Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (702)

Search Parameters:
Keywords = second harmonic generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 357 KB  
Article
Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient
by Zhe Zhao, Alfredo González-Calderón, Jorge Adrián Perera-Burgos, Antonio Estrada, Horacio Hernández-Anguiano, Celia Martínez-Lázaro and Yanmei Li
Entropy 2025, 27(10), 1059; https://doi.org/10.3390/e27101059 - 11 Oct 2025
Viewed by 28
Abstract
The second virial coefficient (SVC) of the Lennard-Jones fluid is a cornerstone of molecular theory, yet its calculation has traditionally relied on the complex integration of the pair potential. This work introduces a fundamentally different approach by reformulating the problem in terms of [...] Read more.
The second virial coefficient (SVC) of the Lennard-Jones fluid is a cornerstone of molecular theory, yet its calculation has traditionally relied on the complex integration of the pair potential. This work introduces a fundamentally different approach by reformulating the problem in terms of ordinary differential equations (ODEs). For the classical component of the SVC, we generalize the confluent hypergeometric and Weber–Hermite equations. For the first quantum correction, we present entirely new ODEs and their corresponding exact-analytical solutions. The most striking result of this framework is the discovery that these ODEs can be transformed into Schrödinger-like equations. The classical term corresponds to a harmonic oscillator, while the quantum correction includes additional inverse-power potential terms. This formulation not only provides a versatile method for expressing the virial coefficient through a linear combination of functions (including Kummer, Weber, and Whittaker functions) but also reveals a profound and previously unknown mathematical structure underlying a classical thermodynamic property. Full article
(This article belongs to the Collection Foundations of Statistical Mechanics)
Show Figures

Figure 1

24 pages, 4764 KB  
Article
Mask-Guided Teacher–Student Learning for Open-Vocabulary Object Detection in Remote Sensing Images
by Shuojie Wang, Yu Song, Jiajun Xiang, Yanyan Chen, Ping Zhong and Ruigang Fu
Remote Sens. 2025, 17(19), 3385; https://doi.org/10.3390/rs17193385 - 9 Oct 2025
Viewed by 234
Abstract
Open-vocabulary object detection in remote sensing aims to detect novel categories not seen during training, which is crucial for practical aerial image analysis applications. While some approaches accomplish this task through large-scale data construction, such methods incur substantial annotation and computational costs. In [...] Read more.
Open-vocabulary object detection in remote sensing aims to detect novel categories not seen during training, which is crucial for practical aerial image analysis applications. While some approaches accomplish this task through large-scale data construction, such methods incur substantial annotation and computational costs. In contrast, we focus on efficient utilization of limited datasets. However, existing methods such as CastDet struggle with inefficient data utilization and class imbalance issues in pseudo-label generation for novel categories. We propose an enhanced open-vocabulary detection framework that addresses these limitations through two key innovations. First, we introduce a selective masking strategy that enables direct utilization of partially annotated images by masking base category regions in teacher model inputs. This approach eliminates the need for strict data separation and significantly improves data efficiency. Second, we develop a dynamic frequency-based class weighting that automatically adjusts category weights based on real-time pseudo-label statistics to mitigate class imbalance issues. Our approach integrates these components into a student–teacher learning framework with RemoteCLIP for novel category classification. Comprehensive experiments demonstrate significant improvements on both datasets: on VisDroneZSD, we achieve 42.7% overall mAP and 41.4% harmonic mean, substantially outperforming existing methods. On DIOR dataset, our method achieves 63.7% overall mAP with 49.5% harmonic mean. Our framework achieves more balanced performance between base and novel categories, providing a practical and data-efficient solution for open-vocabulary aerial object detection. Full article
Show Figures

