Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (556)

Search Parameters:
Keywords = self-assembled monolayer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 181
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

18 pages, 1464 KB  
Article
A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker
by Khouloud Djebbi, Yang Xiang, Biao Shi, Lyes Douadji, Xiaohan Chen, Jin Liu, Chaker Tlili and Deqiang Wang
Bioengineering 2025, 12(8), 805; https://doi.org/10.3390/bioengineering12080805 - 27 Jul 2025
Viewed by 509
Abstract
The human Tau protein stands for one of the most conspicuous and crucial hallmarks of Alzheimer’s disease (AD) diagnosis, along with other tauopathies. However, the assay for direct detection of tiny Tau protein concentrations in human samples continues to pose a significant challenge [...] Read more.
The human Tau protein stands for one of the most conspicuous and crucial hallmarks of Alzheimer’s disease (AD) diagnosis, along with other tauopathies. However, the assay for direct detection of tiny Tau protein concentrations in human samples continues to pose a significant challenge for the early diagnosis of AD. Thus, an amplification-based strategy is required. In this proposed work, we established an impedimetric immunosensor to detect human Tau-441 protein in PBS buffer using a sandwich approach, wherein we employed two distinct monoclonal antibodies (HT7 and BT2) that specifically recognize the amino acids 159–198 of the target protein. Through this strategy, we were able to detect as low as 0.08 pg/mL. These findings were attributed to the use of a biotinylated antibody (BT2)-streptavidin complex, which facilitated the amplification of the normalized signal, resulting in a lower limit of detection in comparison to the directly based immunosensors. Subsequently, we investigated the designed immunosensor to assess the assay’s selectivity in the presence of different off-targets, and no cross-interaction was recorded. The outcomes of our study provide valuable new insights into the application of sandwich-based assay as a highly sensitive and selective immunosensor for the detection of small protein. Full article
(This article belongs to the Special Issue Nanobiosensors for Age-Related Diseases Diagnosis)
Show Figures

Figure 1

16 pages, 1420 KB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 389
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

37 pages, 8085 KB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 607
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

15 pages, 2226 KB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 937
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

14 pages, 1444 KB  
Article
A Dual Immunosensor Based on Optical Weak Value Amplification for Simultaneous Detection of CA125 and HE4
by Bei Wang, Gengyu Liang, Lingqin Meng, Han Li, Zishuo Song, Yang Xu, Yonghong He, Deling Duan, Qiuxia Shi, Tian Guan and Ya Gong
Sensors 2025, 25(11), 3347; https://doi.org/10.3390/s25113347 - 26 May 2025
Cited by 1 | Viewed by 585
Abstract
Simultaneous detection of multiple biomarkers is essential for effective cancer screening. Taking ovarian cancer as an example, the combined detection of CA125 and HE4 has proven to be the most efficient and accurate among multiple biomarker combinations. In this study, we proposed a [...] Read more.
Simultaneous detection of multiple biomarkers is essential for effective cancer screening. Taking ovarian cancer as an example, the combined detection of CA125 and HE4 has proven to be the most efficient and accurate among multiple biomarker combinations. In this study, we proposed a dual immunosensor based on weak value amplification (WVA) to detect ovarian cancer. By modifying the sensor surface through a self-assembled monolayer technique and utilizing recombinant protein G for antibody enrichment and directional capture, the sensor enables high-precision, simultaneous detection of CA125 and HE4, with detection limits of 5.39 U/mL and 1.79 ng/mL, respectively. Furthermore, the sensor demonstrates excellent specificity, effectively distinguishing target analytes from non-target molecules. This study provides a novel approach for early cancer screening and clinical diagnosis, highlighting the potential of WVA-based immunosensors in ovarian cancer detection. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 2024 KB  
Article
Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells
by Huaxi Gao, Yu Zhang, Ihtesham Ghani, Min Xin, Danish Khan, Junyu Wang, Di Lu, Tao Cao, Wei Chen, Xin Yang and Zeguo Tang
Nanomaterials 2025, 15(10), 766; https://doi.org/10.3390/nano15100766 - 20 May 2025
Viewed by 560
Abstract
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer [...] Read more.
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb–N coordination bonds with undercoordinated Pb2+ but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a VOC enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

