Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = safe and sustainable mining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4946 KB  
Article
Probabilistic Analysis of Wedge Failures and Stability of Underground Workings with Combined Support Under Thrust Faulting Conditions
by Vladimir Demin, Alexey Kalinin, Nadezhda Tomilova, Aleksandr Tomilov, Natalya Mutovina, Assem Akpanbayeva and Tatiana Demina
Appl. Sci. 2025, 15(19), 10533; https://doi.org/10.3390/app151910533 - 29 Sep 2025
Viewed by 222
Abstract
Ensuring the stability of surrounding rock in underground excavations is a critical prerequisite for safe mining operations. This study examines the mechanisms of wedge failure formation and determines the performance of a combined support system (rock bolts + shotcrete) through probabilistic analysis. Field [...] Read more.
Ensuring the stability of surrounding rock in underground excavations is a critical prerequisite for safe mining operations. This study examines the mechanisms of wedge failure formation and determines the performance of a combined support system (rock bolts + shotcrete) through probabilistic analysis. Field investigations in the Zhylandy ore field (Kazakhstan) included fracture mapping, rock mass quality assessment (RQD), fracture frequency (FF), and in situ stress measurements, which confirmed a thrust-faulting regime. Numerical modeling with Dips ver.8 and UnWedge ver.6 software (Rocscience) identified critical excavation orientations of 120° and 141° associated with maximum-volume wedge formation, as well as a “safe orientation window” of 70° ± 10°. The probabilistic analysis showed that rock bolts alone yield a factor of safety (FS) < 1.2, whereas the combined support system increases FS to 2.4–3.5, significantly reducing the likelihood of wedge failures. An adaptive framework integrating numerical modeling with intelligent monitoring (“monitor → update model → adjust support”) is proposed, allowing real-time adjustment of support parameters and optimization of material consumption. The practical significance of this work lies in providing design-ready recommendations for support selection and excavation orientation, contributing to accident prevention and sustainable mining operations. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

22 pages, 7168 KB  
Article
Technogenic Waste in Backfill Composite Is a Paradigm of Circular Economy
by Marat M. Khayrutdinov, Alexander V. Aleksakhin, Tatiana N. Kibuk, Lyudmila N. Korshunova, Maria A. Lozinskaya, Olga Yu. Legoshina, Oleg O. Skryabin and Galina V. Kruzhkova
Mining 2025, 5(3), 57; https://doi.org/10.3390/mining5030057 - 15 Sep 2025
Viewed by 365
Abstract
The depletion of shallow coal reserves necessitates a shift from open-pit to underground mining, increasing the need for safe and efficient backfill systems. However, traditional backfill materials—especially cement—are costly and environmentally burdensome. To address this, our study explores a sustainable alternative using industrial [...] Read more.
The depletion of shallow coal reserves necessitates a shift from open-pit to underground mining, increasing the need for safe and efficient backfill systems. However, traditional backfill materials—especially cement—are costly and environmentally burdensome. To address this, our study explores a sustainable alternative using industrial waste, contributing to the principles of a circular economy. This research presents a novel backfill formulation that achieves full cement replacement through the use of fly ash, supplemented with nanocrystalline silica and glass fiber to enhance strength and setting dynamics. Eighteen sample sets were prepared for each composition, using consistent mixing, curing, and testing protocols. Mechanical strength was evaluated at multiple curing intervals alongside microstructural characterization using SEM and XRD. The results show that mixtures containing nanomodified silica and fiber exhibit significantly improved compressive, shear, and splitting strength—up to 40% higher than fly ash-only compositions. Microstructural analysis revealed accelerated C-S-H gel development, reduced porosity, and more uniform pore structures over time. These findings confirm the mechanical viability and economic potential of waste-based backfill systems. The proposed formulation enables safer underground operations, improved extraction efficiency, and reduced environmental impact—offering a scalable solution for modern coal mining. Full article
Show Figures

