Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,150)

Search Parameters:
Keywords = secretion characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 24023 KB  
Article
Histological Study on Digestive System of Triplophysa yarkandensis in Saline-Alkali and Freshwater Environments: Adaptive Mechanisms
by Zhengwei Wang, Yichao Hao, Yinsheng Chen, Qing Ji, Tao Ai, Shijing Zhang, Jie Wei, Zhaohua Huang and Zhulan Nie
Biology 2025, 14(9), 1187; https://doi.org/10.3390/biology14091187 - 3 Sep 2025
Abstract
Triplophysa yarkandensis, a unique saline-alkali tolerant fish in the Tarim River Basin, exhibits unclear adaptive mechanisms of its digestive system to saline-alkali stressors. This study compared the histological characteristics of the digestive system in fish reared in saline-alkali water (salinity 5.89, alkalinity [...] Read more.
Triplophysa yarkandensis, a unique saline-alkali tolerant fish in the Tarim River Basin, exhibits unclear adaptive mechanisms of its digestive system to saline-alkali stressors. This study compared the histological characteristics of the digestive system in fish reared in saline-alkali water (salinity 5.89, alkalinity 125.60) and freshwater. Histological characteristics were analyzed using hematoxylin-eosin staining, and parameters were quantified via Image-Pro Plus software, with statistical comparisons performed using independent sample t-tests. Key findings included a 2.7-fold increase in oropharyngeal club cell density (48.50 ± 2.68 vs. 17.80 ± 2.04, p < 0.01) with denser stratified squamous epithelium in the saline-alkali group; a 74% increase in esophageal goblet cells (104.42 ± 6.67 vs. 59.94 ± 4.68, p < 0.01) alongside a 39% reduction in mucosal fold height; 87%, 24%, and 51% increases in villi number across the foregut, midgut, and hindgut, respectively, with an 84% elevation in midgut goblet cells (p < 0.01); and mild vacuolization in the hepatopancreas. Results indicate that T. yarkandensis adapts via synergistic strategies of enhanced digestive mucus secretion, epithelial structural optimization, and hepatopancreatic metabolic reprogramming. The coordinated villi proliferation and mucus secretion enhance nutrient absorption and osmotic barrier function, providing a theoretical basis for saline-alkali aquaculture. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

39 pages, 1281 KB  
Review
Advanced Coating Strategies for Immunomodulatory Biomaterials for Reconstructive Osteogenesis: Mitigating Foreign Body Reaction and Promoting Tissue Regeneration
by Davide Frumento and Ştefan Ţălu
Coatings 2025, 15(9), 1026; https://doi.org/10.3390/coatings15091026 - 2 Sep 2025
Abstract
Immune cells play a pivotal role in orchestrating tissue repair, executing functions such as debris clearance, extracellular matrix remodeling, and modulation of cytokine secretion profiles. However, when their activity is dysregulated or inadequately directed, these same processes can give rise to chronic inflammation [...] Read more.
Immune cells play a pivotal role in orchestrating tissue repair, executing functions such as debris clearance, extracellular matrix remodeling, and modulation of cytokine secretion profiles. However, when their activity is dysregulated or inadequately directed, these same processes can give rise to chronic inflammation and foreign body reactions (FBR), ultimately leading to fibrosis and compromised biomaterial performance. The immunological landscape following injury or biomaterial implantation is profoundly influenced by the physicochemical properties of material surfaces. By strategically tailoring these surface characteristics, it becomes possible to modulate immune cell responses—governing their adhesion, recruitment, proliferation, polarization, and cytokine expression patterns. This review elucidates the multifaceted roles of immune cells in tissue repair and their dynamic interactions with implanted biomaterials. It then explores how specific surface attributes—such as topography, chemistry, stiffness, and wettability—influence immune behavior. Particular emphasis is placed on recent advances in surface modification techniques aimed at engineering next-generation biomaterials that mitigate adverse immune responses while actively promoting regenerative healing. The review concludes by offering critical insights into the future of immunomodulatory biomaterial design, highlighting both emerging opportunities and persisting challenges in the field. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Figure 1