45 pages, 11703 KB  
Review
A Comprehensive Review of Self-Assembled Monolayers as Hole-Transport Layers in Inverted Perovskite Solar Cells
by Yuchen Yuan, Houlin Li, Haiqiang Luo, Yang Zhang, Xiaoli Li, Ting Jiang, Yajie Yang, Lei Liu, Baoyan Fan and Xia Hao
Energies 2025, 18(10), 2577; https://doi.org/10.3390/en18102577 - 16 May 2025
Cited by 1 | Viewed by 3358
Abstract
The hole-transport layer (HTL) plays a pivotal role in engineering high-performance inverted perovskite solar cells (PSCs), as it governs both hole extraction/transport dynamics and critically impacts the crystallization quality of the perovskite absorber layer in device architectures. Recent advancements have highlighted self-assembled monolayers [...] Read more.
The hole-transport layer (HTL) plays a pivotal role in engineering high-performance inverted perovskite solar cells (PSCs), as it governs both hole extraction/transport dynamics and critically impacts the crystallization quality of the perovskite absorber layer in device architectures. Recent advancements have highlighted self-assembled monolayers (SAMs) as promising candidates for next-generation HTL materials in inverted PSCs due to their intrinsic advantages over conventional counterparts. These molecularly engineered interfaces demonstrate superior characteristics including simplified purification processes, tunable molecular structures, and enhanced interfacial compatibility with device substrates. This review systematically examines the progress, existing challenges, and future prospects of SAM-based HTLs in inverted photovoltaic systems, aiming to establish a systematic framework for understanding their structure–property relationships. The review is organized into three sections: (1) fundamental architecture of inverted PSCs, (2) molecular design principles of SAMs with emphasis on head-group functionality, and (3) recent breakthroughs in SAM-engineered HTLs and their modification strategies for HTL optimization. Through critical analysis of performance benchmarks and interfacial engineering approaches, we elucidate both the technological merits and inherent limitations of SAM implementation in photovoltaic devices. Furthermore, we propose strategic directions for advancing SAM-based HTL development, focusing on molecular customization and interfacial engineering to achieve device efficiency and stability targets. This comprehensive work aims to establish a knowledge platform for accelerating the rational design of SAM-modified interfaces in next-generation optoelectronic devices. Full article
(This article belongs to the Collection Review Papers in Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 3406 KB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1261
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

12 pages, 10248 KB  
Article
Formation, Structure, and Thermal Annealing Effects of Ordered Self-Assembled Monolayers of 4-Fluorobenzeneselenol on Au(111)
by Sicheon Seong, Jin Wook Han, Gayeong Joo, Hyun Sun Sung, Hong Kyu Park and Jaegeun Noh
Molecules 2025, 30(9), 2057; https://doi.org/10.3390/molecules30092057 - 5 May 2025
Viewed by 694
Abstract
The formation, surface structure, and thermal annealing effects of self-assembled monolayers (SAMs) via vapor deposition of 4-fluorobenzeneselenol (4-FBSeH) on Au(111) at room temperature were investigated using scanning tunneling microscopy (STM). The most prominent structural feature is that 4-fluorobenzeneselenolate (4-FBSe) SAMs on Au(111) are [...] Read more.
The formation, surface structure, and thermal annealing effects of self-assembled monolayers (SAMs) via vapor deposition of 4-fluorobenzeneselenol (4-FBSeH) on Au(111) at room temperature were investigated using scanning tunneling microscopy (STM). The most prominent structural feature is that 4-fluorobenzeneselenolate (4-FBSe) SAMs on Au(111) are composed of numerous SAM-covered Au adatom islands, regardless of the deposition time. High-resolution STM observations revealed that the ordered phase of 4-FBSe SAMs was formed after very short deposition times of 30 s and 3 min, whereas the disordered phase was formed after long deposition times of 1 h and 24 h. The ordered phase can be described as a (4 × 2√3) structure, and the average areal molecular density of the SAMs was calculated to be 29.0 Å2/molecule, suggesting the formation of densely packed monolayers with a standing-up adsorption structure. Interestingly, after thermal annealing at 373 K for 30 min, the (4 × 2√3) ordered phase of the SAMs was transformed to randomly distributed, short, single-molecular rows ranging from several nanometers to approximately ten nanometers in length, which has not been observed previously in organic thiolate SAMs. The high-resolution STM results of this study can provide very meaningful information for understanding the formation, surface structure, and thermal annealing effects of 4-FBSe SAMs on Au(111). Full article
(This article belongs to the Special Issue Molecular Self-Assembly in Interfacial Chemistry)
Show Figures

