to evaluate the flooring type influences on cows’ movement capabilities, using all the available information relating to kinematics, kinetics, behavior, and posture in free-housed dairy cows. Inspired by a refurbished movement ecology concept, we conducted a literature review, taking into account kinematics, kinetics, behavior, and posture parameters by reference to the main surfaces used in free housing systems for dairy cows. We built an integrative analysis of functional ranges (IAFuR), which provides a combined welfare status diagram for the optimal (i.e., within the upper and lower limit) functional ranges for movement (i.e., posture, kinematics, and kinetics), navigation (i.e., behavior), and recovery capacities (i.e., metabolic cost). Our analysis confirms grass’ outstanding clinical performance, as well as for all of the movement parameters measured. Grass boosts pedal joint homeostasis; provides reliable, safe, and costless locomotion; promotes longer resting times. Sand is the best natural alternative surface, but it presents an elevated metabolic cost. Rubber is an acceptable artificial alternative surface, but it is important to consider the mechanical and design properties. Asphalt and concrete surfaces are the most harmful because of the high traffic abrasiveness and loading impact. Furthermore, IAFuR can be used to consider other qualitative and quantitative parameters and to provide recommendations on material properties and the design of any surface, so as to move towards a more grass-like feel. We also suggest the implementation of a decision-making pathway to facilitate the interpretation of movement data in a more comprehensive way, in order to promote consistent, adaptable, timely, and adequate management decisions. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

12 pages, 1931 KB  
Article
Off-Flavor Removal from Sheep Placenta via Fermentation with Novel Yeast Strain Brettanomyces deamine kh3 Isolated from Traditional Apple Vinegar
by Han-Sol Choi, Keum-Yun Ha, Xing-Yue Xu, Hee-Cheol Kang, Hoon Kim and Yeon-Ju Kim
Molecules 2021, 26(19), 5835; https://doi.org/10.3390/molecules26195835 - 26 Sep 2021
Cited by 2 | Viewed by 3254
Abstract
Animal placentae can be used as health-promoting food ingredients with various therapeutic efficacies, but their use is limited by their unpleasant odor and taste. This study aimed to investigate the possibility of deodorization of sheep placenta via yeast fermentation. A yeast strain was [...] Read more.
Animal placentae can be used as health-promoting food ingredients with various therapeutic efficacies, but their use is limited by their unpleasant odor and taste. This study aimed to investigate the possibility of deodorization of sheep placenta via yeast fermentation. A yeast strain was successfully isolated and identified as a novel Brettanomyces strain (Brettanomyces deamine kh3). The deodorizing efficacy of fermentation of the sheep placenta with B. deamine kh3 was evaluated by 42 panels, based on evaluation of preference, ranking, and aroma profiles, and compared with normal placenta and placenta fermented with B. bruxellensis. The results of the sensory evaluation indicated that fermentation of the sheep placenta with B. deamine kh3 may improve its palatability by increasing flavors such as that of grass (tree), rubber, and burnt, and by decreasing the odor and soy sauce flavor. Solid-phase microextraction-gas chromatography (SPME-GC) showed that major off-flavors in sheep placenta, such as ammonia, dimethyl disulfide, and 1,3-dioxolane, were completely diminished in the sheep placenta fermented with B. deamine kh3. This study presents those major volatile compounds, including 2-isobutyl\-4,4-dimethyl-1,3-dioxane, and 3-methyl-1-butanol, could be crucial in improving the palatability of the sheep placentae fermented with B. deamine kh3. This study provides a good starting point for the industrial application of a new deodorization method. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Graphical abstract

14 pages, 3843 KB  
Article
Comparison of Morphological Characteristics and Determination of Different Patterns for Rubber Particles in Dandelion and Different Rubber Grass Varieties
by Boxuan Yuan, Guohua Ding, Junjun Ma, Lingling Wang, Li Yu, Xueyu Ruan, Xueyan Zhang, Wangfeng Zhang, Xuchu Wang and Quanliang Xie
Plants 2020, 9(11), 1561; https://doi.org/10.3390/plants9111561 - 13 Nov 2020
Cited by 14 | Viewed by 4853
Abstract
Russian dandelion Taraxacum kok-saghyz (TKS) is one promising alternative crop for natural rubber production. However, it is easily confused with other dandelions. In this study, we performed a systematical comparison of the morphological characteristics for different TKS varieties and common dandelion Taraxacum officinale [...] Read more.
Russian dandelion Taraxacum kok-saghyz (TKS) is one promising alternative crop for natural rubber production. However, it is easily confused with other dandelions. In this study, we performed a systematical comparison of the morphological characteristics for different TKS varieties and common dandelion Taraxacum officinale (TO). Our results demonstrated that several obvious differences in morphology can be found between TKS and TO. TO leaf is a pinnate shape, its margin is heavily jagged and its base is cuneate, but TKS leaf is more cuneate and its leaf margin is nearly smooth and round. There are obvious differences for the outer bracts of TO and TKS flower buds. TKS bracts are oblanceolate, apex obtuse, margin smooth and sinuate, and its outer layer of flower buds and faceplate involucre sepal is buckled inward to form a certain angle. TKS is self-incompatible, and its seeds are spindle-shaped achene and show upright plumpness. A large amount of laticifer cells and rubber particles can be detected from many TKS tissues, and dry roots of TKS contain high contents of natural rubber. Laticifer cells and rubber particles can only be examined in the vein, stem, and roots of TKS. Our statical results also revealed that the numbers of laticifer cells and rubber particles have a positive relationship with the rubber content in TKS roots. These morphological features can help us to easily distinguish TKS from common dandelion and approximately estimate the rubber content in the roots of different TKS varieties for TKS breeding in future. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Graphical abstract