Figure 1

27 pages, 7542 KB  
Article
Numerical Analysis of Synergistic Ground Control Efficacy via Integrated Mining-Backfill-Roof Contact in Metallic Deposits
by Sheng Li, Hongjian Lu, Xinghang Chang, Tianhong Yang and Chao Mou
Appl. Sci. 2025, 15(17), 9760; https://doi.org/10.3390/app15179760 - 5 Sep 2025
Viewed by 628
Abstract
To investigate the impact of Integrated Mining-Backfill-Roof Contact (IMBR) synergy on strata subsidence in metallic deposits and analyze strata/surface movement patterns, this study enables safe, efficient, environmentally conscious, and sustainable mining development. Focusing on a representative metal mine, we integrated laboratory testing, theoretical [...] Read more.
To investigate the impact of Integrated Mining-Backfill-Roof Contact (IMBR) synergy on strata subsidence in metallic deposits and analyze strata/surface movement patterns, this study enables safe, efficient, environmentally conscious, and sustainable mining development. Focusing on a representative metal mine, we integrated laboratory testing, theoretical analysis, and numerical modeling to determine experimental parameters. Utilizing MIDAS GTS NX, numerical models incorporated four orebody dip angles (30°, 50°, 70°, 90°), five stress release coefficients (20–100%), and contacted/uncontacted conditions to assess IMBR’s control efficacy on surrounding rock stability and surface subsidence. By examining strata/surface movement under variable dip angles and stress release coefficients, displacement control mechanisms were quantified, revealing strata movement evolution principles. Key findings indicate: (1) For all dip angles, the increase rate of displacement progressively intensifies as the excavation stress release coefficient decreases. Notably, at a 30° dipping angle, the most pronounced reduction occurs under declining stress release coefficients, with overall displacement reduction rates reaching 17% for ground surface and 18% for surrounding rock, respectively. (2) Surface displacement impacts intensify as dip angles flatten. (3) Shallower dips induce more pronounced stress disturbance, expanding overburden movement domains and exacerbating surface impacts. Finite element numerical modeling enables accurate and effective analysis of strata and ground movement patterns under varying orebody dipping angles and mining-backfill stress release coefficients. Findings demonstrate that IMBR technology, compared to conventional roof-contacted backfilling methods, achieves timely roof support through immediate backfill-roof contact, significantly reduces overburden fracture propagation depth, and offers valuable insights for controlling surface subsidence in complex mining conditions—particularly for mining under surface structures. Full article
(This article belongs to the Special Issue Green Mining: Theory, Methods, Computation and Application)
Show Figures

