Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = saikosaponin A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5911 KB  
Review
Exploring the Therapeutic Potential of Bupleurum in Medical Treatment: A Comprehensive Overview
by Yu Tian, Jiageng Guo, Xinya Jiang, Hongyu Lu, Jinling Xie, Fan Zhang, Zhengcai Du and Erwei Hao
Pharmaceuticals 2025, 18(9), 1331; https://doi.org/10.3390/ph18091331 - 5 Sep 2025
Viewed by 903
Abstract
Bupleurum is a Chinese medicinal material widely used in clinical practice. Its medicinal component is the dried roots of either the Umbrella plant Bupleurum chinense DC or Bupleurum scorzonerifolium Willd. This review systematically searched major scientific databases such as Web of Science, PubMed, [...] Read more.
Bupleurum is a Chinese medicinal material widely used in clinical practice. Its medicinal component is the dried roots of either the Umbrella plant Bupleurum chinense DC or Bupleurum scorzonerifolium Willd. This review systematically searched major scientific databases such as Web of Science, PubMed, and ScienceDirect, and found that it contains various bioactive substances including saikosaponins, polysaccharides, flavonoids, and volatile oils. These components have demonstrated significant efficacy in anti-tumor, anti-inflammatory, and neuroprotective activities. Research has confirmed that this medicinal herb can exert its pharmacological effects by promoting tumor cell apoptosis, inhibiting cell proliferation, regulating inflammatory signaling pathways, and alleviating neuroinflammation. Additionally, its antipyretic and antiviral properties have also garnered widespread attention. However, clinical data regarding its optimal dosage, administration routes, and safety are still insufficient, necessitating further trials for validation. Investigating the synergistic effects of Bupleurum with other drugs and the safety of its use in different populations are also key directions of current research. Given the urgent need for efficient and sustainable healthcare in modern society, a deep understanding of the mechanisms and safety of Bupleurum is of significant importance for its validation as a foundation for new drug development. In summary, Bupleurum, as a multifunctional natural product, has broad application prospects and is expected to play a greater role in future medical research and clinical practice. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

22 pages, 3439 KB  
Article
Metabolomics Analysis Reveals the Influence Mechanism of Different Growth Years on the Growth, Metabolism and Accumulation of Medicinal Components of Bupleurum scorzonerifolium Willd. (Apiaceae)
by Jialin Sun, Jianhao Wu, Weinan Li, Xiubo Liu and Wei Ma
Biology 2025, 14(7), 864; https://doi.org/10.3390/biology14070864 - 16 Jul 2025
Viewed by 453
Abstract
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is [...] Read more.
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is difficult for the wild plant resources of Bupleurum scorzonerifolium Willd. to meet the market demand. In artificial cultivation, there are problems such as a low yield per plant, low quality, weakened stress resistance and variety degradation. The contents of bioactive components and metabolites in traditional Chinese medicinal materials vary significantly across different growth years. The growth duration directly impacts their quality and clinical efficacy. Therefore, determining the optimal growth period is one of the crucial factors in ensuring the quality of traditional Chinese medicinal materials. In this study, Gas Chromatography–Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC) were comprehensively applied to analyze the metabolically differential substances in different parts of Bupleurum scorzonerifolium Willd. By comparing the compositions and content differences of chemical components in different growth years and different parts, the chemical components with significant differences were accurately screened out. In order to further explore the dynamic change characteristics and internal laws of metabolites, a metabolic network was constructed for a visual analysis and, finally, to see the optimal growth years of Bupleurum scorzonerifolium Willd. This result showed that with the accumulation of the growth cycle, the height, root width, fresh mass and saikosaponins content of Bupleurum scorzonerifolium Willd. increased year by year. Except for sodium and calcium elements in the main shoot, the other elements were significantly reduced. In addition, 59 primary metabolites were identified by GC-MS, with the accumulation of the growth cycle, the contents of organic acids, sugars, alcohols and amino acids gradually decreased, while the contents of alkyl, glycosides and other substances gradually increased. There were 53 positive correlations and 18 negative correlations in the triennial Bupleurum scorzonerifolium Willd. grid, all of which were positively correlated with saikosaponins. Therefore, the triennial Bupleurum scorzonerifolium Willd. was considered to be the suitable growth year. It not only provided a new idea and method for the quality evaluation of Bupleurum scorzonerifolium Willd., but also provided a scientific basis for the quality control of Chinese herbs. Full article
Show Figures