19 pages, 3792 KB  
Article
Biological and Genomic Insights into Fusarium acuminatum Causing Needle Blight in Pinus tabuliformis
by Linin Song, Yuying Xu, Tianjin Liu, He Wang, Xinyue Wang, Changxiao Fu, Xiaoling Xie, Yakubu Saddeeq Abubakar, Abah Felix, Ruixian Yang, Xinhong Jing, Guodong Lu, Jiandong Bao and Wenyu Ye
J. Fungi 2025, 11(9), 636; https://doi.org/10.3390/jof11090636 - 29 Aug 2025
Viewed by 352
Abstract
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from [...] Read more.
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from diseased Pinus tabuliformis samples collected in Xi’an city, Shaanxi Province. Of these fungal isolates, only one (isolate AP-3) was pathogenic to the healthy host plant. The pathogenic isolate was identified as Fusarium acuminatum by morphological characteristics and ITS and TEF-1α sequence analyses. The optimal growth conditions for this isolate were further analyzed as follows: Optimal temperature of 25 °C, pH of 11, soluble starch and sodium nitrate as the most preferred carbon and nitrogen sources, respectively. By combining Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina short-read sequencing technologies, we obtained a 41.50 Mb genome assembly for AP-3, with 47.97% GC content and 3.04% repeats. This consisted of 14 contigs with an N50 of 4.64 Mb and a maximum length of 6.45 Mb. The BUSCO completeness of the genome assembly was 98.94% at the fungal level and 97.83% at the Ascomycota level. The genome assembly contained 13,408 protein-coding genes, including 421 carbohydrate-active enzymes (CAZys), 120 cytochrome P450 enzymes (CYPs), 3185 pathogen-host interaction (PHI) genes, and 694 candidate secreted proteins. To our knowledge, this is the first report of F. acuminatum causing needle blight of P. tabuliformis. This study not only uncovered the pathogen responsible for needle blight of P. tabuliformis, but also provided a systematic analysis of its biological characteristics. These findings provide an important theoretical basis for disease control in P. tabuliformis and pave the way for further research into the fungal pathogenicity mechanisms and management strategies. Full article
Show Figures

Figure 1

23 pages, 1866 KB  
Systematic Review
Salivary Flow Rate in Patients with Kidney Failure on Hemodialysis—A Systematic Review and Meta-Analysis
by Parinaz Mohammadi, Casper P. Bots and Henk S. Brand
J. Clin. Med. 2025, 14(17), 6108; https://doi.org/10.3390/jcm14176108 - 29 Aug 2025
Viewed by 330
Abstract
Background/Objectives: During kidney failure, chronic hemodialysis therapy (HD) is required to replace lost renal function, and patients on regular HD frequently report xerostomia. This systematic review and meta-analysis aims to compare salivary flow rates between patients with kidney failure on HD and healthy [...] Read more.
Background/Objectives: During kidney failure, chronic hemodialysis therapy (HD) is required to replace lost renal function, and patients on regular HD frequently report xerostomia. This systematic review and meta-analysis aims to compare salivary flow rates between patients with kidney failure on HD and healthy controls and to evaluate acute changes in salivary secretion before and after a dialysis session. Methods: A systematic review was conducted in accordance with PRISMA guidelines. PubMed, Web of Science, and Embase were searched for observational studies quantifying salivary flow rates in adult patients with kidney failure on chronic hemodialysis versus healthy controls or pre- versus post-dialysis. Data on salivary flow rates were extracted and stratified by subtype (whole or gland-specific) and condition (stimulated or unstimulated), along with key study characteristics including participant demographics, saliva collection methods, and dialysis duration. Study quality was appraised using NHLBI tools and categorized as poor, fair, or good. Where ≥2 homogeneous datasets existed, random-effects meta-analyses (α = 0.05) were performed to estimate mean differences (95% CI) for each salivary parameter; heterogeneity was evaluated via I2. Results: A total of 20 studies (13 cross-sectional, 7 before-after) met inclusion, of which 17 studies (with a total of 1224 HD patients and 548 controls) were meta-analyzed. Compared with controls, HD patients showed lower secretion rates of unstimulated whole saliva (UWS: MD −0.11 mL/min; 95% CI −0.20 to −0.02; I2 = 94%) and stimulated whole saliva (SWS: MD −0.77 mL/min; 95% CI −0.94 to −0.60; I2 = 92%), whereas stimulated parotid saliva (SPS) did not differ significantly (MD −0.08 mL/min; 95% CI −0.77 to 0.60; I2 = 96%). In before-after analyses, both UWS (MD +0.15 mL/min; 95% CI 0.02–0.28; I2 = 90%) and SWS (MD +0.20 mL/min; 95% CI 0.14–0.26; I2 = 0%) increased immediately post-HD. Conclusions: Despite methodological challenges and population heterogeneity, the evidence indicates salivary hypofunction in HD patients and improvement after hemodialysis. The magnitude of these effects seems influenced by underlying comorbidities (notably diabetes), HD duration, and methodological factors. Since saliva is of major importance to maintaining good oral health, recognizing and managing dry mouth should therefore be part of the comprehensive care of patients with kidney failure. Full article
(This article belongs to the Special Issue Dental Care: Oral and Systemic Disease Prevention: 2nd Edition)
Show Figures