22 pages, 2643 KB  
Article
Identification and Characterization of Glycoproteins and Their Responsive Patterns upon Ethylene Stimulation in the Rubber Latex
by Li Yu, Boxuan Yuan, Lingling Wang, Yong Sun, Guohua Ding, Ousmane Ahmat Souleymane, Xueyan Zhang, Quanliang Xie and Xuchu Wang
Int. J. Mol. Sci. 2020, 21(15), 5282; https://doi.org/10.3390/ijms21155282 - 25 Jul 2020
Cited by 14 | Viewed by 4750
Abstract
Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such [...] Read more.
Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such as phosphorylation, glycosylation and ubiquitination, are crucial in natural rubber biosynthesis. In this study, comparative proteomics was performed to identify the glycosylated proteins in rubber latex treated with ethylene for different days. Combined with Pro-Q Glycoprotein gel staining and mass spectrometry techniques, we provided the first visual profiling of glycoproteomics of rubber latex and finally identified 144 glycosylated protein species, including 65 differentially accumulated proteins (DAPs) after treating with ethylene for three and/or five days. Gene Ontology (GO) functional annotation showed that these ethylene-responsive glycoproteins are mainly involved in cell parts, membrane components and metabolism. Pathway analysis demonstrated that these glycosylated rubber latex proteins are mainly involved in carbohydrate metabolism, energy metabolism, degradation function and cellular processes in rubber latex metabolism. Protein–protein interaction analysis revealed that these DAPs are mainly centered on acetyl-CoA acetyltransferase and hydroxymethylglutaryl-CoA synthase (HMGS) in the mevalonate pathway for natural rubber biosynthesis. In our glycoproteomics, three protein isoforms of HMGS2 were identified from rubber latex, and only one HMGS2 isoform was sharply increased in rubber latex by ethylene treatment for five days. Furthermore, the HbHMGS2 gene was over-expressed in a model rubber-producing grass Taraxacum Kok-saghyz and rubber content in the roots of transgenic rubber grass was significantly increased over that in the wild type plant, indicating HMGS2 is the key component for natural rubber production. Full article
(This article belongs to the Special Issue Plant Proteomic Research 3.0)
Show Figures

Graphical abstract

9 pages, 555 KB  
Article
Plantar Loads of Habitual Forefoot Strikers during Running on Different Overground Surfaces
by Zhiwang Zhang, Yu Zhang, Weijie Fu, Zhen Wei, Jiayi Jiang and Lin Wang
Appl. Sci. 2020, 10(7), 2271; https://doi.org/10.3390/app10072271 - 26 Mar 2020
Cited by 8 | Viewed by 6708
Abstract
The objective of this study is to investigate plantar loads characteristics of habitual forefoot strike runners while running on different surfaces. Twenty-six runners (age: 28.2 ± 6.8 y, height: 172.9 ± 4.1 cm, weight: 67.7 ± 9.6 kg, BMI (body mass index): 22.6 [...] Read more.
The objective of this study is to investigate plantar loads characteristics of habitual forefoot strike runners while running on different surfaces. Twenty-six runners (age: 28.2 ± 6.8 y, height: 172.9 ± 4.1 cm, weight: 67.7 ± 9.6 kg, BMI (body mass index): 22.6 ± 2.8 kg/m2, running age: 5.0 ± 4.2 y, running distance per week: 14.6 ± 11.7 km) with habitual forefoot strike participated in the study. Runners were instructed to run at 3.3 ± 0.2 m/s on three surfaces: grass, synthetic rubber and concrete. An in-shoe pressure measurement system was used to collect and analyze plantar loads data. Running on the synthetic rubber surface produced a lower plantar pressure in the lateral forefoot (256.73 kPa vs. 281.35 kPa, p = 0.006) than running on concrete. Compared with the concrete surface, lower pressure–time integrals were shown at the central forefoot (46.71 kPa⋅s vs. 50.73 kPa⋅s, p = 0.001) and lateral forefoot (36.13 kPa⋅s vs. 39.36 kPa⋅s, p = 0.004) when running on the synthetic rubber surface. The different surfaces influence plantar loads of habitual forefoot strikers and runners should choose appropriate overground surface to reduce the risk of lower extremity musculoskeletal injuries. Full article
(This article belongs to the Special Issue Applied Biomechanics in Sport, Rehabilitation and Ergonomy)
Show Figures

