Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = sandwich panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4664 KB  
Article
Synclastic Behavior of the Auxetic Core for Furniture Panels
by Jerzy Smardzewski and Michał Słonina
Appl. Sci. 2025, 15(19), 10614; https://doi.org/10.3390/app151910614 - 30 Sep 2025
Viewed by 113
Abstract
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative [...] Read more.
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative Poisson’s ratio. This study aimed to transform the hexagonal cell cores into cells with a negative or positive Poisson’s ratio (NPR, PPR), enabling these cores to form synclastic surfaces. New core structures for synclastic furniture sandwich honeycomb panels were modeled numerically and experimentally. It has been demonstrated that reentrant cells with NPR create synclastic surfaces, and new shapes of core cells, created by transforming hexagonal cells with PPR, also enable the formation of synclastic surfaces. Cores’ synclasticity was assessed in two orthogonal planes using physical models and Finite Element Analysis (FEA). A new and original discovery is the demonstration that not only auxetic but also modified hexagonal cells with Poisson’s ratios of νxy = 0.545 and νyx = 0.512, respectively, exhibit excellent synclastic properties. The agreement between FEA and experiment was very high. The results show that not only NPR but also cell topology provides a practical route to the synclastic formation of cores without the use of auxetic materials. Full article
Show Figures

Figure 1

18 pages, 3356 KB  
Article
Performance Comparison of Deep Learning Models for Predicting Fire-Induced Deformation in Sandwich Roof Panels
by Bohyuk Lim and Minkoo Kim
Fire 2025, 8(9), 368; https://doi.org/10.3390/fire8090368 - 18 Sep 2025
Viewed by 349
Abstract
Sandwich panels are widely used in industrial roofing due to their lightweight and thermal insulation properties; however, their structural fire resistance remains insufficiently understood. This study presents a data-driven approach to predict the mid-span deformation of glass wool-cored sandwich roof panels subjected to [...] Read more.
Sandwich panels are widely used in industrial roofing due to their lightweight and thermal insulation properties; however, their structural fire resistance remains insufficiently understood. This study presents a data-driven approach to predict the mid-span deformation of glass wool-cored sandwich roof panels subjected to ISO 834-5 standard fire tests. A total of 39 full-scale furnace tests were conducted, yielding 1519 data points that were utilized to develop deep learning models. Feature selection identified nine key predictors: elapsed time, panel orientation, and seven unexposed-surface temperatures. Three deep learning architectures—convolutional neural network (CNN), multilayer perceptron (MLP), and long short-term memory (LSTM)—were trained and evaluated through rigorous 5-fold cross-validation and independent external testing. Among them, the CNN approach consistently achieved the highest accuracy, with an average cross-validation performance of R2=0.91(meanabsoluteerror(MAE)=4.40;rootmeansquareerror(RMSE)=6.42), and achieved R2=0.76(MAE=6.52,RMSE=8.62) on the external test set. These results highlight the robustness of CNN in capturing spatially ordered thermal–structural interactions while also demonstrating the limitations of MLP and LSTM regarding the same experimental data. The findings provide a foundation for integrating machine learning into performance-based fire safety engineering and suggest that data-driven prediction can complement traditional fire-resistance assessments of sandwich roofing systems. Full article
Show Figures

Figure 1

20 pages, 5316 KB  
Article
Analysis and Research on Thermal Insulation Performance of Autoclaved Aerated Concrete Sandwich Perimeter Wall in Hot-Summer and Cold-Winter Regions Under Low Temperature Environment
by Jinsong Tu, Lintao Fang, Cairui Yu, Gulei Chen, Jing Lan and Rui Zhang
Buildings 2025, 15(18), 3332; https://doi.org/10.3390/buildings15183332 - 15 Sep 2025
Viewed by 511
Abstract
This study examines the dynamic response of autoclaved aerated concrete (AAC) under solar radiation and ambient temperature coupling. A comparative analysis is conducted between traditional sintered bricks (brick), AAC, and autoclaved aerated concrete sandwich insulated wall panels (ATIM), using three thermal engineering models. [...] Read more.
This study examines the dynamic response of autoclaved aerated concrete (AAC) under solar radiation and ambient temperature coupling. A comparative analysis is conducted between traditional sintered bricks (brick), AAC, and autoclaved aerated concrete sandwich insulated wall panels (ATIM), using three thermal engineering models. The experimental group focuses on the south wall, with differentiated designs: Model A (brick), Model B (AAC), and Model C (ATIM). Temperature data collectors assess heat transfer and internal temperature regulation in winter. The results show that the AAC sandwich system significantly reduces thermal fluctuations, with a 26% and 14.8% attenuation in temperature amplitude compared to brick and AAC. The thermal inertia index of the AAC sandwich structure system is 51.5% and 14.58% higher than that of traditional brick walls and AAC walls, respectively. The heat consumption index of ATIM is, on average, 14% lower than that of AAC and 74.5% lower than that of the brick system. The study confirms that the AAC sandwich rock wool wall structure enhances temperature stability and energy efficiency, supporting green building and low-carbon energy-saving goals. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