Figure 1

20 pages, 3137 KB  
Article
HX-Linear and Nonlinear Optical Responsiveness of Rationally Designed Heteroleptic d8-Metallo-dithiolene Complexes
by Salahuddin S. Attar, Flavia Artizzu, Luca Pilia, Angela Serpe, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani, Dominique Roberto, Daniele Marinotto and Paola Deplano
Molecules 2025, 30(19), 4004; https://doi.org/10.3390/molecules30194004 - 7 Oct 2025
Viewed by 287
Abstract
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = [...] Read more.
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = 1,2,5-thiadiazole-3,4-dithiolato). Addition of hydrohalic acids induces a strong bathochromic shift and visible color change, which is fully reversed by ammonia (NH3). Moreover, the sensing capability of 1 was further evaluated by deposition on a cellulose substrate. Exposure to HCl vapors induces an evident color change from purple to green, whereas successive exposure to NH3 vapors fully restores the purple color. Remarkably, cellulose films of 1 were revealed to be excellent optical sensors against the response to triethylamine, which is a toxic volatile amine. Moreover, the HCl-responsiveness of the nonlinear optical properties of complexes 1, 2, and 3 embedded into a poly(methyl methacrylate) poled matrix was demonstrated. Reversible chemical second harmonic generation (SHG) switching is achieved by exposing the poled films to HCl vapors and then to NH3 vapors. The SHG response ratio HCl–adduct/complex is significant (around 1.5). Remarkably, the coefficients of the susceptibility tensor for the HCl–adduct films are always larger than those of the respective free-complex films. Density Functional Theory (DFT) and time-dependent DFT calculations help in highlighting the structure–properties relationship. Full article
(This article belongs to the Special Issue Functional Coordination Compounds: Design, Synthesis and Applications)
Show Figures

Figure 1

18 pages, 2228 KB  
Article
Linking Elastin in Skeletal Muscle Extracellular Matrix to Metabolic and Aerobic Function in Type 2 Diabetes: A Secondary Analysis of a Lower Leg Training Intervention
by Nicholas A. Hulett, Leslie A. Knaub, Irene E. Schauer, Judith G. Regensteiner, Rebecca L. Scalzo and Jane E. B. Reusch
Metabolites 2025, 15(10), 655; https://doi.org/10.3390/metabo15100655 - 2 Oct 2025
Viewed by 255
Abstract
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain [...] Read more.
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain ATP production. Yet, previous studies have shown that impairments in muscle bioenergetics in T2D are not solely due to mitochondrial deficits. This finding indicates that factors outside the mitochondria, particularly within the local tissue microenvironment, may contribute to reduced CRF. One such factor is the extracellular matrix (ECM), which plays structural and regulatory roles in metabolic processes. Despite its potential regulatory role, the contribution of ECM remodeling to metabolic impairment in T2D remains poorly understood. We hypothesize that pathological remodeling of the skeletal muscle ECM in overweight individuals with and without T2D impairs bioenergetics and insulin sensitivity, and that exercise may help to ameliorate these effects. Methods: Participants with T2D (n = 21) and overweight controls (n = 24) completed a 10-day single-leg exercise training (SLET) intervention. Muscle samples obtained before and after the intervention were analyzed for ECM components, including collagen, elastin, hyaluronic acid, dystrophin, and proteoglycans, using second harmonic generation imaging and immunohistochemistry. Results: Positive correlations were observed with elastin content and both glucose infusion rate (p = 0.0010) and CRF (0.0363). The collagen area was elevated in participants with T2D at baseline (p = 0.0443) and showed a trend toward reduction following a 10-day SLET (p = 0.0867). Collagen mass remained unchanged, suggesting differences in density. Dystrophin levels were increased with SLET (p = 0.0256). Conclusions: These findings identify that structural proteins contribute to aerobic capacity and identify elastin as an ECM component linked to insulin sensitivity and CRF. Full article
(This article belongs to the Special Issue Effects of Nutrition and Exercise on Cardiometabolic Health)
Show Figures