Figure 1

20 pages, 5242 KB  
Article
Metabonomics Analysis Reveals the Influence Mechanism of Three Potassium Levels on the Growth, Metabolism and Accumulation of Medicinal Components of Bupleurum scorzonerifolium Willd. (Apiaceae)
by Jialin Sun, Jianhao Wu, Alyaa Nasr, Zhonghua Tang, Weili Liu, Xiubo Liu and Wei Ma
Biology 2025, 14(5), 452; https://doi.org/10.3390/biology14050452 - 22 Apr 2025
Cited by 1 | Viewed by 669
Abstract
Bupleurum scorzonerifolium Willd. is a commonly used bulk Chinese herbal remedy. Due to the large-scale mining of wild Bupleurum scorzonerifolium Willd., its natural resources are gradually exhausted. In addition, there are some problems in Bupleurum scorzonerifolium Willd. cultivation, such as lack of guidance, [...] Read more.
Bupleurum scorzonerifolium Willd. is a commonly used bulk Chinese herbal remedy. Due to the large-scale mining of wild Bupleurum scorzonerifolium Willd., its natural resources are gradually exhausted. In addition, there are some problems in Bupleurum scorzonerifolium Willd. cultivation, such as lack of guidance, excessive application of fertilizers and so on, which lead to the yield and quality of Bupleurum to be below the standard value. Therefore, it is significant to clarify the regulation of quality and yield under different levels of fertilizers. In this study, three different levels of potassium fertilizer were applied; then, the metabolites in different parts of Bupleurum were analyzed by gas chromatography–mass spectrometry (GC–MS) to detect the alterations in the metabolic spectrum and recognize both the accumulation and distribution of key metabolites in response to each level of potassium fertilizer. The contents of various mineral elements, such as sodium, calcium, potassium, magnesium, manganese, zinc, iron, and copper, in different parts of Bupleurum under different potassium levels were determined. Potassium fertilizer had a significant impact on the absorption and distribution of these mineral elements. There were synergistic and antagonistic effects between each element and K⁺. The results showed that low and high potassium levels could promote the progression of main shoots and roots, but inhibited the accumulation of dry matter in lateral shoots and flowers. Low potassium levels stimulated the content of saikosaponin a in all plant parts, while high potassium levels inhibited the accumulation of most saikosaponin a,c and d. A total of 77 metabolites were identified by GC–MS, of which glycerol, d-glucose, silane and copper phthalocyanine were highlighted as the key metabolites in response to potassium fertilizer. The abovementioned metabolites are mapped into insulin signaling pathways, streptomycin biosynthesis, galactose metabolism and other metabolic pathways, sustaining the metabolic regulation of Bupleurum scorzonerifolium Willd. Full article
(This article belongs to the Special Issue Research Progress on Salt Stress in Plants)
Show Figures

