Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = scrap tires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1396 KiB  
Article
Life Cycle Assessment of End-of-Life Tire Disposal Methods and Potential Integration of Recycled Crumb Rubber in Cement Composites
by Girts Kolendo, Viktoria Voronova, Girts Bumanis, Aleksandrs Korjakins and Diana Bajare
Appl. Sci. 2024, 14(24), 11667; https://doi.org/10.3390/app142411667 - 13 Dec 2024
Cited by 1 | Viewed by 1478
Abstract
Globally, 1.5 billion annual tire outputs generate a substantial volume of end-of-life tires (ELTs), creating significant environmental challenges. Despite increased recovery rates, ELT management costs in Europe underscore the need for proactive strategies to mitigate environmental and health risks. This study comprehensively evaluates [...] Read more.
Globally, 1.5 billion annual tire outputs generate a substantial volume of end-of-life tires (ELTs), creating significant environmental challenges. Despite increased recovery rates, ELT management costs in Europe underscore the need for proactive strategies to mitigate environmental and health risks. This study comprehensively evaluates the environmental impact of disposal methods, including landfilling, incineration, and crumb rubber production, using Life Cycle Assessment (LCA) via the OpenLCA software 2.0.2. While incineration is sometimes identified as a disposal method, unprocessed scrap tires have potential applications in civil engineering that can better align with sustainability goals. Detailed ELT composition analysis reveals significant recycling potential, with car and truck tires containing 10–20% steel fiber content, less than 1–8% textile fibers, and approximately 80% natural and synthetic rubber content. Recycling 1 ton of ELTs saves an estimated 1.4–1.6 tons of CO2 Eq. compared to incineration. Mechanical recycling and application of recycled crumb rubber in concrete show significant environmental advantages, reducing mass density by approximately 55% and enhancing ductility by up to 40%, according to material testing results. These properties make crumb rubber particularly suitable for acoustic and resilient applications. Additionally, its elasticity and durability offer effective solutions for shoreline reinforcement, mitigating erosion and providing stability during flooding events. When used as a replacement for river sand in cement composites, crumb rubber contributes to a 24.06% reduction in CO2 emissions, highlighting its potential for environmentally friendly construction. Full article
Show Figures

Figure 1

16 pages, 8867 KiB  
Article
Structural, Thermal and Mechanical Assessment of Green Compounds with Natural Rubber
by Xavier Colom, Jordi Sans, Frederic de Bruijn, Fernando Carrillo and Javier Cañavate
Macromol 2024, 4(3), 566-581; https://doi.org/10.3390/macromol4030034 - 7 Aug 2024
Cited by 2 | Viewed by 939
Abstract
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped [...] Read more.
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped thermoplastically. Reclaiming or devulcanization aims to reverse this crosslinking, allowing waste rubber to be transformed into products that can be reprocessed and revulcanized, thereby saving costs and preserving resources. Microwave technology shows promise for devulcanization due to its ability to break sulfur crosslinks. In this study, we investigate the devulcanization of ground tire rubber (GTR) through a combined process applied to samples from both car and truck tires subjected to varying periods of microwave irradiation (0, 3, 5 and 10 min). The devulcanized GTR was then blended with natural rubber (NR) and underwent a new vulcanization process, simulating recycling for novel applications. The GTR was mixed with NR in proportions of 0, 10, 30 and 50 parts per hundred rubber (phr). This study also examines the differences between the GTR from car tires and GTR from truck tires. The results showed that the treatment effectively breaks the crosslinks in the GTR, creating double bonds (C=C) and improving the mechanical properties of the revulcanized samples. The crosslinking density and related properties of the samples increased with treatment time, reaching a maximum at 5 min of microwave treatment, followed by a decrease at 10 min. Additionally, the incorporation of GTR enhanced the thermal stability of the resulting materials. Full article
Show Figures