Figure 1

12 pages, 1019 KB  
Article
The Mutual Influence of Oleoresin Between Rootstock and Scion in Grafted Pine
by Junkang Xie, Yuanheng Feng, Zhangqi Yang, Jianhui Tan, Zhonglei Meng, Jie Jia and Dongshan Wu
Horticulturae 2025, 11(9), 996; https://doi.org/10.3390/horticulturae11090996 - 22 Aug 2025
Viewed by 298
Abstract
Grafting constitutes a crucial approach for the preservation of pine clones. Slash pine is commonly used as the rootstock for grafting Masson pine scions in Guangxi. In this context, the fresh oleoresin samples of Masson pine, slash pine, and grafted pine (with Masson [...] Read more.
Grafting constitutes a crucial approach for the preservation of pine clones. Slash pine is commonly used as the rootstock for grafting Masson pine scions in Guangxi. In this context, the fresh oleoresin samples of Masson pine, slash pine, and grafted pine (with Masson pine as scion and slash pine as rootstock) were analyzed by gas chromatography–mass spectrometry and gas chromatography, and the key chemical components (α-pinene, β-pinene, longifolene, and isopimaric acid) that can quickly and accurately distinguish the oleoresin of Masson pine and slash pine were found and identified. According to the changes in the relative content of key compounds of oleoresin in scion and rootstock, it was found that the oleoresin of rootstock and scion could interact. Further research showed that the mutual influence of oleoresin between rootstock and scion was persistent, and the influence of rootstock on oleoresin at the scion was affected by height. However, the height effect included a large individual differences, which were not significantly related to the grafting height, tree height, diameter at breast height, etc., but may have been related to the differences in synthesis speed of oleoresin between rootstocks and scions. This work reveals the possible mechanism of mutual influence and secretion of oleoresin in grafted pine trees, laying a foundation for the study of the characteristics of oleoresin from pines grafted by different types, with great significance for the breeding of pine with high yield of oleoresin, and the production and application of special compounds containing oleoresin. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

21 pages, 1387 KB  
Review
Role of Transport Proteins for the Renal Handling of L-Arginine and Related Derivatives
by Lorenz A. Scherpinski, Jörg König and Renke Maas
Int. J. Mol. Sci. 2025, 26(16), 7899; https://doi.org/10.3390/ijms26167899 - 15 Aug 2025
Viewed by 435
Abstract
L-arginine and its derivatives L-homoarginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) show distinct (patho-) physiological properties as well as a differential renal handling. L-arginine and L-homoarginine have a lower renal clearance and are largely retained (i.e., reabsorbed) as compared to ADMA and [...] Read more.
L-arginine and its derivatives L-homoarginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) show distinct (patho-) physiological properties as well as a differential renal handling. L-arginine and L-homoarginine have a lower renal clearance and are largely retained (i.e., reabsorbed) as compared to ADMA and SDMA, which are relatively enriched in the urine and excreted. To obtain a more complete picture of what is known regarding transport proteins involved in renal reabsorption and secretion of these substances, a comprehensive literature review and search of cell-specific gene expression databases were performed. Five transport proteins known to transport L-arginine and its derivatives were included, and the data available regarding their tubular expression pattern and their transport characteristics, as well as experimental and clinical data regarding their possible impact on the renal handling of L-arginine and its derivatives, are presented and discussed in a structured narrative review. Based on their transport properties and links to clinical phenotypes, b0,+AT-rBAT and y+LAT1-4F2hc were identified as the most promising candidates to explain a significant part of the observed differential renal handling. This also makes them promising candidates for further investigations as mediators of possible adverse and beneficial drug effects involving L-arginine, L-homoarginine, ADMA, and SDMA. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