5 pages, 1783 KB  
Abstract
Defect Detection in Composite Wind Turbine Blade Sandwich Panels Using Dispersion Characteristics of Stress Waves
by Chen-Yi Lin, Chia-Chi Cheng, Yung-Chiang Lin and Jien-Chen Chen
Proceedings 2025, 129(1), 26; https://doi.org/10.3390/proceedings2025129026 - 12 Sep 2025
Viewed by 217
Abstract
To detect delamination and internal void defects within sandwich composite materials, such as those used in wind turbine blades, this study employs a Remote Impact Test (RIT), analyzing the dispersion characteristics of the generated stress waves. RITs were conducted on specimens that varied [...] Read more.
To detect delamination and internal void defects within sandwich composite materials, such as those used in wind turbine blades, this study employs a Remote Impact Test (RIT), analyzing the dispersion characteristics of the generated stress waves. RITs were conducted on specimens that varied in both thickness and defect type. Time–frequency spectrograms and dispersion curves were then obtained using two time–frequency analysis techniques: wavelet analysis and reassigned spectrograms (derived from Short–Time Fourier Transformation). The accuracy of defect identification is demonstrably improved through the cross–examination of the findings from these methods. Full article
Show Figures

Figure 1

18 pages, 3870 KB  
Article
Effectiveness of Surface Pre-Application of Compressed Air Foam in Delaying Combustion Spread to Adjacent Buildings
by Ji-Hyun Yang, Tae-Sun Kim, Tae-Hee Park and Jin-Suk Kwon
Fire 2025, 8(9), 359; https://doi.org/10.3390/fire8090359 - 8 Sep 2025
Viewed by 630
Abstract
Sandwich panels, widely used in factory and warehouse construction, are highly susceptible to fire due to their fragile surfaces and polyurethane-insulated cores. Such structures facilitate rapid fire spread, significantly increasing the risk of extensive thermal damage. Although conventional measures, such as surface pre-wetting, [...] Read more.
Sandwich panels, widely used in factory and warehouse construction, are highly susceptible to fire due to their fragile surfaces and polyurethane-insulated cores. Such structures facilitate rapid fire spread, significantly increasing the risk of extensive thermal damage. Although conventional measures, such as surface pre-wetting, are commonly utilized, their effectiveness is limited due to rapid evaporation. To address this issue, the current study evaluates the effectiveness of compressed air foam (CAF) applied as a pre-application treatment for delaying fire spread. Full-scale fire experiments were conducted to measure temperature variations across sandwich panel surfaces treated under three different conditions: untreated, water-treated, and CAF-treated. Experimental results indicated that CAF effectively formed a stable insulating barrier, maintaining temperatures well below critical thresholds, compared to untreated and water-treated panels. CAF application demonstrated superior thermal protection, reducing internal temperatures by up to 78% compared to untreated conditions and by 67.5% compared to water-treated conditions. These findings underscore the practical importance of adopting CAF pre-application as a proactive fire mitigation strategy, significantly enhancing fire safety standards in industrial and storage facilities constructed with sandwich panels. Full article
Show Figures

Figure 1

28 pages, 5782 KB  
Article
Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning
by Javier Pinilla-Melo, Jose Ramón Aira-Zunzunegui, Giuseppe La Ferla, Daniel de la Prida and María Ángeles Navacerrada
Buildings 2025, 15(17), 3127; https://doi.org/10.3390/buildings15173127 - 1 Sep 2025
Viewed by 1151
Abstract
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the [...] Read more.
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. Full article
Show Figures