Graphical abstract

23 pages, 6160 KiB  
Article
Mechanical Properties and Microanalytical Study of Concrete Reinforced with Blended Corn Straw and Scrap Steel Fibers
by Jingjing He, Chuanwu Sun and Xuezhi Wang
Materials 2024, 17(15), 3844; https://doi.org/10.3390/ma17153844 - 2 Aug 2024
Cited by 3 | Viewed by 1276
Abstract
Fiber concrete exhibits superior performance in various aspects compared to plain concrete and has been widely researched and applied worldwide. However, many industrially made fibers are expensive, and their cost has to be considered before use; thus, it would be economically valuable to [...] Read more.
Fiber concrete exhibits superior performance in various aspects compared to plain concrete and has been widely researched and applied worldwide. However, many industrially made fibers are expensive, and their cost has to be considered before use; thus, it would be economically valuable to find inexpensive fibers with excellent properties to make fiber concrete. Rural areas have many rich straw resources to be disposed of; at the same time, the rapid development of the automobile industry has introduced a large number of used tires containing steel wire with a very low reuse rate. These two low-cost materials can be processed to make fibers, making the study of mechanical properties regarding their incorporation into concrete practically significant for reducing the cost of fiber concrete. Based on this, a three-factor, three-level orthogonal test was conducted to investigate the effects of different dosages of corn straw fibers and scrap steel fibers, as well as the water–cement ratio, on the mechanical properties of concrete. The optimum level of each factor for blended straw–waste-steel-fiber concrete with different mechanical properties was obtained using the polar and ANOVA methods. It was found that the compressive strength, splitting tensile strength, flexural strength, and impact resistance of the specimens after fiber dosing were better than those of plain concrete specimens with the same water–cement ratio. The maximum improvement was 14.96% in cubic compressive strength, 42.90% in tensile strength, and 16.30% in flexural strength, while the maximum improvement in impact energy consumption at the final crack was 228.03%. Combined with SEM microanalysis, the two fibers formed a stronger whole with the C-S-H gel. When the specimen was subjected to load, the two fibers were able to withstand part of the load, thus enhancing the load-bearing capacity. Finally, the optimal mix ratio of blended straw–scrap-steel-fiber concrete was determined to be 0.8% corn straw fibers by volume, 0.6% scrap steel fibers by volume, and a 0.45 water–cement ratio by combining the weights of the levels of each factor under its four different mechanical properties through hierarchical analysis. This analysis of mechanical properties provides a reference for practical applications in future projects. Full article
Show Figures

Figure 1

27 pages, 11012 KiB  
Article
Reusability of Scrap Rubber, Tire Shredding, Recycled PVC and Fly Ash for Development of Composites with Vibration Damping Ability
by Dan Dobrotă, Cristinel Sabin Dimulescu and Alin Stăncioiu
Polymers 2024, 16(15), 2167; https://doi.org/10.3390/polym16152167 - 30 Jul 2024
Cited by 1 | Viewed by 1286
Abstract
The study focuses on harnessing recycled materials to create sustainable and efficient composites, addressing both environmental issues related to waste management and industrial requirements for materials with improved vibration damping properties. The research involves the analysis of the physico-mechanical properties of the obtained [...] Read more.
The study focuses on harnessing recycled materials to create sustainable and efficient composites, addressing both environmental issues related to waste management and industrial requirements for materials with improved vibration damping properties. The research involves the analysis of the physico-mechanical properties of the obtained composites and the evaluation of their performance in practical applications. Composite materials were tested in terms of their tensile strength and vibration damping capabilities, considering stress–strain diagrams, vibration amplitudes, frequency response functions (FRFs) and vibration modes. The research results have shown that by adding PVC and FA to the rubber-based matrix composition, the stiffness decreases and elasticity increases. The use of FA in the structure of composite materials causes an increase in the vibration damping possibilities due to the fact that it contributes to the chemical properties of the analyzed composite materials. Additionally, the use of PVC results in increased material elasticity, as evidenced by the higher damping factor compared to materials containing only rubber. Simultaneously, the addition of FA and PVC in specific proportions (60 phr) can lead to a decrease in stiffness and a greater increase in the damping factor. The incorporation of PVC and fly ash (FA) particles into rubber-based matrix composites reduces their stiffness and increases their elasticity. These effects are due to the fact that FA particles behave as extensions of chemical bonds during traction, which contributes to the increase in yield elongation. In addition, the use of flexible PVC increases the elasticity of the material, which is evidenced by the increase in the damping factor. Full article
Show Figures