Figure 1

19 pages, 3217 KB  
Article
Effect of Temperature and Relative Humidity on CO2 Adsorption Performance of Biomass-Derived Aerogels
by Zujin Bai, Shuyao Ren, Jun Deng, Chang Su, Furu Kang and Yifan Zhang
Polymers 2025, 17(17), 2375; https://doi.org/10.3390/polym17172375 - 31 Aug 2025
Viewed by 724
Abstract
The safe and efficient capture of CO2 in confined environments such as coal mine goafs remains a significant challenge, posing both environmental and safety risks. To address this issue, this study developed a novel biomass-based aerogel adsorbent using CNF-C and CS through [...] Read more.
The safe and efficient capture of CO2 in confined environments such as coal mine goafs remains a significant challenge, posing both environmental and safety risks. To address this issue, this study developed a novel biomass-based aerogel adsorbent using CNF-C and CS through sol–gel synthesis and freeze-drying. A series of composite aerogels with varying mass ratios were systematically characterized by SEM, BET, FTIR, and TG-DSC to analyze their microstructure, specific surface area, pore characteristics, chemical properties, and thermal stability. A constant temperature and humidity experimental setup was specially designed to explore the effects of various temperatures, humidity, and material ratios on CO2 adsorption performance. FTIR analysis confirmed that -NH2 served as the primary adsorption site, with its density increasing with higher chitosan content. The 1:3 ratio exhibited the optimal specific surface area (7.05 m2/g) and thermal stability, withstanding temperatures up to 350.0 °C, while the 1:1 ratio demonstrated the highest porosity (80.74%). Adsorption experiments indicated that 35.0 °C and 50% humidity were the optimal conditions, under which the 1:2 ratio biomass aerogel achieved an 18% increase in CO2 adsorption capacity compared to room temperature. The sample with a 1:1 high cellulose ratio is primarily dominated by physical adsorption, making its performance susceptible to environmental fluctuations. The sample with a 1:3 high chitosan ratio is predominantly governed by chemical adsorption, exhibiting more stable adsorption characteristics. The 1:2 ratio achieved the best balance under 35.0 °C and 50% humidity. The biomass aerogel synergistically combined physical barriers from its three-dimensional network structure and chemical adsorption via active functional groups, enabling efficient CO2 capture and stable sequestration. This study demonstrates the feasibility of biomass-derived aerogels for CO2 adsorption under complex conditions and provides new insights into the design of sustainable materials for environmental remediation and carbon reduction applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 7865 KB  
Article
Effect of Burial Depth, Cavern Shape, and Sealing Layer on the Mechanical Behaviour of Abandoned Mines for Compressed Air Energy Storage
by Lihui Niu, Shiji Yan, Fuchao Zhao, Xinchun Bai, Yaosheng Zhang and Pengju Qin
Processes 2025, 13(9), 2737; https://doi.org/10.3390/pr13092737 - 27 Aug 2025
Viewed by 607
Abstract
As renewable energy adoption intensifies, the demand for efficient and large-scale storage technologies such as compressed air energy storage (CAES) has become critical. Abandoned mine caverns present a cost-effective and sustainable option for CAES, enabling the reuse of existing underground spaces while minimizing [...] Read more.
As renewable energy adoption intensifies, the demand for efficient and large-scale storage technologies such as compressed air energy storage (CAES) has become critical. Abandoned mine caverns present a cost-effective and sustainable option for CAES, enabling the reuse of existing underground spaces while minimizing new excavation. This study aims to quantitatively evaluate the stability of abandoned mine caverns for CAES under varying burial depths (150 m, 300 m, 450 m), cavern geometries (rectangular, trapezoidal, straight-wall arch, and circular) and sealing layer (steel, polymer) in Class II rock mass conditions. Finite element modelling employing ABAQUS was employed to simulate excavation, lining installation, and high-pressure gas storage, incorporating an analysis of surrounding rock strain, plastic zone development, and sealing layer performance. Results indicate that geometry and burial depth are dominant factors controlling deformation, with straight-wall arch caverns inducing relatively minimal disturbance to the ground surface after excavation and lining, and circular caverns showing the highest stability after pressurization. Steel sealing layers significantly improve structural performance, while polymer layers have a limited effect. The findings provide engineering guidance for the safe retrofit and design of CAES facilities in abandoned mines. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1088 KB  
Article
Lead Removal by Reverse Osmosis: Seeking Sustainability in the Operation of Advanced Technologies: A Preliminary Study
by Jennifer Michelle López-Jiménez, Paola Andrea Alvizuri-Tintaya, Georgina Aurelia Chávez-Lizárraga, Vanesa G. Lo-Iacono-Ferreira, Juan Ignacio Torregrosa-López and Jaime Lora-García
Sustainability 2025, 17(16), 7270; https://doi.org/10.3390/su17167270 - 12 Aug 2025
Viewed by 527
Abstract
Nowadays, stricter control and rigorous landfill standards are being promoted in industries that produce liquid discharges into the environment. The development of innovative and sustainable technologies to remove lead from water is of great importance in all aspects, with safe recycling practices, especially [...] Read more.
Nowadays, stricter control and rigorous landfill standards are being promoted in industries that produce liquid discharges into the environment. The development of innovative and sustainable technologies to remove lead from water is of great importance in all aspects, with safe recycling practices, especially with high lead concentrations, such as in mining activities. The experiment was conducted at a reverse osmosis (RO) pilot plant, operated at low impact pressures and designed to optimize energy savings without compromising separation efficiency. By reducing energy consumption, the process not only lowers operational costs but also minimizes the environmental impact associated with high energy consumption. The results show that RO operated at low pressures successfully removed 99.75% of lead at a pressure of 10 bar and a flux of 67.44 L/m2·h, demonstrating a practical and sustainable solution for lead removal at pressures of 5, 7.5, and 10 bar, which are considered low pressures since they are below 1.0 MPa. In addition to its high removal efficiency, the process offers significant advantages in terms of energy efficiency and a reduced carbon footprint. Enhancing the efficiency of this technology is crucial, not only to decrease operational costs but also to reduce environmental impact. Full article
Show Figures