Figure 1

24 pages, 5542 KB  
Article
Investigating the Therapeutic Mechanisms of Total Saikosaponins in Alzheimer’s Disease: A Metabolomic and Proteomic Approach
by Huiling Wei, Tianyi Du, Weiwei Zhang, Wei Ma, Yao Yao and Juan Li
Pharmaceuticals 2025, 18(1), 100; https://doi.org/10.3390/ph18010100 - 15 Jan 2025
Cited by 1 | Viewed by 1309
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in Bupleurum chinense, have shown promising therapeutic effects against AD in previous studies. Methods: To delve deeper [...] Read more.
Alzheimer’s disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in Bupleurum chinense, have shown promising therapeutic effects against AD in previous studies. Methods: To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice. Further, we employed metabolomic and proteomic analyses, with a focus on the potential protein-level changes induced by TSS, particularly those related to metabolite accumulation in the brain. Results: Our results showed that lysophosphatidylcholine, adenosine, and sphingomyelin in plasma might serve as potential biomarkers. Compared to the control group, AD mice exhibited significantly increased expression of proteins related to neuroinflammatory pathways, whereas proteins involved in cAMP signaling, cGMP-PKG signaling, and synaptic plasticity pathways were significantly downregulated. Notably, these signaling pathways were partially reversed in APP/PS1 mice following TSS administration. Behavioral tests demonstrated that TSS effectively improved the learning and memory functions of mice. Conclusions: Our findings suggest that TSS ameliorate cognitive decline through regulating neuroinflammatory pathways, cAMP and cGMP signaling, and synaptic plasticity pathways, providing insights into its therapeutic potential in AD. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 5602 KB  
Article
Analysis of Different Strains Fermented Douchi by GC×GC-TOFMS and UPLC–Q-TOFMS Omics Analysis
by Liqiang Sui, Sugui Wang, Xin Wang, Lingling Su, Huilong Xu, Wei Xu, Lixia Chen and Hua Li
Foods 2024, 13(21), 3521; https://doi.org/10.3390/foods13213521 - 4 Nov 2024
Cited by 2 | Viewed by 1587
Abstract
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. [...] Read more.
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. The common and characteristic flavor compounds and common and characteristic non-volatile components of different strains of fermented Douchi were explored through GC×GC-TOFMS and UPLC–Q-TOFMS omics analysis. The result suggested that Pyrazines, ketones, and alkenes such as tetramethyl-pyrazine, 2,5-dimethyl pyrazine, furaneol, 2,3-butanedione, gamma-terpinene might contribute to the basic flavor of the Douchi fermented by A. niger, R. arrhizus, and B. circulans. Peptides, amines, and flavonoids, such as N–acetylhistamine, 7,3′,4′–trihydroxyflavone, (3S,8As)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione might contribute to the basic function of the above three Douchi. The common metabolic pathways involved in the fermentation were isoflavonoid biosynthesis, flavonoid biosynthesis, etc. Ketones and esters such as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 3-octanone, 5-methylfurfural and nonanal contributed to the unique flavor, while betaine, oleanolic acid, saikosaponin D and leucine might contribute to the unique function of A. niger fermented Douchi. Alkenes, pyrazine, and ketones such as α-terpinene, ethyl-pyrazine, dihydro-3-methyl-2(3H)-furanone, and linalool might contribute to unique flavor, while cordycepin, 2-Phenylacetamide might contributed to the unique function of R. arrhizus fermented Douchi. The unique flavor of B. circulans fermented Douchi might derived from ketones and esters such as 3-acetyl-2-butanone, 2-tridecanone, propionic acid-2-phenylethyl ester, while vitexin, astragalin, and phenethylamine might contribute to the unique function. Compared with single-strain fermented Douchi, the flavor substances and non-volatile components in multi-strain fermented Douchi were more abundant, such as hexadecanoic acid methyl ester, benzeneacetic acid ethyl ester, 9,12-octadecadienoic acid ethyl ester, nuciferine, and erucamide. It was speculated that there were common and differential substances in Douchi fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, which might contribute to the basic and unique flavor and function. Compared with single-strain fermented Douchi, the flavor substances and metabolites in multi-strain fermented Douchi were more abundant. This study provided a reference for the research of flavor and functional substances of Douchi. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