Figure 1

19 pages, 6399 KiB  
Article
Influence of Carbonated Pyrolysis Oil Recycled from Scrap Tires on Metallurgical Efficiency of Coal Flotation
by Iman Hasanizadeh, Hamid Khoshdast, Mehdi Safari, Kaveh Asgari and Ahmad Rahmanian
Minerals 2024, 14(8), 765; https://doi.org/10.3390/min14080765 - 27 Jul 2024
Viewed by 1235
Abstract
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp [...] Read more.
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp and dosages of reagents, i.e., CPO as an additive, diesel oil as a collector, and pine oil as a frother, on the ash content and yield of the final concentrate were investigated. Experimental data vary significantly based on operational conditions, ranging from 6.6% ash content with a 15% yield to 19.1% ash content with a 76.8% yield. The composition of the pyrolysis oil was identified by using Fourier transform infrared spectroscopy (FTIR). The analysis of variance (ANOVA) of experimental results demonstrated that almost all variables had a substantial effect on the flotation responses, positive or negative, depending on the variable or variable interaction. It was discovered that the usage of CPO intensified the total yield and ash content of concentrate in a nonlinear fashion in a range of 15% and 4%, respectively. The results revealed a non-selective interaction effect between CPO and pine oil, as well as competitive adsorption between diesel oil and CPO, which contributed to the curved behavior of flotation measurements. The detrimental effect of CPO on the flotation response of the studied coal sample was also related to the interaction of the hydrophilic groups in the CPO structure and the oxide groups of ash material in coal particles. This work shows the potential of carbonated pyrolysis oil to enhance coal flotation performance and sheds light on the underlying mechanisms. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 4411 KiB  
Article
Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials
by Mohammed Alamri and Mohammad Khawaji
Polymers 2024, 16(14), 2082; https://doi.org/10.3390/polym16142082 - 21 Jul 2024
Viewed by 913
Abstract
Scrap tires have become one of the most serious environmental issues worldwide in recent years. Exploiting this scrap has caught the attention of researchers in their efforts to conserve the environment. From a structural engineering materials perspective, a partial fine aggregate in cement [...] Read more.
Scrap tires have become one of the most serious environmental issues worldwide in recent years. Exploiting this scrap has caught the attention of researchers in their efforts to conserve the environment. From a structural engineering materials perspective, a partial fine aggregate in cement mortar can be replaced by crumb rubber produced from scrap tires. This research mainly emphasizes the role of adding 0.1% edge-oxidized graphene oxide EOGO (by the weight of cement) in enhancing the properties of cement mortars containing 5%, 10%, and 15% of crumb rubber (by sand replacement). Cube and prism specimens were employed to investigate compressive and flexural strengths at 7- and 28-day curing ages. A porosity test was also conducted after 28 days of curing. In addition, a scanning electron microscopy (SEM) test was performed to investigate the effect of incorporating EOGO on the interfacial transition zone (ITZ). Results showed an enhancement of the mechanical properties of cement mortar, including compressive and flexural strengths, with the inclusion of EOGO in the mixes. The findings demonstrated that adding EOGO can improve the mechanical properties of mixes containing crumb rubber particles. Specifically, the mortar mix with 0.1% EOGO and 5% crumb rubber exhibited better performance compared with the virgin mix without rubber particles. Therefore, crumb rubber is viable for use as a sand replacement when EOGO is included. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 6676 KiB  
Article
Green Manufacturing of UHPFRC Made with Waste Derived from Scrap Tires and Oil Refineries
by Hassan Abdolpour, Murugan Muthu, Paweł Niewiadomski, Łukasz Sadowski, Łukasz Hojdys, Piotr Krajewski and Arkadiusz Kwiecień
Appl. Sci. 2024, 14(12), 5313; https://doi.org/10.3390/app14125313 - 19 Jun 2024
Cited by 2 | Viewed by 767
Abstract
Ultrahigh-performance fiber-reinforced cement-based composite (UHPFRC) made with waste derived from scrap tires and oil refineries was tested in this study. The UHPFRC sample exhibited a maximum compressive strength of about 189 MPa at the end of 28 days. Steel fibers were recovered from [...] Read more.
Ultrahigh-performance fiber-reinforced cement-based composite (UHPFRC) made with waste derived from scrap tires and oil refineries was tested in this study. The UHPFRC sample exhibited a maximum compressive strength of about 189 MPa at the end of 28 days. Steel fibers were recovered from scrap tires and were added up to 3% by volume in the UHPFRC samples. Such additions reduced cement flow by 11% but improved compressive strength by 21%. The equilibrium catalyst particles (ECAT) disposed of by oil refineries were used in amounts of up to 15% by weight as a replacement for cement in such UHPFRC samples. These aluminosilicate materials are spherical in shape and have a porous microstructure, which was found to reduce the cement flow by absorbing more free water onto their surfaces. They also reduced the heat and strength developments at early stages. However, the total cost of the final cement-based mixture and associated CO2 emissions were reduced by up to 7% and 15% due to the inclusion of the ECAT particles. These findings help to optimize the ECAT and recovered steel fibers in the UHPFRC mix design, and such waste valorization strategies can help achieve the goal of becoming carbon neutral. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