Graphical abstract

13 pages, 4740 KB  
Article
Explore the Structural and Electronic Properties at the Organic/Organic Interfaces of Thiophene-Based Supramolecular Architectures
by Lixia Kang, Hui Lu, Shunze Xia, Xianfei Xu, Yao Tian and Zechao Yang
Nanomaterials 2025, 15(8), 601; https://doi.org/10.3390/nano15080601 - 14 Apr 2025
Viewed by 535
Abstract
The structural and electronic properties at organic/organic interfaces determine the functionality of organic electronics. Here, we investigated the structural and electronic properties at interfaces between methyl-substituted dicyanovinyl-quinquethiophenes (DCV5T-Me2) and other electron acceptor molecules, namely fullerene (C60) and tetracyanoquinodimethane (TCNQ), [...] Read more.
The structural and electronic properties at organic/organic interfaces determine the functionality of organic electronics. Here, we investigated the structural and electronic properties at interfaces between methyl-substituted dicyanovinyl-quinquethiophenes (DCV5T-Me2) and other electron acceptor molecules, namely fullerene (C60) and tetracyanoquinodimethane (TCNQ), by using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS). Upon adsorption on Au(111), DCV5T-Me2 molecules self-assemble into compact islands at sub-monolayer coverage through hydrogen bonding and electrostatic interactions. A similar bonding configuration dominates in the second layer of a bilayer film, where DCV5T-Me2 possesses higher-lying LUMO (lowest unoccupied molecular orbital) and LUMO+1 in energy due to a decoupling effect. The co-deposition of DCV5T-Me2 and C60 does not result in ordered hybrid assemblies at the sub-monolayer coverage on Au(111). On the other hand, C60 molecules can self-assemble into ordered islands on top of the DCV5T-Me2 monolayer. The dI/dV spectra reveal that the LUMO of decoupled C60 is 400 mV lower in energy than the LUMO of decoupled DCV5T-Me2. This energy difference facilitates electron transfer from DCV5T-Me2 to C60. The co-deposition of DCV5T-Me2 and TCNQ leads to the formation of hybrid nanostructures. A tip-induced electric field can manipulate the charging and discharging of TCNQ by surrounding DCV5T-Me2, manifested as sharp peaks and dips in dI/dV spectra recorded over TCNQ. Full article
(This article belongs to the Special Issue Surface and Interfacial Sciences of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

16 pages, 6298 KB  
Article
Optimization and Preparation of Polysaccharide–Protamine Microspheres with Enhanced Hemostatic and Antibacterial Properties for Wound Healing
by Danling Mei, Feifan Cheng, Yifan Li, Suzhen Zhang, Xueqin Zhao and Yanyan Zhao
Mar. Drugs 2025, 23(4), 160; https://doi.org/10.3390/md23040160 - 6 Apr 2025
Viewed by 679
Abstract
This study employs layer-by-layer self-assembly technology to develop novel antibacterial hemostatic microspheres to tackle significant blood loss and related complications resulting from accidents, surgeries, and natural disasters. By measuring the zeta potential and particle size of protamine, carboxymethyl starch (CMS), and hydroxypropyl trimethyl [...] Read more.
This study employs layer-by-layer self-assembly technology to develop novel antibacterial hemostatic microspheres to tackle significant blood loss and related complications resulting from accidents, surgeries, and natural disasters. By measuring the zeta potential and particle size of protamine, carboxymethyl starch (CMS), and hydroxypropyl trimethyl ammonium chloride chitosan (HACC), the optimal assembly conditions were determined. The optimal pH for the monolayer assembly is 3.0, with a CMS concentration of 3 mg/mL and a mass ratio of 1:4 between protamine and CMS, and the assembly process lasts for 2 h. The optimal assembly conditions for the bilayer assembly are a pH of 4.0, an HACC concentration of 1 mg/mL, and a mass ratio of the one-layer assembly to HACC of 1:2. The performance of the assembled microspheres was analyzed via antibacterial and coagulation experiments, revealing excellent antibacterial and coagulation effects, with inhibition rates against Escherichia coli and Bacillus subtilis both exceeding 99%, and a coagulation index of 0%. Additionally, the bilayer assembled microspheres also exhibited strong adsorption capacity and good biocompatibility. In summary, this study provides important scientific evidence for the development of new hemostatic materials, demonstrating significant clinical application potential. Full article
(This article belongs to the Special Issue Marine Polysaccharide-Based Biomaterials)
Show Figures