Graphical abstract

19 pages, 3626 KB  
Article
Proteomic Landscape of the Mature Roots in a Rubber-Producing Grass Taraxacum Kok-saghyz
by Quanliang Xie, Guohua Ding, Liping Zhu, Li Yu, Boxuan Yuan, Xuan Gao, Dan Wang, Yong Sun, Yang Liu, Hongbin Li and Xuchu Wang
Int. J. Mol. Sci. 2019, 20(10), 2596; https://doi.org/10.3390/ijms20102596 - 27 May 2019
Cited by 24 | Viewed by 6606
Abstract
The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process [...] Read more.
The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process involving many genes, proteins and their cofactors. The TKS genome has just been annotated and many NRB-related genes have been determined. However, there is limited knowledge about the protein regulation mechanism for NRB in TKS roots. We identified 371 protein species from the mature roots of TKS by combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Meanwhile, a large-scale shotgun analysis of proteins in TKS roots at the enlargement stage was performed, and 3545 individual proteins were determined. Subsequently, all identified proteins from 2-DE gel and shotgun MS in TKS roots were subject to gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and most proteins were involved in carbon metabolic process with catalytic activity in membrane-bounded organelles, followed by proteins with binding ability, transportation and phenylpropanoid biosynthesis activities. Fifty-eight NRB-related proteins, including eight small rubber particle protein (SRPP) and two rubber elongation factor(REF) members, were identified from the TKS roots, and these proteins were involved in both mevalonate acid (MVA) and methylerythritol phosphate (MEP) pathways. To our best knowledge, it is the first high-resolution draft proteome map of the mature TKS roots. Our proteomics of TKS roots revealed both MVA and MEP pathways are important for NRB, and SRPP might be more important than REF for NRB in TKS roots. These findings would not only deepen our understanding of the TKS root proteome, but also provide new evidence on the roles of these NRB-related proteins in the mature TKS roots. Full article
Show Figures

Figure 1

16 pages, 328 KB  
Commentary
Artificial Turf: Contested Terrains for Precautionary Public Health with Particular Reference to Europe?
by Andrew Watterson
Int. J. Environ. Res. Public Health 2017, 14(9), 1050; https://doi.org/10.3390/ijerph14091050 - 12 Sep 2017
Cited by 44 | Viewed by 14664
Abstract
Millions of adults, children and teenagers use artificial sports pitches and playgrounds globally. Pitches are artificial grass and bases may be made up of crumb rubber from recycled tires or new rubber and sand. Player injury on pitches was a major concern. Now, [...] Read more.
Millions of adults, children and teenagers use artificial sports pitches and playgrounds globally. Pitches are artificial grass and bases may be made up of crumb rubber from recycled tires or new rubber and sand. Player injury on pitches was a major concern. Now, debates about health focus on possible exposure and uptake of chemicals within pitch and base materials. Research has looked at potential risks to users from hazardous substances such as metals, volatile organic compounds, polycyclic aromatic hydrocarbons including benzo (a) (e) pyrenes and phthalates: some are carcinogens and others may be endocrine disruptors and have developmental reproductive effects. Small environmental monitoring and modelling studies, often with significant data gaps about exposure, range of substances monitored, occupational exposures, types of surfaces monitored and study length across seasons, indicated little risk to sports people and children but some risk to installation workers. A few, again often small, studies indicated potentially harmful human effects relating to skin, respiration and cancers. Only one widely cited biomonitoring study has been done and no rigorous cancer epidemiological studies exist. Unravelling exposures and uptake over decades may prove complex. European regulators have strengthened controls over crumb rubber chemicals, set different standards for toys and crumb rubber pitches. Bigger US studies now underway attempting to fill some of the data gaps will report between 2017 and 2019. Public health professionals in the meantime may draw on established principles to support greater caution in setting crumb rubber exposure limits and controls. Full article
(This article belongs to the Section Environmental Health)
Back to TopTop