15 pages, 11367 KiB  
Article
Microbially Mediated Rubber Recycling to Facilitate the Valorization of Scrap Tires
by Sk Faisal Kabir, Skanda Vishnu Sundar, Aide Robles, Evelyn M. Miranda, Anca G. Delgado and Elham H. Fini
Polymers 2024, 16(7), 1017; https://doi.org/10.3390/polym16071017 - 8 Apr 2024
Cited by 2 | Viewed by 1460
Abstract
The recycling of scrap tire rubber requires high levels of energy, which poses challenges to its proper valorization. The application of rubber in construction requires significant mechanical and/or chemical treatment of scrap rubber to compatiblize it with the surrounding matrix. These methods are [...] Read more.
The recycling of scrap tire rubber requires high levels of energy, which poses challenges to its proper valorization. The application of rubber in construction requires significant mechanical and/or chemical treatment of scrap rubber to compatiblize it with the surrounding matrix. These methods are energy-consuming and costly and may lead to environmental concerns associated with chemical leachates. Furthermore, recent methods usually call for single-size rubber particles or a narrow rubber particle size distribution; this, in turn, adds to the pre-processing cost. Here, we used microbial etching (e.g., microbial metabolism) to modify the surface of rubber particles of varying sizes. Specifically, we subjected rubber particles with diameters of 1.18 mm and 0.6 mm to incubation in flask bioreactors containing a mineral medium with thiosulfate and acetate and inoculated them with a microbial culture from waste-activated sludge. The near-stoichiometric oxidation of thiosulfate to sulfate was observed in the bioreactors. Most notably, two of the most potent rubber-degrading bacteria (Gordonia and Nocardia) were found to be significantly enriched in the medium. In the absence of added thiosulfate in the medium, sulfate production, likely from the desulfurization of the rubber, was also observed. Microbial etching increased the surface polarity of rubber particles, enhancing their interactions with bitumen. This was evidenced by an 82% reduction in rubber–bitumen separation when 1.18 mm microbially etched rubber was used. The study outcomes provide supporting evidence for a rubber recycling method that is environmentally friendly and has a low cost, promoting pavement sustainability and resource conservation. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

11 pages, 2287 KiB  
Article
Enhancing Uptake Capability of Green Carbon Black Recycled from Scrap Tires for Water Purification
by Jiho Choi, Jihyun Kang, Huiseong Yang, Sangin Yoon, Jun-Hyun Kim and Hyun-Ho Park
Coatings 2024, 14(4), 389; https://doi.org/10.3390/coatings14040389 - 27 Mar 2024
Cited by 1 | Viewed by 1758
Abstract
This study reports on the highly simple fabrication of green carbon black (GCB) generated from scrap tires with acetic acid to improve the adsorption efficiency for water purification, which is thoroughly compared with conventional carbon black (CB) obtained from petrochemicals. Unlike traditional modification [...] Read more.
This study reports on the highly simple fabrication of green carbon black (GCB) generated from scrap tires with acetic acid to improve the adsorption efficiency for water purification, which is thoroughly compared with conventional carbon black (CB) obtained from petrochemicals. Unlike traditional modification processes with strong acids or bases, the introduction of a relatively mild acid readily allowed for the effective modification of GCB to increase the uptake capability of metal ions and toxic organic dyes to serve as effective adsorbents. The morphological features and thermal decomposition patterns were examined by electron microscopy and thermogravimetric analysis (TGA). The surface functional groups were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The structural information (ratio of D-defects/G band-graphitic domains) obtained by Raman spectroscopy clearly suggested the successful fabrication of GCB (ID/IG ratio of 0.74), which was distinctively different from typical CB (ID/IG ratio of 0.91). In the modified GCB, the specific surface area (SBET) gradually increased with the reduction of pore size as a function of acetic acid content (52.97 m2/g for CB, 86.64 m2/g for GCB, 102.10-119.50 m2/g for acid-treated GCB). The uptake capability of the modified GCB (312.5 mg/g) for metal ions and organic dyes was greater than that of the unmodified GCB (161.3 mg/g) and typical CB (181.8 mg/g), presumably due to the presence of adsorbed acid. Upon testing them as adsorbents in an aqueous solution, all these carbon materials followed the Langmuir isotherm over the Freundlich model. In addition, the removal rates of cationic species (>70% removal of Cu2+ and crystal violet in 30 min) were much faster and far greater than those of anionic metanil yellow (<40% removal in 3 h), given the strong electrostatic interactions. Thus, this work demonstrates the possibility of recycling waste tires in the powder form of GCB as a cost-effective and green adsorbent that can potentially substitute traditional CB, and the modification strategy provides a proof of concept for developing simple fabrication guidelines of other carbonaceous materials. Full article
Show Figures