17 pages, 7010 KB  
Article
Saikosaponin A Recovers Impaired Filaggrin Levels in Inflamed Skin by Downregulating the Expression of FRA1 and c-Jun
by Sung Shin Ahn, Hyunjin Yeo, Euitaek Jung, Tae Yoon Kim, Junekyu Han, Young Han Lee and Soon Young Shin
Molecules 2024, 29(17), 4064; https://doi.org/10.3390/molecules29174064 - 27 Aug 2024
Cited by 4 | Viewed by 1915
Abstract
Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression [...] Read more.
Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression in inflamed skin remain unclear. This study aimed to evaluate the biological activity of SSA in restoring reduced FLG expression. The effect of SSA on FLG expression in HaCaT cells was assessed through various biological methods, including reverse transcription PCR, quantitative real-time PCR, immunoblotting, and immunofluorescence staining. TNFα and IFNγ decreased FLG mRNA, cytoplasmic FLG protein levels, and FLG gene promoter–reporter activity compared to the control groups. However, the presence of SSA restored these effects. A series of FLG promoter–reporter constructs were generated to investigate the underlying mechanism of the effect of SSA on FLG expression. Mutation of the AP1-binding site (mtAP1) in the −343/+25 FLG promoter–reporter abrogated the decrease in reporter activities caused by TNFα + IFNγ, suggesting the importance of the AP1-binding site in reducing FLG expression. The SSA treatment restored FLG expression by inhibiting the expression and nuclear localization of FRA1 and c-Jun, components of AP1, triggered by TNFα + IFNγ stimulation. The ERK1/2 mitogen-activated protein kinase signaling pathway upregulates FRA1 and c-Jun expression, thereby reducing FLG levels. The SSA treatment inhibited ERK1/2 activation caused by TNFα + IFNγ stimulation and reduced the levels of FRA1 and c-Jun proteins in the nucleus, leading to a decrease in the binding of FRA1, c-Jun, p-STAT1, and HDAC1 to the AP1-binding site in the FLG promoter. The effect of SSA was evaluated in an animal study using a BALB/c mouse model, which induces human atopic-dermatitis-like skin lesions via the topical application of dinitrochlorobenzene. Topically applied SSA significantly reduced skin thickening, immune cell infiltration, and the expression of FRA1, c-Jun, and p-ERK1/2 compared to the vehicle-treated group. These results suggest that SSA can effectively recover impaired FLG levels in inflamed skin by preventing the formation of the repressor complex consisting of FRA1, c-Jun, HDAC1, and STAT1. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

14 pages, 4033 KB  
Article
Spatial Mapping of Bioactive Metabolites in the Roots of Three Bupleurum Species by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Xiaowei Han, Donglai Ma, Jiemin Wang, Lin Pei, Lingdi Liu, Weihong Shi, Zhengpu Rong, Xiaoyuan Wang, Ye Zhang, Yuguang Zheng and Huigai Sun
Molecules 2024, 29(16), 3746; https://doi.org/10.3390/molecules29163746 - 7 Aug 2024
Cited by 4 | Viewed by 1375
Abstract
Bupleurum is a kind of medicinal plant that has made a great contribution to human health because of the presence of bioactive metabolites: Bupleurum saikosaponins and flavonoids. Despite their importance, it has been a challenge to visually characterize the spatial distribution of these [...] Read more.
Bupleurum is a kind of medicinal plant that has made a great contribution to human health because of the presence of bioactive metabolites: Bupleurum saikosaponins and flavonoids. Despite their importance, it has been a challenge to visually characterize the spatial distribution of these metabolites in situ within the plant tissue, which is essential for assessing the quality of Bupleurum. The development of a new technology to identify and evaluate the quality of medicinal plants is therefore necessary. Here, the spatial distribution and quality characteristics of metabolites of three Bupleurum species: Bupleurum smithii (BS), Bupleurum marginatum var. stenophyllum (BM), and Bupleurum chinense (BC) were characterized by Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Twenty-nine metabolites, including saikosaponins, non-saikosaponins, and compounds from the saikosaponin synthesis pathway, were characterized. Some of these were successfully localized and visualized in the transverse section of roots. In these Bupleurum species, twelve saikosaponins, five non-saikosaponins, and five saikosaponin synthesis pathway compounds were detected. Twenty-two major influencing components, which exhibit higher ion intensities in higher quality samples, were identified as potential quality markers of Bupleurum. The final outcome indicates that BC has superior quality compared to BS and BM. MALDI-MSI has effectively distinguished the quality of these Bupleurum species, providing an intuitive and effective marker for the quality control of medicinal plants. Full article
Show Figures