Figure 1

12 pages, 2720 KB  
Article
Dual-Frequency Soliton Generation of a Fiber Laser with a Dual-Branch Cavity
by Xinbo Mo and Xinhai Zhang
Photonics 2025, 12(10), 981; https://doi.org/10.3390/photonics12100981 - 2 Oct 2025
Viewed by 208
Abstract
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, [...] Read more.
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, the laser can establish simultaneous operation in the normal and anomalous dispersion regimes within the respective loops, enabling the generation of two distinct soliton types. The CSs exhibit a 3 dB spectral bandwidth of 9.7750 nm and a pulse duration of 273 fs, while the DSs have a quasi-rectangular spectrum spanning 18.7074 nm and a pulse duration of 2.2 ps, which can be externally compressed to 384 fs. The fundamental repetition rate is approximately 21 MHz, with a repetition rate difference of 216 Hz for the two pulse trains. Stable second-order, third-order, and fourth-order harmonic mode-locking (HML) can be achieved through optimization of pump power and intracavity polarization states. The laser we build in this work has significant potential for applications in high-precision spectroscopy and asynchronous optical sampling. Full article
Show Figures

Figure 1

22 pages, 6708 KB  
Article
Enhanced Model Predictive Speed Control of PMSMs Based on Duty Ratio Optimization with Integrated Load Torque Disturbance Compensation
by Tarek Yahia, Abdelsalam A. Ahmed, M. M. Ahmed, Amr El Zawawi, Z. M. S. Elbarbary, M. S. Arafath and Mosaad M. Ali
Machines 2025, 13(10), 891; https://doi.org/10.3390/machines13100891 - 30 Sep 2025
Viewed by 379
Abstract
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a [...] Read more.
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a single voltage vector per sampling interval, often suffer from steady-state ripples, elevated total harmonic distortion (THD), and high computational complexity due to exhaustive switching evaluations. The proposed approach addresses these limitations through a novel dual-stage cost function structure: the first cost function optimizes dynamic response via predictive control of speed error, while the second adaptively minimizes torque ripple and harmonic distortion by adjusting the active–zero voltage vector duty ratio without the need for manual weight tuning. Robustness against time-varying disturbances is further enhanced by integrating a real-time load torque observer into the control loop. The scheme is validated through both MATLAB/Simulink R2020a simulations and real-time experimental testing on a dSPACE 1202 rapid control prototyping platform across small- and large-scale PMSM configurations. Experimental results confirm that the proposed controller achieves a transient speed deviation of just 0.004%, a steady-state ripple of 0.01 rpm, and torque ripple as low as 0.0124 Nm, with THD reduced to approximately 5.5%. The duty ratio-based predictive modulation ensures faster settling time, improved current quality, and greater immunity to load torque disturbances compared to recent duty-ratio MPC implementations. These findings highlight the proposed DR-MPDSC as a computationally efficient and experimentally validated solution for next-generation PMSM drive systems in automotive and industrial domains. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