Figure 1

14 pages, 3974 KiB  
Article
The Effect of Scrap Tires and Reclaimed Asphalt Pavement on the Behavior of Stone Columns
by Hoora Bikdeli, Morteza Jiryaei Sharahi, Baitollah Badarloo and Petr Lehner
Buildings 2024, 14(3), 733; https://doi.org/10.3390/buildings14030733 - 8 Mar 2024
Cited by 1 | Viewed by 1050
Abstract
The objective of this investigation is to understand how to use waste tires to surround stone pillars and mix gravel with recycled asphalt pavement (RAP) and stone pillars to provide an environmentally friendly and cost-effective weak layer improvement method. To study the behavior [...] Read more.
The objective of this investigation is to understand how to use waste tires to surround stone pillars and mix gravel with recycled asphalt pavement (RAP) and stone pillars to provide an environmentally friendly and cost-effective weak layer improvement method. To study the behavior of such stone columns, experiments were conducted in units consisting of a single stone column with recycled asphalt pavement as filling material and a single stone column covered with old tires. To test the effect of different mixing ratios, rapeseed content was selected from 0% to 100%. Elasticity tests were conducted on cladded and nonclad stone column samples. Furthermore, direct shear tests were conducted on samples with different ratios of gravel and rapeseed mixtures. The results of the load-bearing capacity test show that the cover of the stone columns with old tires can significantly increase the load-bearing capacity. Replacing 25% of natural stone column aggregates with RAP increases the load capacity. But as the percentage of RAP in the mixture increases from 25% to 100%, the loading capacity decreases. Another advantage is the reinforced stone column. From the point of view of ecology, an advantage is the use of recyclable materials. Full article
(This article belongs to the Special Issue Sustainable Building Materials for Infrastructure Application)
Show Figures

Figure 1

24 pages, 18564 KiB  
Article
Experimental and Computational Analyses of Sustainable Approaches in Railways
by Mohammad Adnan Farooq, Naveen Kumar Meena, Piyush Punetha, Sanjay Nimbalkar and Nelson Lam
Infrastructures 2024, 9(3), 53; https://doi.org/10.3390/infrastructures9030053 - 8 Mar 2024
Cited by 4 | Viewed by 2839
Abstract
Railway transportation is widely recognized as an environment-friendly and sustainable means for conveying freight and passengers over long distances. This article investigates the effectiveness of utilizing scrap tire rubber granules and geosynthetics to enhance track performance in response to the growing demands for [...] Read more.
Railway transportation is widely recognized as an environment-friendly and sustainable means for conveying freight and passengers over long distances. This article investigates the effectiveness of utilizing scrap tire rubber granules and geosynthetics to enhance track performance in response to the growing demands for railway transport and the consequent escalation of train-induced loading. A multi-faceted methodology, incorporating experimental, numerical, and analytical techniques, is employed to examine the efficacy of these sustainable approaches. Results from three-dimensional (3D) finite element (FE) analyses conducted on slab tracks for high-speed railways reveal that the addition of a resilient layer, comprising scrap tire rubber granules, reduces vertical stress within the track substructure. Laboratory investigations on an innovative composite material consisting of soil, scrap rubber granules, and polyurethane demonstrate its potential to enhance track performance. Findings from two-dimensional (2D) FE analyses conducted on pile-supported railway embankments highlight an enhanced transfer of load to the pile head following the installation of a geogrid layer at the embankment base. Finally, the results from the analytical approach indicate a reduction in track settlement and a decrease in the track geometry degradation rate on reinforcing the ballast layer with 3D cellular geoinclusion. The novelty of this study lies in the comprehensive assessment of the innovative composite material under drained and cyclic loading conditions, the investigation of the influence of train loading on geosynthetic tension and the load transfer mechanism in railway embankments, and the development of an innovative computational methodology capable of assessing the effectiveness of 3D cellular inclusions in improving the ballasted railway track performance. The findings from this article underscore the effectiveness of these sustainable approaches in mitigating the challenges posed by increased loads on railway tracks, providing valuable insights for the ongoing efforts to optimize railway transportation infrastructure. Full article
Show Figures