Figure 1

24 pages, 11780 KB  
Article
Additive Manufacturing of Carbon Fiber Cores for Sandwich Structures: Optimization of Infill Patterns and Fiber Orientation for Improved Impact Resistance
by Claudio Tosto, Lorena Saitta, Ignazio Blanco, Gabriele Fichera, Mattia Evangelista, Jerin Jose, Alessia Pantaleoni and Irene Bavasso
J. Manuf. Mater. Process. 2025, 9(9), 299; https://doi.org/10.3390/jmmp9090299 - 1 Sep 2025
Viewed by 1015
Abstract
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 [...] Read more.
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 wt.% short carbon fibers. The mechanical response of the structures was evaluated under low-velocity impact (LVI) conditions using instrumented drop weight testing at energy levels ranging from 2 to 20 J. A three-factor, three-level full factorial experimental design was employed, considering build orientation (flat vs. upright), infill pattern (trihexagonal vs. triangular), and impact energy as factors. The maximum contact force was selected as the primary response variable. The results revealed that upright-printed specimens exhibited significantly improved impact resistance compared to flat-printed ones, with increases in peak force of up to 28% for cores and over 68% for sandwich structures. Among the tested infill geometries, the triangular pattern outperformed the trihexagonal one across all configurations and energy levels. The combination of upright orientation and triangular infill proved to be the most effective, providing enhanced energy absorption and reduced rear-side damage, especially under higher impact energies. These findings offer valuable insights into the design of lightweight, impact-resistant structures produced by additive manufacturing, with direct implications for structural components in demanding engineering environments. Full article
Show Figures

Graphical abstract

22 pages, 8402 KB  
Article
Analysis of the Compressive Buckling and Post-Buckling Behaviour of Wood-Based Sandwich Panels Used in Light Aviation
by Hajer Hadiji, Joel Serra, Remi Curti and Bruno Castanié
Aerospace 2025, 12(9), 782; https://doi.org/10.3390/aerospace12090782 - 29 Aug 2025
Viewed by 715
Abstract
This work aims to investigate the buckling and post-buckling behaviour of wood-based sandwich structures with and without a manufacturing defect, under compressive loading. The specimens were made by gluing birch veneers to a balsa wood core. The defect consisted of a central zone [...] Read more.
This work aims to investigate the buckling and post-buckling behaviour of wood-based sandwich structures with and without a manufacturing defect, under compressive loading. The specimens were made by gluing birch veneers to a balsa wood core. The defect consisted of a central zone where glue was lacking between the skin and the core. A compression load was applied to the plate using the VERTEX test rig, with the plate placed on the upper surface of a rectangular box and bolted at its borders. The upper surface of the plate was monitored using optical and infrared cameras. The stereo digital image correlation method was used to capture the in-plane and out-of-plane deformations of the specimen, and to calculate the strains and stresses. The infrared camera enabled the failure scenario to be identified. The buckling behaviour of pristine specimens showed small local debonding in the post-buckling range, which was not detrimental to overall performance. In the presence of a manufacturing defect, the decrease in buckling load was only about 15%, but final failure occurred at lower compressive loads. Full article
(This article belongs to the Special Issue Composite Materials and Aircraft Structural Design)
Show Figures

Figure 1

28 pages, 12093 KB  
Article
Static and Free-Boundary Vibration Analysis of Egg-Crate Honeycomb Core Sandwich Panels Using the VAM-Based Equivalent Model
by Ruihao Li, Hui Yuan, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Yuxin Tang
Materials 2025, 18(17), 4014; https://doi.org/10.3390/ma18174014 - 27 Aug 2025
Viewed by 397
Abstract
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb [...] Read more.
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb architecture, enhancing out-of-plane stiffness and buckling resistance and enabling ventilation and drainage. To facilitate efficient and accurate structural analysis, a two-dimensional equivalent plate model (2D-EPM) is developed using the variational asymptotic method (VAM). This model significantly reduces the complexity of three-dimensional elasticity problems while preserving essential microstructural characteristics. A Reissner–Mindlin-type formulation is derived, enabling local field reconstruction for detailed stress and displacement evaluation. Model validation is conducted through experimental testing and three-dimensional finite element simulations. The 2D-EPM demonstrates high accuracy, with static analysis errors in load–displacement response within 10% and a maximum modal frequency error of 10.23% in dynamic analysis. The buckling and bending analyses, with or without initial deformation, show strong agreement with the 3D-FEM results, with deviations in the critical buckling load not exceeding 5.23%. Local field reconstruction achieves stress and displacement prediction errors below 2.7%, confirming the model’s fidelity at both global and local scales. Overall, the VAM-based 2D-EPM provides a robust and computationally efficient framework for the structural analysis and optimization of advanced sandwich panels. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 5064 KB  
Article
Numerical Analysis of Impact Resistance of Prefabricated Polypropylene Fiber-Reinforced Concrete Sandwich Wall Panels
by Yingying Shang, Pengcheng Li, Xinyi Tang and Gang Xiong
Buildings 2025, 15(17), 3015; https://doi.org/10.3390/buildings15173015 - 25 Aug 2025
Viewed by 534
Abstract
In order to explore new wall panel materials and structural systems suitable for prefabricated buildings, this study proposes a polypropylene fiber-reinforced concrete sandwich wall panel (PFRC sandwich wall panel) and a polypropylene fiber-reinforced concrete sandwich wall panel with glass fiber grid (G-PFRC sandwich [...] Read more.
In order to explore new wall panel materials and structural systems suitable for prefabricated buildings, this study proposes a polypropylene fiber-reinforced concrete sandwich wall panel (PFRC sandwich wall panel) and a polypropylene fiber-reinforced concrete sandwich wall panel with glass fiber grid (G-PFRC sandwich wall panel). A comparative investigation was conducted using finite element analysis to numerically simulate the mechanical response of these composite wall panels under impact loads. The simulation results were compared with those of an unreinforced concrete sandwich wall panel with glass fiber grid (G-UC sandwich wall panel). Key findings include: (1) Compared with the G-UC sandwich wall panel, the G-PFRC sandwich wall panel exhibited 19.3% lower peak deformation and 23.7% reduced residual deformation; (2) Relative to the standard PFRC sandwich wall panel, the G-PFRC sandwich wall panel demonstrated 16.5% smaller peak deformation and 27.9% less residual deformation under impact loads; (3) Damage analysis revealed that the G-PFRC sandwich wall panel developed fewer cracks with lower damage severity compared to both the PFRC and G-UC sandwich wall panels. Parametric studies further indicated that the G-PFRC sandwich wall panel maintains superior deformation resistance and impact performance across varying impact heights and impact masses. The synergistic combination of polypropylene fiber with a glass fiber grid significantly enhances the impact resistance of composite sandwich panels, providing valuable theoretical insights for engineering applications of these novel wall systems in prefabricated construction. Full article
Show Figures