16 pages, 6893 KB  
Article
The Relationship Between Non-Invasive Tests and Digital Pathology for Quantifying Liver Fibrosis in MASLD
by Xiaodie Wei, Lixia Qiu, Xinxin Wang, Chen Shao, Jing Zhao, Qiang Yang, Jun Chen, Meng Yin, Richard L. Ehman and Jing Zhang
Diagnostics 2025, 15(19), 2475; https://doi.org/10.3390/diagnostics15192475 - 27 Sep 2025
Viewed by 376
Abstract
Background: It is crucial to evaluate liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). Digital pathology, an automated method for quantitative fibrosis measurement, provides valuable support to pathologists by providing refined continuous metrics and addressing inter-observer variability. Although non-invasive tests (NITs) have [...] Read more.
Background: It is crucial to evaluate liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). Digital pathology, an automated method for quantitative fibrosis measurement, provides valuable support to pathologists by providing refined continuous metrics and addressing inter-observer variability. Although non-invasive tests (NITs) have been validated as consistent with manual pathology, the relationship between digital pathology and NITs remains unexplored. Methods: This study included 99 biopsy-proven MASLD patients. Quantitative-fibrosis (Q-Fibrosis) used second-harmonic generation/two-photon excitation fluorescence microscopy (SHG/TPEF) to quantify fibrosis parameters (q-FPs). Correlations between eight NITs and q-FPs were analyzed. Results: Using manual pathology as standard, Q-Fibrosis exhibited excellent diagnostic performance in fibrosis stages assessment with area under the receiver operating characteristic curves (AUCs) ranging from 0.924 to 0.967. In addition, magnetic resonance elastography (MRE) achieved the highest diagnostic accuracy (AUC: 0.781–0.977) among the eight NITs. Furthermore, MRE-assessed liver stiffness measurement (MRE-LSM) showed the strongest correlation with q-FPs, particularly adjusted by string length, string width, and the number of short and thick strings within the portal region. Conclusions: Both MRE and digital pathology demonstrated excellent diagnostic accuracy. MRE-LSM was primarily determined by collagen extent, location and pattern, which provide a new perspective for understanding the relationship between the change in MRE and histological fibrosis reverse. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

22 pages, 4143 KB  
Article
Design and Research of an Improved Phase-Locked Loop Based on Levy-AsyLnCPSO Optimization and EA-SOGI Structure
by Xiaoguang Kong, Xiaotian Xu and Guannan Ge
Processes 2025, 13(10), 3036; https://doi.org/10.3390/pr13103036 - 23 Sep 2025
Viewed by 252
Abstract
To address the challenges posed by harmonic distortion and DC offset in the power grid, this paper proposes a novel Phase-Locked Loop (PLL) architecture tailored for single-phase grid-connected systems. The design integrates an Enhanced Adaptive Second-Order Generalized Integrator (EA-SOGI) with a Quasi-Proportional Resonant [...] Read more.
To address the challenges posed by harmonic distortion and DC offset in the power grid, this paper proposes a novel Phase-Locked Loop (PLL) architecture tailored for single-phase grid-connected systems. The design integrates an Enhanced Adaptive Second-Order Generalized Integrator (EA-SOGI) with a Quasi-Proportional Resonant (QPR) controller. The proposed EA-SOGI extends the conventional SOGI by incorporating an all-pass filter and an additional integrator, which enhance the symmetry of the orthogonal signals and effectively suppress the estimation errors caused by DC offset. In addition, the conventional PI controller is replaced by a QPR controller, whose parameters are tuned using a hybrid Levy-AsyLnCPSO optimization algorithm to improve frequency locking performance and enhance system robustness under steady-state conditions. Simulation and experimental results demonstrate that the proposed PLL achieves a Total Harmonic Distortion (THD) as low as 2.8653% based on Fast Fourier Transform (FFT) analysis, indicating superior adaptability compared to conventional PLL structures and validating its effectiveness in DC offset suppression and harmonic mitigation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 295 KB  
Article
On Corresponding Cauchy–Riemann Equations Applied to Laplace-Type Operators over Generalized Quaternions, with an Application
by Ji Eun Kim
Axioms 2025, 14(9), 700; https://doi.org/10.3390/axioms14090700 - 16 Sep 2025
Viewed by 313
Abstract
In this paper, we develop a concise differential–potential framework for the functions of a generalized quaternionic variable in the two-parameter algebra Hα,β, with α,βR{0}. Starting from left/right difference quotients, we [...] Read more.
In this paper, we develop a concise differential–potential framework for the functions of a generalized quaternionic variable in the two-parameter algebra Hα,β, with α,βR{0}. Starting from left/right difference quotients, we derive complete Cauchy–Riemann (CR) systems and prove that, away from the null cone where the reduced norm N vanishes, these first-order systems are necessary and, under C1 regularity, sufficient for left/right differentiability, thereby linking classical one-dimensional calculus to a genuinely four-dimensional setting. On the potential theoretic side, the Dirac factorization Δα,β=D¯D=DD¯ shows that each real component of a differentiable mapping is Δα,β-harmonic, yielding a clean second-order theory that separates the elliptic (Hamiltonian) and split (coquaternionic) regimes via the principal symbol. In the classical case (α,β)=(1,1), we present a Poisson-type representation solving a model Dirichlet problem on the unit ball BR4, recovering mean-value and maximum principles. For computation and symbolic verification, real 4×4 matrix models for left/right multiplication linearize the CR systems. Examples (polynomials, affine CR families, and split-signature contrasts) illustrate the theory, and the outlook highlights boundary integral formulations, Green kernel constructions, and discretization strategies for quaternionic PDEs. Full article
(This article belongs to the Special Issue New Perspectives in Operator Theory and Functional Analysis)
Show Figures