Figure 1

23 pages, 12563 KiB  
Article
Numerical Analysis of Rubberized Steel Fiber Reinforced Concrete Beams Subjected to Static and Blast Loadings
by Mahmoud T. Nawar, Ahmed S. Eisa, Mohamed T. Elshazli, Yasser E. Ibrahim and Ayman El-Zohairy
Infrastructures 2024, 9(3), 52; https://doi.org/10.3390/infrastructures9030052 - 8 Mar 2024
Cited by 6 | Viewed by 2484
Abstract
In recent years, the alarming number of terrorist attacks has highlighted the critical need for extensive research aimed at fortifying structures against explosion-induced loads. However, the insufficient energy absorption and brittleness of conventional concrete make it ineffective in withstanding blast loading, encouraging researchers [...] Read more.
In recent years, the alarming number of terrorist attacks has highlighted the critical need for extensive research aimed at fortifying structures against explosion-induced loads. However, the insufficient energy absorption and brittleness of conventional concrete make it ineffective in withstanding blast loading, encouraging researchers to explore innovative strategies for augmenting the energy dissipation capabilities of construction materials. This study specifically delves into the incorporation of recycled rubber, a sustainable and environmentally friendly solution to the pressing issue of scrap tire disposal. The primary focus of this research revolves around the integration of rubber recycling and steel fibers into concrete, with the ultimate goal of enhancing the dynamic response of reinforced concrete (RC) beams. This novel approach not only contributes to the structural resilience required for resisting blast impacts, but also aligns with eco-friendly practices by reusing recycled rubber. A meticulous numerical investigation was undertaken to comprehensively assess the static and blast response of these augmented beams. The numerical study involved developing finite element (FE) models using ABAQUS version 6.14 for static implicit analysis and LS-DYNA R11 for blast explicit simulations. The ABAQUS model was validated against previous experimental testing for load–displacement and failure patterns. Similarly, the LS-DYNA model was validated for blast pressure in accordance with UFC-3-340 standards and for material response under blast loading, utilizing existing experimental data. The numerical models were designed to accommodate varying weight percentages of rubber, ranging from 5% to 20%, and a consistent 1.0% incorporation of steel fibers. This comprehensive analysis aims to provide valuable insights into the efficacy of these materials in improving the structural integrity and blast resistance of RC beams, thereby contributing to the development of more secure and sustainable construction practices. By reducing the reinforcement ratio in order to meet the minimum code requirements, it became evident that the failures of the rubberized RC beams tended to exhibit ductility on the tension side under static loading. In addition, the increase in the reinforcement ratio correlated with a higher failure load and decreased deflection. Furthermore, the findings indicated an optimal concrete mixture characterized by improved ductility, energy absorption, and blast load capacity, achieved by combining 5–10% rubber with steel fibers. Full article
(This article belongs to the Topic Advances on Structural Engineering, 2nd Volume)
Show Figures

Figure 1

3 pages, 1246 KiB  
Proceeding Paper
Novel Scrap Tire Rubber Pad with Steel Rods and Maglev Seismic Isolators
by Arash Akbari Hamed, Mahsa Saeidzadeh, Hamid Reza Hassani Ghoraba and Farid Ostadhasanzadeh Maleky
Eng. Proc. 2023, 53(1), 10; https://doi.org/10.3390/IOCBD2023-15194 - 24 Oct 2023
Viewed by 1135
Abstract
This research presents two innovative base isolators known as the Scrap Tire Rubber Pad with Steel Rods (STRP-SR) isolator and the Magnetic Levitated (Maglev) isolator. The STRP-SR isolator offers a cost-effective solution for low-rise buildings, while the Maglev isolator provides an ideal bearing [...] Read more.
This research presents two innovative base isolators known as the Scrap Tire Rubber Pad with Steel Rods (STRP-SR) isolator and the Magnetic Levitated (Maglev) isolator. The STRP-SR isolator offers a cost-effective solution for low-rise buildings, while the Maglev isolator provides an ideal bearing with zero horizontal stiffness. In this study, both the STRP-SR and Maglev isolators were analyzed numerically, and the experimental specimen of the Maglev isolator was tested on a shaking table. It can be concluded numerically that both isolators have the ability to significantly reduce absolute acceleration and displacement values, with average reductions of 53.24% and 100%, respectively. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Buildings)
Show Figures