Figure 1

13 pages, 1995 KB  
Article
Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis
by Yoon-Seung Lee, Jeong-Geon Mun, Shin-Young Park, Dah Yun Hong, Ho-Yoon Kim, Su-Jin Kim, Sun-Bin Lee, Jeong-Ho Jang, Yo-Han Han and Ji-Ye Kee
Nutrients 2024, 16(12), 1844; https://doi.org/10.3390/nu16121844 - 12 Jun 2024
Cited by 10 | Viewed by 1821
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this [...] Read more.
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

18 pages, 3526 KB  
Article
Comprehensive Analysis Reveals the Difference in Volatile Oil between Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li and the Other Four Medicinal Bupleurum Species
by Yuzhi Ma, Xinwei Guo, Peiling Wu, Yuting Li, Ruyue Zhang, Lijia Xu and Jianhe Wei
Molecules 2024, 29(11), 2561; https://doi.org/10.3390/molecules29112561 - 29 May 2024
Viewed by 1392
Abstract
Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding [...] Read more.
Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources. Full article
Show Figures

Graphical abstract

20 pages, 3814 KB  
Review
Bupleurum in Treatment of Depression Disorder: A Comprehensive Review
by Shuzhen Ran, Rui Peng, Qingwan Guo, Jinshuai Cui, Gang Chen and Ziying Wang
Pharmaceuticals 2024, 17(4), 512; https://doi.org/10.3390/ph17040512 - 16 Apr 2024
Cited by 12 | Viewed by 5025
Abstract
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. [...] Read more.
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. Chaihu (Bupleurum) has been traditionally used for liver conditions such as hepatitis, liver inflammation, liver fibrosis, and liver cancer. It is believed to have hepatoprotective effects, promoting liver cell regeneration and protecting against liver damage. In addition, Bupleurum has also been used as a Jie Yu (depression-relieving) medicine in China, Japan, Republic of Korea, and other Asian countries for centuries. This review article aims to summarize the research conducted on the antidepressant properties and mechanisms of Bupleurum, as well as discuss the potential of TCM formulas containing Bupleurum. This review highlights various antidepressant ingredients isolated from Bupleurum, including saikosaponin A, saikosaponin D, rutin, puerarin, and quercetin, each with distinct mechanisms of action. Additionally, Chinese herb prescriptions and extracts containing Bupleurum, such as Chaihu Shugansan, Xiaoyaosan, and Sinisan, are also included due to their demonstrated antidepressant effects. This review reveals that these Bupleurum compounds exhibit antidepressant effects through the regulation of neurotransmitter mechanisms (such as 5-HT and DA), the NMDA (N-methyl-D-aspartate) system, brain-derived neurotrophic factor (BDNF), and other intracellular signaling pathways. Collectively, this comprehensive review provides insights into the multiple applications of Bupleurum in the treatment of depression and highlights its potential as an alternative or complementary approach to traditional therapies. However, it is essential to consider the potential adverse effects and clinical restrictions of Bupleurum despite its promising potential. Further research is needed to elucidate its specific mechanisms of action and evaluate its effectiveness in human subjects. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Graphical abstract

31 pages, 7141 KB  
Article
Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation
by Xiuli Chen, Hao Wu, Peibo Li, Wei Peng, Yonggang Wang, Xiaoli Zhang, Ao Zhang, Jinliang Li, Fenzhao Meng, Weiyue Wang and Weiwei Su
Pharmaceuticals 2024, 17(4), 475; https://doi.org/10.3390/ph17040475 - 8 Apr 2024
Cited by 4 | Viewed by 3672
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid [...] Read more.
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb–compound–biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)–saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)–lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)–glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA’s downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG’s effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Figure 1