Figure 1

16 pages, 6680 KB  
Article
An Analytical Model of Motion Artifacts in a Measured Arterial Pulse Signal—Part II: Tactile Sensors
by Md Mahfuzur Rahman, Subodh Toraskar, Mamun Hasan and Zhili Hao
Sensors 2025, 25(18), 5700; https://doi.org/10.3390/s25185700 - 12 Sep 2025
Viewed by 420
Abstract
This paper, the second of two parts, presents an analytical model of motion artifacts (MA) in measured pulse signals by a tactile sensor, which contains a deformable microstructure sitting on a substrate. While the tissue-contact-sensor (TCS) stack and the sensor are both treated [...] Read more.
This paper, the second of two parts, presents an analytical model of motion artifacts (MA) in measured pulse signals by a tactile sensor, which contains a deformable microstructure sitting on a substrate. While the tissue-contact-sensor (TCS) stack and the sensor are both treated as a 1DOF (degree-of-freedom) system, tissue–sensor contact joins their mass together to form a 1DOF system with springs and dampers on both sides. MA on the sensor substrate causes baseline drift and time-varying system parameters (TVSP) of the TCS stack simultaneously. An analytical model is developed to mathematically relate baseline drift and TVSP to a measured pulse signal. The numerical calculation is conducted in MATLAB. Baseline drift in a measured pulse signal is much lower than the actual MA in its measurement. As compared to baseline drift, TVSP generates relatively abrupt, small distortion (e.g., 0.2% variation in heart rate and <5% change in pulse amplitude), but it rides on each harmonic of the true pulse signal. Sensor design alters both the deviation of the amplitude and waveform of a measured pulse signal from the true pulse signal and the influence of MA on it. Full article
(This article belongs to the Special Issue Biosignal Sensing Analysis (EEG, EMG, ECG, PPG) (2nd Edition))
Show Figures

Figure 1

12 pages, 2083 KB  
Article
Theoretical Study of Spectroscopic Properties of Fe(III)(acac)3 Under All-Electron Scalar Relativistic Effects
by Luiz C. de Miranda and Nelson H. Morgon
Atoms 2025, 13(9), 79; https://doi.org/10.3390/atoms13090079 - 11 Sep 2025
Viewed by 514
Abstract
Molecular geometry, infrared (IR) vibrational frequencies, and ultraviolet–visible (UV-Vis) electronic absorption spectra of the trivalent iron tris(acetylacetonate) complex, Fe(III)(acac)3, were computed using hybrid meta-generalized gradient approximation (meta-GGA) density functional theory (DFT). Calculations employed the Jorge double-ζ valence plus polarization basis [...] Read more.
Molecular geometry, infrared (IR) vibrational frequencies, and ultraviolet–visible (UV-Vis) electronic absorption spectra of the trivalent iron tris(acetylacetonate) complex, Fe(III)(acac)3, were computed using hybrid meta-generalized gradient approximation (meta-GGA) density functional theory (DFT). Calculations employed the Jorge double-ζ valence plus polarization basis sets (standard DZP and relativistic DZP + DKH). Solvent effects were modeled using the SMD continuum solvation framework with acetonitrile as the dielectric medium. This charge-neutral complex exhibits predominantly ionic metal–ligand bonding character, which simplifies the computational treatment. Despite extensive DFT applications to coordination compounds, systematic benchmarks for this bidentate ligand system remain limited. The computed harmonic frequencies (ν) and electronic excitation energies (λmax) demonstrate excellent agreement with available experimental measurements. These results enable comparative analysis of IR and UV-Vis spectral features, both with and without all-electron scalar relativistic effects with the second-order Douglas–Kroll–Hess approach. Full article
Show Figures