Figure 1

25 pages, 4994 KB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 1139
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

13 pages, 1068 KB  
Review
Battery Electric Vehicles in Underground Mining: Benefits, Challenges, and Safety Considerations
by Epp Kuslap, Jiajie Li, Aibaota Talehatibieke and Michael Hitch
Energies 2025, 18(14), 3588; https://doi.org/10.3390/en18143588 - 8 Jul 2025
Viewed by 1375
Abstract
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. [...] Read more.
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. It discusses various lithium-ion battery chemistries used in BEVs, particularly lithium–iron–phosphate (LFP) and nickel–manganese–cobalt (NMC), comparing their performance, safety, and suitability for underground mining applications. The research highlights the significant benefits of BEVs, including reduced greenhouse gas emissions, improved air quality in confined spaces, and potential ventilation cost savings. However, it also addresses critical safety concerns, such as fire risks associated with lithium-ion batteries and the emission of toxic gases during thermal runaway events. The manuscript emphasises the importance of comprehensive risk assessment and mitigation strategies when introducing BEVs to underground mining environments. It concludes that while BEVs offer promising solutions for more sustainable and environmentally friendly mining operations, further research is needed to ensure their safe integration into underground mining practices. This study contributes valuable insights to the ongoing discussion on the future of mining technology and its environmental impact. Full article
Show Figures

Figure 1

26 pages, 5672 KB  
Review
Development Status and Trend of Mine Intelligent Mining Technology
by Zhuo Wang, Lin Bi, Jinbo Li, Zhaohao Wu and Ziyu Zhao
Mathematics 2025, 13(13), 2217; https://doi.org/10.3390/math13132217 - 7 Jul 2025
Cited by 2 | Viewed by 1951
Abstract
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been [...] Read more.
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been systematically reviewed, which has gone through four stages: stand-alone automation, integrated automation and informatization, digital and intelligent initial, and comprehensive intelligence. And the current development status of “cloud–edge–end” technologies has been reviewed: (i) The end layer achieves environmental state monitoring and precise control through a multi-source sensing network and intelligent equipment. (ii) The edge layer leverages 5G and edge computing to accomplish real-time data processing, 3D dynamic modeling, and safety early warning. (iii) The cloud layer realizes digital planning and intelligent decision-making, based on the industrial Internet platform. The three-layer collaboration forms a “perception–analysis–decision–execution” closed loop. Currently, there are still many challenges in the development of the technology, including the lack of a standardization system, the bottleneck of multi-source heterogeneous data fusion, the lack of a cross-process coordination of the equipment, and the shortage of interdisciplinary talents. Accordingly, this paper focuses on future development trends from four aspects, providing systematic solutions for a safe, efficient, and sustainable mining operation. Technological evolution will accelerate the formation of an intelligent ecosystem characterized by “standard-driven, data-empowered, equipment-autonomous, and human–machine collaboration”. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