16 pages, 901 KB  
Review
Genomics in Lung Cancer: A Scoping Review of the Role of ctDNA in Non-Advanced Non-Small-Cell Lung Cancer in the Prediction of Prognosis After Multimodality Therapeutic Approaches
by Carolina Sassorossi, Jessica Evangelista, Alessio Stefani, Marco Chiappetta, Antonella Martino, Annalisa Campanella, Elisa De Paolis, Dania Nachira, Marzia Del Re, Francesco Guerrera, Luca Boldrini, Andrea Urbani, Stefano Margaritora, Angelo Minucci, Emilio Bria and Filippo Lococo
Genes 2025, 16(8), 962; https://doi.org/10.3390/genes16080962 - 15 Aug 2025
Viewed by 593
Abstract
Background: Circulating tumor DNA (ctDNA), shed into bodily fluids by cancer cells through apoptosis, necrosis, or active secretion, is currently used in the field of genomic investigation in clinical settings, primarily for advanced stages of non-small-cell lung cancer (NSCLC). However, its potential [...] Read more.
Background: Circulating tumor DNA (ctDNA), shed into bodily fluids by cancer cells through apoptosis, necrosis, or active secretion, is currently used in the field of genomic investigation in clinical settings, primarily for advanced stages of non-small-cell lung cancer (NSCLC). However, its potential role in guiding the multi-omic approach to early-stage NSCLC is emerging as a promising area of investigation. Efforts are being made to integrate the genomics not only in surgery, but also in the definition of long-term prognosis after surgical or radiotherapy and for the prediction of recurrence. Methods: An extensive literature search was conducted on PubMed, covering publications from 2000 to 2024. Using the advanced search tool, titles and abstracts were filtered based on the following keywords: ctDNA, early stage, NSCLC. From this search, 20 studies that fulfilled all inclusion criteria were selected for analysis in this review. Results: This review highlights the growing body of evidence supporting the potential clinical use of ctDNA as a genomic biomarker in managing early-stage NSCLC. Baseline ctDNA levels offer valuable information about tumor molecular biology and histological characteristics. Beyond its prognostic value before treatment, liquid biopsy has proven useful for tracking minimal residual disease and forecasting recurrence following curative interventions such as surgery or radiotherapy. Future adjuvant treatment decisions may increasingly rely on predictive models that incorporate liquid biopsy findings alongside other clinical factors. Conclusions: The potential use of this analyte introduces new opportunities for the integration of genomic data in treatment, as well as relapse monitoring with more accurate and innovative than traditional methods, particularly in patients with early-stage NSCLC Full article
(This article belongs to the Special Issue Clinical Diagnosis and Analysis of Cancers)
Show Figures

Graphical abstract

21 pages, 3451 KB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Viewed by 423
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

26 pages, 769 KB  
Review
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair
by Manorathna Arun, Sheeja Rajasingh, Parani Madasamy and Johnson Rajasingh
Bioengineering 2025, 12(8), 844; https://doi.org/10.3390/bioengineering12080844 - 5 Aug 2025
Viewed by 872
Abstract
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders [...] Read more.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis. Mesenchymal stromal cells (MSCs), multipotent stem cells capable of differentiating into osteoblasts, have emerged as promising agents for bone regeneration, primarily through the paracrine effects of their secreted exosomes. MSC-derived exosomes are nanoscale vesicles enriched with proteins, lipids, and nucleic acids that promote intercellular communication, osteoblast proliferation and differentiation, and angiogenesis. Notably, they deliver osteoinductive microRNAs (miRNAs) that influence osteogenic markers and support bone tissue repair. In vivo investigations validate their capacity to enhance bone regeneration, increase bone volume, and improve biomechanical strength. Additionally, MSC-derived exosomes regulate the immune response, creating pro-osteogenic and pro-angiogenic factors, boosting their therapeutic efficacy. Due to their cell-free characteristics, MSC-derived exosomes offer benefits such as diminished immunogenicity and minimal risk of off-target effects. These properties position them as promising and innovative approaches for bone regeneration, integrating immunomodulatory effects with tissue-specific regenerative capabilities. Full article
Show Figures