Figure 1

22 pages, 6771 KB  
Article
Enhancing Through-Thickness Electrical Conductivity in Recycled Carbon Fiber-Reinforced Polymer Composites Using Machining Waste
by Denise Bellisario, Fabrizio Quadrini, Francesco Napolitano and Pietro Russo
J. Compos. Sci. 2025, 9(8), 451; https://doi.org/10.3390/jcs9080451 - 21 Aug 2025
Viewed by 684
Abstract
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the [...] Read more.
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the core of a sandwich CFRP panel through the direct molding method. Industrial CFRP powder from grinding operations was collected, sieved and molded into square panels with and without external skins of virgin CFRP prepreg. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analysis revealed thermal activation (~70 °C), indicating potential for reprocessing. This study proposes a novel recycling route that directly molds industrial CFRP grinding waste into the core of sandwich structures, with or without virgin CFRP prepreg skins. Key findings: thermal re-processability was confirmed through TGA and DSC, showing activation near 70 °C; electrical conductivity reached 0.045 S/cm through the thickness in sandwich panels, with recycled cores maintaining comparable conductivity (0.04 S/cm); mechanical performance was improved significantly with prepreg skins, as evidenced by three-point bending tests showing enhanced stiffness and strength. These results demonstrate the potential of recycled CFRP waste in multifunctional structural applications, supporting circular economy goals in composite materials engineering. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

25 pages, 6464 KB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 1068
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

36 pages, 5042 KB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 4034
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

28 pages, 5525 KB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 882
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

28 pages, 5996 KB  
Article
Development of Sustainable Composite Sandwich with Wood Waste and Natural Fibers for Circular Economy Applications
by Sofia Gomes, Paulo Santos and Tânia M. Lima
Recycling 2025, 10(4), 131; https://doi.org/10.3390/recycling10040131 - 2 Jul 2025
Viewed by 556
Abstract
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a [...] Read more.
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a green epoxy resin matrix, incorporating wood waste in the core and flax fibers in the outer layers. Mechanical tests on the sandwich panel revealed a facing bending stress of 92.79 MPa and a core shear stress of 2.43 MPa. The panel demonstrated good compressive performance, with an edgewise compressive strength of 61.39 MPa and a flatwise compressive strength of 96.66 MPa. The material’s viscoelastic behavior was also characterized. In stress relaxation tests (from an initial 21 MPa), the panel’s stress decreased by 20.2% after three hours. The experimental relaxation data were successfully fitted by the Kohlrausch–Williams–Watts (KWW) model for both short- and long-term predictions. In creep tests, the panel showed a 21.30% increase in displacement after three hours under a 21 MPa load. For creep behavior, the KWW model was preferable for short-term predictions, while the Findley model provided a better fit for long-term predictions. Full article
Show Figures

Figure 1

Back to TopTop