21 pages, 3209 KB  
Article
Towards Sustainable Health and Safety in Mining: Evaluating the Psychophysical Impact of VR-Based Training
by Aldona Urbanek, Kinga Stecuła, Krzysztof Kaźmierczak, Szymon Łagosz, Wojtek Kwoczak and Artur Dyczko
Sustainability 2025, 17(13), 6205; https://doi.org/10.3390/su17136205 - 7 Jul 2025
Viewed by 856
Abstract
Mining involves daily descents underground and enduring dangerous and difficult conditions. Hence, it is very important to use solutions that will reduce the risk in miners’ work and ensure the greater safety and comfort of work in accordance with the goals of sustainable [...] Read more.
Mining involves daily descents underground and enduring dangerous and difficult conditions. Hence, it is very important to use solutions that will reduce the risk in miners’ work and ensure the greater safety and comfort of work in accordance with the goals of sustainable development. One way is training using virtual reality. Virtual reality provides greater safety (safe training conditions, the possibility of making a mistake without health consequences, practicing emergency scenarios, etc.) and aligns with the Sustainable Development Goals—particularly SDG 3 (health), SDG 8 (decent work), SDG 9 (innovation), and SDG 12 (sustainable production). However, it is also a technology that has its weaknesses (occurrence of contraindications, side effects, etc.). Therefore, the use of VR-based training should be examined in terms of the well-being and health of training employees. Due to this, this article examines the occurrence of psychophysical complaints during VR training; the tolerance and adequacy of the duration of a 50 min training session in VR was assessed; and the average time needed to adapt to the virtual environment was determined. The VR training was developed as a result of a research project conducted by JSW Nowe Projekty S.A. (ul. Ignacego Paderewskiego 41, 40-282 Katowice, Poland), Główny Instytut Górnictwa—Państwowy Instytut Badawczy (plac Gwarków 1, 40-160 Katowice, Poland), JSW Szkolenie i Górnictwo Sp. z o.o. at Jastrzębska Spółka Węglowa Capital Group (ul. Górnicza 1, 44-335 Jastrzębie-Zdrój, Poland) on the development and implementation of innovative training using VR for miners. The solution was developed in the context of mining’s striving for sustainable development in the area of improving working conditions and human safety. The first method used in the study is a survey completed by participants of training courses using virtual reality. The second method is the analysis of trainer observation sheets, which contain observations from training courses. The results revealed that for over 70% of respondents, the need to carry out activities in VR was not associated with fatigue. No average score for psychophysical symptoms assessed by respondents on a scale of 1 to 6 (including disorientation, blurred vision, dizziness, confusion, etc.) exceeded 1.4. The vast majority (85.5%) did not take off the goggles before the end of the training—the training lasted 50 min. This research contributes to the discussion on sustainable industrial transformation by demonstrating that VR training not only improves worker safety and preparedness but also supports development goals through human-centered innovation in the mining sector. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