19 pages, 3991 KB  
Article
So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice
by Mei Tong He, Geonha Park, Do Hwi Park, Minsik Choi, Sejin Ku, Seung Hyeon Go, Yun Gyo Lee, Seok Jun Song, Chang-Wook Ahn, Young Pyo Jang and Ki Sung Kang
Biomolecules 2024, 14(4), 451; https://doi.org/10.3390/biom14040451 - 7 Apr 2024
Cited by 2 | Viewed by 3029
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of [...] Read more.
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations. Full article
Show Figures

Graphical abstract

15 pages, 17100 KB  
Article
Saikosaponin B2, Punicalin, and Punicalagin in Vitro Block Cellular Entry of Feline Herpesvirus-1
by Bin Liu, Xiao-Qian Jiao, Xu-Feng Dong, Pei Guo, Shu-Bai Wang and Zhi-Hua Qin
Viruses 2024, 16(2), 231; https://doi.org/10.3390/v16020231 - 1 Feb 2024
Cited by 6 | Viewed by 2135
Abstract
In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of [...] Read more.
In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection. Full article
(This article belongs to the Special Issue Animal Herpesvirus)
Show Figures

Figure 1

17 pages, 4677 KB  
Article
In Silico and In Vitro Analyses of Multiple Terpenes Predict Cryptotanshinone as a Potent Inhibitor of the Omicron Variant of SARS-CoV-2
by Asmita Shrestha, Siddha Raj Upadhyaya, Bimal K. Raut, Salyan Bhattarai, Khaga Raj Sharma, Niranjan Parajuli, Jae Kyung Sohng and Bishnu P. Regmi
Processes 2024, 12(1), 230; https://doi.org/10.3390/pr12010230 - 21 Jan 2024
Cited by 3 | Viewed by 3779
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) underwent a substantial number of alterations, and the accompanying structural mutations in the spike protein prompted questions about the virus’s propensity to evade the antibody neutralization produced by prior infection or vaccination. [...] Read more.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) underwent a substantial number of alterations, and the accompanying structural mutations in the spike protein prompted questions about the virus’s propensity to evade the antibody neutralization produced by prior infection or vaccination. New mutations in SARS-CoV-2 have raised serious concerns regarding the effectiveness of drugs and vaccines against the virus; thus, identifying and developing potent antiviral medications is crucial to combat viral infections. In the present study, we conducted a detailed in silico investigation that involves molecular docking, density functional (DFT) analysis, molecular dynamics (MD) simulations, and pharmacological analysis followed by an in vitro study with the spike protein. Among fifty terpenes screened, cryptotanshinone and saikosaponin B2 were found to be potent S1-RBD spike protein inhibitors, displaying considerable hydrogen bond interactions with key binding site residues, significant binding affinity, and high reactivity attributed to band gap energy. In addition, 100 ns molecular dynamics (MD) simulations further substantiated these findings, showcasing the stability of the compounds within a biological environment. With favorable pharmacokinetic properties and a low half inhibitory concentration (IC50) of 86.06 ± 1.56 μM, cryptotanshinone inhibited S1-RBD of the SARS-CoV-2 Omicron variant. Our findings account for in-depth research on cryptotanshinone as a SARS-CoV-2 inhibitor. Full article
Show Figures

Figure 1

14 pages, 2730 KB  
Article
A Natural Compound Containing a Disaccharide Structure of Glucose and Rhamnose Identified as Potential N-Glycanase 1 (NGLY1) Inhibitors
by Ruijie Liu, Jingjing Gu, Yilin Ye, Yuxin Zhang, Shaoxing Zhang, Qiange Lin, Shuying Yuan, Yanwen Chen, Xinrong Lu, Yongliang Tong, Shaoxian Lv, Li Chen and Guiqin Sun
Molecules 2023, 28(23), 7758; https://doi.org/10.3390/molecules28237758 - 24 Nov 2023
Cited by 1 | Viewed by 1968
Abstract
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel [...] Read more.
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development. Full article
Show Figures

Graphical abstract

Back to TopTop