Graphical abstract

14 pages, 11292 KB  
Article
A Novel Method for Obtaining Well-Separated Mn3O4 Nanocrystallites Deposited on the Surface of Spherical Silica
by Oleksandr Pastukh, Magdalena Laskowska, Jarosław Jędryka, Maciej Zubko and Łukasz Laskowski
Int. J. Mol. Sci. 2025, 26(17), 8413; https://doi.org/10.3390/ijms26178413 - 29 Aug 2025
Viewed by 448
Abstract
Manganese oxides have recently gained a lot of interest from scientists due to their unique structural, magnetic and optical properties, which make them favorable for diverse nanotechnological applications. Most applications, however, require stable and well-dispersed nanoparticles of nanometer size. Therefore, in this work, [...] Read more.
Manganese oxides have recently gained a lot of interest from scientists due to their unique structural, magnetic and optical properties, which make them favorable for diverse nanotechnological applications. Most applications, however, require stable and well-dispersed nanoparticles of nanometer size. Therefore, in this work, we show a procedure for obtaining separated crystallites of manganese oxide Mn3O4 on the surface of spherical silica carriers. The morphology and properties of nanoparticles were analyzed based on transmission electron microscopy observations, Raman spectroscopy, and low-temperature SQUID measurements. The analysis of results revealed the formation of well-dispersed Mn3O4 nanoparticles with an average size of approximately 9 nm. The magnetic measurements confirmed the characteristic critical temperature, and a narrow hysteresis loop appeared due to the surface anisotropy of nanoparticles. It was additionally demonstrated that such small nanoparticles possess pronounced nonlinear optical properties, as evidenced by strong signals of second and third harmonic generation. The obtained results fully confirmed the synthesis assumptions and offer promising prospects for the development of a new class of highly optically active manganese-based nanocomposites. Full article
(This article belongs to the Special Issue Investigating the Molecular Research in Functional Nanomaterials)
Show Figures

Figure 1

9 pages, 549 KB  
Article
Interfacing the B-Spline R-Matrix and R-Matrix with Time Dependence Computer Codes: An Update
by Juan C. Del Valle, Aaron T. Bondy, Soumyajit Saha, Kathryn R. Hamilton and Klaus Bartschat
Atoms 2025, 13(9), 75; https://doi.org/10.3390/atoms13090075 - 29 Aug 2025
Viewed by 531
Abstract
As a continuation of Schneider et al., Atoms 2022 10, 26, we report recent progress in the development and deployment of the interface between the computational codes B-Spline R-matrix (BSR) and R-Matrix with Time dependence (RMT). These advances have been achieved within [...] Read more.
As a continuation of Schneider et al., Atoms 2022 10, 26, we report recent progress in the development and deployment of the interface between the computational codes B-Spline R-matrix (BSR) and R-Matrix with Time dependence (RMT). These advances have been achieved within the context of the LS-coupling scheme. In its current state, the interface handles atomic target states described by single configurations and supports the Fano–Racah phase convention, as required by RMT. As first example of an application, we use the interface to investigate multiphoton single ionization of helium exposed to a linearly polarized laser field with wavelengths between 280 and 316 nm and a peak intensity of 3×1014 W/cm2. As a second example, we consider high-order harmonic generation (HHG) in carbon, driven by an intense 30-cycle laser field at 800 nm and a peak intensity of 1×1012 W/cm2. Full article
Show Figures