24 pages, 18983 KB  
Article
Multi-Factor Analysis and Graded Remediation Strategy for Goaf Stability in Underground Metal Mines: Fluid–Solid Coupling Simulation and Genetic Algorithm-Based Optimization Approach
by Xuzhao Yuan, Xiaoquan Li, Xuefeng Li, Tianlong Su, Han Du and Danhua Zhu
Symmetry 2025, 17(7), 1024; https://doi.org/10.3390/sym17071024 - 30 Jun 2025
Viewed by 399
Abstract
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat [...] Read more.
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat to mine safety, especially when irregular excavation patterns interact with high ground stress, exacerbating instability risks. Most existing studies lack a systematic and multidisciplinary integrated framework for comprehensive evaluation and management. This paper proposes a trinity research system of “assessment–optimization–governance”, integrating theoretical analysis, three-dimensional fluid–solid coupling numerical simulation, and a filling sequence optimization method based on genetic algorithms. An analysis of data measured from 243 pillars and 49 goafs indicates that approximately 20–30% of the pillars have a factor of safety (FoS) below 1.0, signaling immediate instability risks; additionally, 58% do not meet the threshold for long-term stability (FoS ≥ 1.5). Statistical and spatial analyses highlight that pillar width-to-height ratio (W/H) and cross-sectional area significantly influence stability; when W/H exceeds 1.5, FoS typically surpasses 2.0. Numerical simulations reveal pore water pressures of 1.4–1.8 MPa in deeper goafs, substantially reducing effective stress and accelerating plastic zone expansion. Stability classification categorizes the 49 goafs into 7 “poor”, 37 “moderate”, and 5 “good” zones. A genetic algorithm-optimized filling sequence prioritizes high-risk area remediation, reducing maximum principal stress by 60.96% and pore pressure by 28.6%. Cemented waste rock filling applied in high-risk areas, complemented by general waste rock filling in moderate-risk areas, significantly enhances overall stability. This integrated method provides a scientific foundation for stability assessment and dynamic remediation planning under complex hydrogeological conditions, offering a risk-informed and scenario-specific application of existing tools that improves engineering applicability. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 4417 KB  
Review
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
by Xiaojun Qian, Shaohua You, Ruizhe Wang, Yunzhi Yue, Qinzhuo Liao, Jiacheng Dai, Shouceng Tian and Xu Liu
Sustainability 2025, 17(13), 5900; https://doi.org/10.3390/su17135900 - 26 Jun 2025
Cited by 1 | Viewed by 3974
Abstract
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, [...] Read more.
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, leveraging the unique geomechanical properties of salt formations—including low permeability, self-healing capabilities, and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage, such as rapid injection and extraction capabilities, cost-effectiveness compared to other storage methods (e.g., hydrogen storage in depleted oil and gas reservoirs, aquifers, and aboveground tanks), and minimal environmental impact. It also addresses critical challenges, including hydrogen embrittlement, microbial activity, and regulatory fragmentation. Through global case studies, best operational practices for risk mitigation in real-world applications are highlighted, such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential, this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan, Hubei Yunying, and Henan Pingdingshan. By integrating technological innovation, policy coordination, and cross-sector collaboration, salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy, bridging the gap between renewable energy production and industrial decarbonization. Full article
Show Figures

Figure 1

57 pages, 4436 KB  
Article
Comminution Flowsheet Energy Requirements of a New Narrow-Vein Mining Method
by Judith George, Allan Cramm and Stephen Butt
Energies 2025, 18(12), 3119; https://doi.org/10.3390/en18123119 - 13 Jun 2025
Viewed by 491
Abstract
Narrow-vein deposits have historically been valuable in producing gold, tin, copper, silver, lead, and zinc. Developing these mineral resources is sometimes challenging due to economic and safety concerns. Given the small to medium scale of production, narrow-vein mining could be labor-intensive with increased [...] Read more.
Narrow-vein deposits have historically been valuable in producing gold, tin, copper, silver, lead, and zinc. Developing these mineral resources is sometimes challenging due to economic and safety concerns. Given the small to medium scale of production, narrow-vein mining could be labor-intensive with increased exposure of the miners to hazardous conditions. A safe, mechanized, efficient, and sustainable method can be invaluable to operators looking to develop narrow-vein mineral resources. The comminution circuit (consisting of crushing and grinding) is downstream of most mineral resources’ extraction processes. Comminution is significantly energy-intensive, consuming almost half of the energy supplied to a mineral-processing activity. Thus, several engineers have investigated the continued development of sustainable narrow-vein mining and comminution technologies. This journal article focuses on a developed innovative, safe, mechanized, and continuous narrow-vein mining technology that has further made accessing narrow-vein deposits more economically feasible and efficient while reducing dilution of ores. The article also extensively presents the impact of this new mining approach on the daily production of the operation and the observed particle size distributions of the day-to-day operational output. Subsequently, the article evaluates and presents the impact of the new procedure of mineral extraction on the resultant size of the cuttings generated as well as the expected energy input of the comminution process downstream of the mining operation. The novelty of the mining method upon which this work is based is improved capital expenditure and reduced dilution. With the new mining method, otherwise-uneconomic narrow-vein deposits can be accessed. Full article
(This article belongs to the Topic New Advances in Mining Technology)
Show Figures