Figure 1

12 pages, 806 KB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Viewed by 644
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

14 pages, 2093 KB  
Article
Parameter Identification Method of Grid-Forming Static Var Generator Based on Trajectory Sensitivity and Proximal Policy Optimization Algorithm
by Yufei Teng, Peng Shi, Jiayu Bai, Xi Wang, Ziyuan Shao, Tian Cao, Xianglian Guan and Zongsheng Zheng
Electronics 2025, 14(15), 3119; https://doi.org/10.3390/electronics14153119 - 5 Aug 2025
Viewed by 250
Abstract
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which [...] Read more.
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which play an important role in maintaining voltage stability. However, the parameters of the GFM-SVG are often unknown due to trade secret reasons. Meanwhile, the parameters may be changed during the long-term operation of the system, which brings challenges to the system stability analysis and control. Aiming at this problem, a parameter identification method based on trajectory sensitivity analysis and the proximal policy optimization (PPO) algorithm is proposed in this paper. Firstly, through trajectory sensitivity analysis, the key influential parameters on the output characteristics of the GFM-SVG can be selected, which can reduce the dimensionality of the identification parameters and improve the identification efficiency. Then, a parameter identification framework based on the PPO algorithm is constructed for GFM-SVGs, which utilizes its adaptive learning capability to achieve accurate identification of the key parameters of the system. Finally, the effectiveness of the proposed parameter identification method is verified through simulation examples. The simulation results show that the identification error of the parameters in the GFM-SVG is small. The proposed method can characterize the output response of the GFM-SVG under different operating conditions. Full article
Show Figures

Figure 1

18 pages, 7271 KB  
Article
ENO1 from Mycoplasma bovis Disrupts Host Glycolysis and Inflammation by Binding ACTB
by Rui-Rui Li, Xiao-Jiao Yu, Jia-Yin Liang, Jin-Liang Sheng, Hui Zhang, Chuang-Fu Chen, Zhong-Chen Ma and Yong Wang
Biomolecules 2025, 15(8), 1107; https://doi.org/10.3390/biom15081107 - 1 Aug 2025
Viewed by 456
Abstract
Mycoplasma bovis is an important pathogen that is associated with respiratory diseases, mastitis, and arthritis in cattle, leading to significant economic losses in the global cattle industry. Most notably in this study, we pioneer the discovery that its secreted effector ENO1 (α-enolase) directly [...] Read more.
Mycoplasma bovis is an important pathogen that is associated with respiratory diseases, mastitis, and arthritis in cattle, leading to significant economic losses in the global cattle industry. Most notably in this study, we pioneer the discovery that its secreted effector ENO1 (α-enolase) directly targets host cytoskeletal proteins for metabolic–immune regulation. Using an innovative GST pull-down/mass spectrometry approach, we made the seminal discovery of β-actin (ACTB) as the primary host target of ENO1—the first reported bacterial effector–cytoskeleton interaction mediating metabolic reprogramming. ENO1–ACTB binding depends on a hydrogen bond network involving ACTB’s 117Glu and 372Arg residues. This interaction triggers (1) glycolytic activation via Glut1 upregulation, establishing Warburg effect characteristics (lactic acid accumulation/ATP inhibition), and (2) ROS-mediated activation of dual inflammatory axes (HIF-1α/IL-1β and IL-6/TNF-α). This work establishes three groundbreaking concepts: (1) the first evidence of a pathogen effector hijacking host ACTB for metabolic manipulation, (2) a novel ‘glycolysis–ACTB–ROS-inflammation’ axis, and (3) the first demonstration of bacterial proteins coordinating a Warburg effect with cytokine storms. These findings provide new targets for anti-infection therapies against Mycoplasma bovis. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