Figure 1

16 pages, 367 KB  
Article
Generalized Miller Formulae for Quantum Anharmonic Oscillators
by Maximilian T. Meyer and Arno Schindlmayr
Dynamics 2025, 5(3), 34; https://doi.org/10.3390/dynamics5030034 - 28 Aug 2025
Viewed by 546
Abstract
Miller’s rule originated as an empirical relation between the nonlinear and linear optical coefficients of materials. It is now accepted as a useful tool for guiding experiments and computational materials discovery, but its theoretical foundation had long been limited to a derivation for [...] Read more.
Miller’s rule originated as an empirical relation between the nonlinear and linear optical coefficients of materials. It is now accepted as a useful tool for guiding experiments and computational materials discovery, but its theoretical foundation had long been limited to a derivation for the classical Lorentz model with a weak anharmonic perturbation. Recently, we developed a mathematical framework which enabled us to prove that Miller’s rule is equally valid for quantum anharmonic oscillators, despite different dynamics due to zero-point fluctuations and further quantum-mechanical effects. However, our previous derivation applied only to one-dimensional oscillators and to the special case of second- and third-harmonic generation in a monochromatic electric field. Here we extend the proof to three-dimensional quantum anharmonic oscillators and also treat all orders of the nonlinear response to an arbitrary multi-frequency field. This makes the results applicable to a much larger range of physical systems and nonlinear optical processes. The obtained generalized Miller formulae rigorously express all tensor elements of the frequency-dependent nonlinear susceptibilities in terms of the linear susceptibility and thus allow a computationally inexpensive quantitative prediction of arbitrary parametric frequency-mixing processes from a small initial dataset. Full article
(This article belongs to the Special Issue Theory and Applications in Nonlinear Oscillators: 2nd Edition)
Show Figures

Graphical abstract

10 pages, 2984 KB  
Article
A Wideband D-Band Frequency Sextupler Chain with High Harmonic Rejection in 100 nm GaAs pHEMT Technology
by Pinqing Wang, Zhe Chen, Yubin Guo, Yue Qi and Peng Yang
Micromachines 2025, 16(9), 984; https://doi.org/10.3390/mi16090984 - 27 Aug 2025
Viewed by 523
Abstract
This paper presents a wideband D-band frequency sextupler chain implemented in a 100 nm GaAs pHEMT process. The proposed circuit comprises an input-stage frequency tripler, an inter-stage harmonic-rejection power amplifier, and an output-stage frequency doubler. The tripler adopts a balanced topology, which effectively [...] Read more.
This paper presents a wideband D-band frequency sextupler chain implemented in a 100 nm GaAs pHEMT process. The proposed circuit comprises an input-stage frequency tripler, an inter-stage harmonic-rejection power amplifier, and an output-stage frequency doubler. The tripler adopts a balanced topology, which effectively suppresses the fundamental frequency component. The inter-stage power amplifier not only delivers sufficient drive power to the doubler but also enhances suppression of undesired harmonics. The output doubler employs a single-balanced configuration to suppress odd-order harmonics while extracting the second harmonic. The measured peak output power of the sextupler chain is 2.33 dBm, corresponding to an input power of 2 dBm, resulting in a conversion gain of 0.33 dB. The 3 dB output bandwidth spans from 126.3 to 152.7 GHz, corresponding to a relative bandwidth of 18.9%. Owing to the balanced multiplier topology and harmonic-rejection PA, the 5th and 7th harmonics are suppressed by more than 20 dBc. The combination of high output power, wide operating bandwidth, and excellent harmonic suppression makes the design well suited for wideband D-band signal generation in diverse applications. Full article
Show Figures

Figure 1

Back to TopTop