Figure 1

19 pages, 1224 KB  
Review
Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
by Marzhan S. Kalmakhanova, Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes and Daniel D. Snow
Sustainability 2025, 17(12), 5370; https://doi.org/10.3390/su17125370 - 11 Jun 2025
Viewed by 1382
Abstract
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia [...] Read more.
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia is a landlocked region known for its harsh climatic conditions and scarce water resources, despite being home to some of the world’s largest internal drainage basins. The available literature suggests that increasing salinity has rendered water unsuitable for irrigation and consumption; hazardous trace elements are found throughout Central Asia, most often associated with mining and industrial sources; and that legacy pesticides influence water quality, particularly in agriculturally influenced basins. This study also focuses on the effects of municipal and industrial wastewater discharge. Additionally, the impact of inadequately treated wastewater on water resources is analyzed through a review of available data and reports regarding surface and groundwater quantity and quality. Given the challenges of water scarcity and accessibility, the reuse of treated wastewater is becoming increasingly important, offering a valuable alternative that necessitates careful oversight to ensure public health, environmental sustainability, and water security. However, due to insufficient financial and technical resources, along with underdeveloped regulatory frameworks, many urban areas lack adequate wastewater treatment facilities, significantly constraining their safe and sustainable reuse. Proper management of wastewater effluent is critical, as it directly influences the quality of both surface and groundwater, which serve as key sources for drinking water and irrigation. Due to their persistent and biologically active nature even at trace levels, we discuss contaminants of emerging concern such as antibiotics, pharmaceuticals, and modern agrochemicals. This review thus highlights gaps in the literature reporting on impacts of wastewater inputs to water quality in Central Asia. It is recommended that future research and efforts should focus on exploring sustainable solutions for water quality management and pollution control to assure environmental sustainability and public health. Full article
Show Figures

Figure 1

16 pages, 1439 KB  
Article
Sustainable Treatment of Landfill Leachate Using Sugar Lime Sludge for Irrigation and Nitrogen Recovery
by Tilila Baganna, Assmaa Choukri and Khalid Fares
Nitrogen 2025, 6(2), 37; https://doi.org/10.3390/nitrogen6020037 - 20 May 2025
Viewed by 762
Abstract
Water scarcity is a global crisis and of particular concern in arid regions like Morocco. One creative solution is mining unusual water sources, such as landfill leachate. The presence of nitrogen in the sediment was studied as part of the use of sugar [...] Read more.
Water scarcity is a global crisis and of particular concern in arid regions like Morocco. One creative solution is mining unusual water sources, such as landfill leachate. The presence of nitrogen in the sediment was studied as part of the use of sugar lime sludge in treating landfill leachate for irrigation purposes. A volume of 40 L of landfill leachate was treated with three different concentrations of sugar lime sludge (25%, 35%, and 50%). After homogenization and agitation of the mixture for 24 to 36 h, it was permitted to settle through the concrete decantate and supernatant. Nitrogen was efficiently decanted into the sediment during the composting process with green waste, enhancing the quality of the finished compost. The supernatants underwent physicochemical and microbiological analyses to ascertain their suitability for irrigation. The findings showed that the number of fecal streptococci was decreased by 99.13% at a 25% concentration of sugar lime sludge. The percentage of organic matter in the sediment rose from 10% to 40%, suggesting that the leachate had partially depolluted. The pH and electrical conductivity of the supernatants were within irrigation guidelines. The safety of diluted supernatants for plant germination was verified by phytotoxicity experiments conducted on maize seeds. The compost made from the decantate and green waste showed acceptable physical and chemical properties. Statistical analysis was conducted using JAMOVI software version 2.6.26. One-way ANOVA was used to assess the significance of treatment effects on microbiological and physicochemical parameters. The results confirmed statistically significant differences (p < 0.05) between the sludge concentrations, supporting the effectiveness of the treatment process. This study demonstrates how sugar lime sludge can be used to turn landfill leachate into a sustainable and safe irrigation water source, resolving environmental issues and promoting creative water management techniques. Full article
Show Figures

Figure 1

Back to TopTop