Figure 1

22 pages, 3815 KB  
Review
Vacuum Processability of Self-Assembled Monolayers and Their Chemical Interaction with Perovskite Interfaces
by Hyeji Han, Siwon Yun, Zobia Irshad, Wonjong Lee, Min Kim, Jongchul Lim and Jinseck Kim
Energies 2025, 18(7), 1782; https://doi.org/10.3390/en18071782 - 2 Apr 2025
Viewed by 2123
Abstract
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges [...] Read more.
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges such as non-uniform coverage, solvent contamination, and limited control over molecular orientation hinder their scalability and reproducibility. In contrast, vacuum deposition techniques, including thermal evaporation, overcome these limitations by enabling the formation of highly uniform materials with precise control over thickness and molecular arrangement. Importantly, the chemical interactions between SAM materials and perovskite layers, including coordination bonding with Pb2+ ions, play an important role in passivating surface defects, modulating energy levels, and promoting uniform perovskite crystallization. These interactions not only enhance wettability but also improve the overall quality and stability of perovskite films. This review highlights the advantages of vacuum-deposited SAMs, promoting strong chemical interactions with perovskite layers and improving interfacial properties critical for scalable applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 4036 KB  
Article
Warfarin Pharmacogenomics: Designing Electrochemical DNA-Based Sensors to Detect CYP2C9*2 Gene Variation
by Tiago Barbosa, Stephanie L. Morais, Eduarda Pereira, Júlia M. C. S. Magalhães, Valentina F. Domingues, Hygor Ferreira-Fernandes, Giovanny Pinto, Marlene Santos and Maria Fátima Barroso
Genes 2025, 16(4), 372; https://doi.org/10.3390/genes16040372 - 24 Mar 2025
Viewed by 863
Abstract
Background/Objectives: The CYP2C9 enzyme is involved in the metabolism of warfarin. The CYP2C9 gene harbors several single-nucleotide polymorphisms (SNPs), including CYP2C9*2 (rs1799853), which is known to affect warfarin’s therapeutic response. So, it is important to develop analytical tools capable of genotyping these SNPs [...] Read more.
Background/Objectives: The CYP2C9 enzyme is involved in the metabolism of warfarin. The CYP2C9 gene harbors several single-nucleotide polymorphisms (SNPs), including CYP2C9*2 (rs1799853), which is known to affect warfarin’s therapeutic response. So, it is important to develop analytical tools capable of genotyping these SNPs to adjust warfarin’s therapeutic outcomes. In this work, an electrochemical DNA-based sensor was constructed and optimized for the detection of the CYP2C9*2 polymorphism. Methods: Using bioinformatic database platforms, two 71 base pair DNA target probes with the polymorphic variants A and G were chosen and designed. A DNA-based sensor was composed by mercaptohexanol and the CYP2C9*2 DNA capture probe in a self-assembled monolayer connected to screen-printed gold electrodes. Two independent hybridization events of the CYP2C9*2 allele were designed using complementary fluorescein-labeled DNA signaling to improve selectivity and avoid secondary structures. Three human samples with the homozygous variant (G/G) and non-variant (A/A) and heterozygous (G/A) genotypes were amplified by PCR and then applied to the developed genosensor. Results: Chronoamperometry measurements were performed for both polymorphic probes. A calibration curve in the 0.25 to 2.50 nM (LOD of 13 pM) and another in the 0.15 to 5.00 nM range (LOD of 22.6 pM) were obtained for the homozygous non-variant and variant probes, respectively. This innovative tool was capable of identifying the hybridization reaction between two complementary strands of immobilized DNA, representing a genotyping alternative to the classical PCR methodology. Conclusions: The developed electrochemical DNA-based sensor was able to discriminate two synthetic SNP target sequences (Target-A and Target-G) and detect, with specificity, the three patients’ genotypes (G/G, G/A, and A/A). This tool is therefore a promising, sensitive, and cost-effective analytical way to determine and discriminate an individual’s genotype and predict the appropriate warfarin dose. Full article
(This article belongs to the Special Issue Genetics of Multifactorial Diseases: 2nd Edition)
Show Figures

Figure 1

18 pages, 2283 KB  
Article
A Platform for the Glucose Biosensor Based on Dendritic Gold Nanostructures and Polyaniline-Gold Nanoparticles Nanocomposite
by Natalija German, Anton Popov, Arunas Ramanavicius and Almira Ramanaviciene
Biosensors 2025, 15(3), 196; https://doi.org/10.3390/bios15030196 - 19 Mar 2025
Cited by 1 | Viewed by 780
Abstract
Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold [...] Read more.
Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNS), a cystamine (Cys) self-assembled monolayer (SAM), and glucose oxidase (GOx) (GR/DGNS/Cys/GOx) and GR electrode modified with DGNS, Cys SAM, enzymatically obtained polyaniline (PANI) nanocomposites with embedded 6 nm gold nanoparticles (AuNPs) and GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx) were investigated electrochemically. Biosensors based on GR/DGNS/Cys/GOx and GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrodes were characterized by a linear range (LR) of up to 1.0 mM of glucose, storage stability of over 71 days, sensitivity of 93.7 and 72.0 μA/(mM cm2), limit of detection (LOD) of 0.027 and 0.034 mM, reproducibility of 13.6 and 9.03%, and repeatability of 8.96 and 8.01%, respectively. The GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrode was proposed as more favorable for glucose concentration determination in serum due to its better stability and resistance to interfering electrochemically active species. The technological solutions presented in this paper are expected to enable the development of innovative mediator-free enzymatic glucose biosensors, offering advantages for clinical assays, particularly for controlling blood glucose concentration in individuals with diabetes. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

Back to TopTop