30 pages, 9289 KB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 - 31 Jul 2025
Viewed by 481
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
Show Figures

Graphical abstract

19 pages, 9816 KB  
Article
Developmental Parallels Between the Human Organs of Zuckerkandl and Adrenal Medulla
by Ekaterina Otlyga, Dmitry Otlyga, Olga Junemann, Yuliya Krivova, Alexandra Proshchina, Anastasia Kharlamova, Victoria I. Gulimova, Gleb Sonin and Sergey Saveliev
Life 2025, 15(8), 1214; https://doi.org/10.3390/life15081214 - 31 Jul 2025
Viewed by 365
Abstract
The adrenal medulla and organs of Zuckerkandl consist of chromaffin cells that produce, store, and secrete catecholamines. In humans, the adrenal medulla is known to function throughout postnatal life, while the organs of Zuckerkandl degenerate by 2–3 years of postnatal life. Although the [...] Read more.
The adrenal medulla and organs of Zuckerkandl consist of chromaffin cells that produce, store, and secrete catecholamines. In humans, the adrenal medulla is known to function throughout postnatal life, while the organs of Zuckerkandl degenerate by 2–3 years of postnatal life. Although the history of investigation of chromaffin cells goes back more than a century, little is known about the reciprocal organogenesis of the adrenal glands and organs of Zuckerkandl during human fetal development. In the current study, we compared these two organs using serial sectioning, routine histological staining, and immunohistochemical reactions in human embryos, prefetuses, and fetuses from 8 to 26 gestational weeks. In our study, we used antibodies for tyrosine hydroxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase, which are enzymes of catecholamine synthesis, β-III tubulin, and S100. We found two morphological cell types (large and small) in the developing ganglia, organs of Zuckerkandl, and adrenal medulla, and two migration patterns of large cells and small cells. The immunohistochemical characteristics of these cells were determined. We revealed that the number of small cells increased significantly at the ages from 16 to 21–22 gestational weeks, followed by a decrease at 22.5–26 gestational weeks. The presence of two large cell subpopulations was suggested—those that migrate primarily from organs of the Zuckerkandl region and those that differentiate later from the small cells. We also determined that 12 gestational weeks was the age of the first appearance of phenylethanolamine N-methyltransferase reactivity in developing chromaffin cells, temporally correlating with synaptogenesis events. This is important data in the light of the controversial glucocorticoid theory of phenylethanolamine N-methyltransferase induction in humans. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

20 pages, 4025 KB  
Article
Genomic Analysis of Cadmium-Resistant and Plant Growth-Promoting Burkholderia alba Isolated from Plant Rhizosphere
by Luyao Feng, Xin Liu, Nan Wang, Zhuli Shi, Yu Wang, Jianpeng Jia, Zhufeng Shi, Te Pu and Peiwen Yang
Agronomy 2025, 15(8), 1780; https://doi.org/10.3390/agronomy15081780 - 24 Jul 2025
Viewed by 671
Abstract
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba [...] Read more.
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba YIM B08401 strain was isolated and identified from rhizospheric soil, subjected to whole-genome sequencing and analysis, and its Cd2+ adsorption efficiency and characteristics were confirmed using multiple experimental methods, including atomic absorption spectrometry (AAS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The results showed that the genome of strain YIM B08401 has a total length of 7,322,157 bp, a GC content of 66.39%, and predicts 6504 protein-coding sequences. It contains abundant functional genes related to nutrient conversion (phosphate solubilization, sulfur metabolism, zinc solubilization, siderophore production), plant hormone regulation (indole-3-acetic acid secretion, ACC deaminase production), phenolic acid degradation, root colonization, heavy metal tolerance, pathogen antagonism, and the production of antagonistic secondary metabolites. Additionally, strain YIM B08401 can specifically bind to Cd2+ through various functional groups on the cell surface, such as C-O-C, P=O, and O-H, enabling biosorption. In conclusion, strain YIM B08401 is an excellent strain with plant-growth-promoting, disease-resistant, and bioremediation capabilities, warranting further development as a biofertilizer for agricultural applications to promote green and sustainable agricultural development. Full article
Show Figures

Figure 1

Back to TopTop