Figure 1

30 pages, 2081 KiB  
Review
State of Knowledge on the Effects of Tire-Derived Aggregate (TDA) Used in Civil Engineering Projects on the Surrounding Aquatic Environment
by Jae K. Park, Isabella G. DeNooyer and Jack H. Wahl
Sustainability 2023, 15(20), 15141; https://doi.org/10.3390/su152015141 - 23 Oct 2023
Cited by 2 | Viewed by 3515
Abstract
Tire-derived aggregate (TDA) is an entirely recycled material created by processing scrap tires, which are shredded into a fundamental geometric shape, typically measuring from 5 to 30 cm in size. TDA possesses desirable properties such as low earth pressure, improved drainage, and a [...] Read more.
Tire-derived aggregate (TDA) is an entirely recycled material created by processing scrap tires, which are shredded into a fundamental geometric shape, typically measuring from 5 to 30 cm in size. TDA possesses desirable properties such as low earth pressure, improved drainage, and a lightweight structure, making it an ideal material for numerous civil engineering applications. Unfortunately, the environmental suitability of TDA use has previously been questioned. This article outlines that TDA does not release a significant amount of potentially toxic compounds, the leaching rate in surrounding water environments is low, and TDA can even be a medium to remove nutrients and toxic organic and inorganic compounds commonly found in agricultural land and urban runoff. This study aims to collect the most up-to-date scientific data on the environmental impact of scrap tires and evaluate the data specifically for TDA applications in civil and environmental engineering applications. TDA has been proven to be an environmentally safe, long-lasting, cost-effective, and sustainable resource with many potential applications in civil engineering. Guidelines should be developed for specific projects to achieve a circular economy for end-of-life tires in the form of TDA to avoid potential environmental issues and problems. Full article
(This article belongs to the Special Issue Sustainable Waste Management in the Context of Circular Economy)
Show Figures

Figure 1

20 pages, 9217 KiB  
Article
Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization
by Yajish Giri A/L Parama Giri, Bashar S. Mohammed, M. S. Liew, Noor Amila Wan Abdullah Zawawi, Isyaka Abdulkadir, Priyanka Singh and Gobinath Ravindran
Buildings 2023, 13(8), 2021; https://doi.org/10.3390/buildings13082021 - 8 Aug 2023
Cited by 7 | Viewed by 1803
Abstract
The construction industry is increasingly focused on sustainability, with a particular emphasis on reducing the environmental impact of cement production. One approach to this problem is to use recycled materials and explore eco-friendly raw materials, such as alumino-silicate by-products like fly ash, which [...] Read more.
The construction industry is increasingly focused on sustainability, with a particular emphasis on reducing the environmental impact of cement production. One approach to this problem is to use recycled materials and explore eco-friendly raw materials, such as alumino-silicate by-products like fly ash, which can be used as raw materials for geopolymer concrete. To enhance the ductility, failure mode, and toughness of the geopolymer, researchers have added crumb rubber processed from scrap tires as partial replacement to fine aggregate of the geopolymer. Therefore, this study aims to develop rubberized geopolymer concrete (RGC) by partially replacing the fine aggregate with crumb rubber (CR). To optimize the mechanical properties of RGC, response surface methodology (RSM) has been used to develop 13 mixes with different levels and proportions of CR (10–30% partial replacement of fine aggregate by volume) and sodium hydroxide molarity (10–14 M) as input variables. The results showed that the strength properties increased as the molarity of NaOH increased, while the opposite trend was observed with CR. The maximum values for compressive strength, flexural strength, and uniaxial tensile strength were found to be 25 MPa, 3.1 MPa, and 0.41 MPa, respectively. Response surface models of the mechanical strengths, which were validated using ANOVA with high R2 values of 72–99%, have been developed. It has been found that using 10% CR with 14 M sodium hydroxide resulting in the best mechanical properties for RGC, which was validated with experimental tests. The result of the multi-objective optimization indicated that the optimum addition level for NaOH is 14 M, and the fine aggregate replacement level with CR is 10% in order to achieve a rubberized geopolymer suitable for structural applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop