Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = serotype K54

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4115 KB  
Article
In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach
by Eman G. Youssef, Khaled Elnesr and Amro Hanora
Diseases 2025, 13(8), 259; https://doi.org/10.3390/diseases13080259 - 13 Aug 2025
Viewed by 336
Abstract
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred [...] Read more.
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred in Europe, resulting in symptoms ranging from bloody diarrhea to life-threatening colitis and hemolytic uremic syndrome (HUS). Since treatment options remain limited and have changed little over the past 40 years, there is an urgent need for an effective vaccine. Such a vaccine would offer major public health and economic benefits by preventing severe infections and reducing outbreak-related costs. A multiepitope vaccine approach, enabled by advances in immunoinformatics, offers a promising strategy for targeting HUS-causing E. coli (O104:H4 and O157:H7 serotypes) with minimal disruption to normal microbiota. This study aimed to design an immunogenic multiepitope vaccine (MEV) construct using bioinformatics and immunoinformatic tools. Methods and Results: Comparative proteomic analysis identified 672 proteins unique to E. coli O104:H4, excluding proteins shared with the nonpathogenic E. coli K-12-MG1655 strain and those shorter than 100 amino acids. Subcellular localization (P-SORTb) identified 17 extracellular or outer membrane proteins. Four proteins were selected as vaccine candidates based on transmembrane domains (TMHMM), antigenicity (VaxiJen), and conservation among EHEC strains. Epitope prediction revealed ten B-cell, four cytotoxic T-cell, and three helper T-cell epitopes. Four MEVs with different adjuvants were designed and assessed for solubility, stability, and antigenicity. Structural refinement (GALAXY) and docking studies confirmed strong interaction with Toll-Like Receptor 4 (TLR4). In silico immune simulations (C-ImmSim) indicated robust humoral and cellular immune responses. In Conclusions, the proposed MEV construct demonstrated promising immunogenicity and warrants further validation in experimental models. Full article
Show Figures

Figure 1

17 pages, 3414 KB  
Article
Acute Febrile Illness Associated with an Emerging Dengue 4 GIIb Variant Causing Epidemic in León, Nicaragua 2022
by Omar Zepeda, Edwing C. Cuadra, Daniel O. Espinoza, Yerun Zhu, Hernán Vanegas, Alexis Domeracki, Rodrigo A. Mora-Rodríguez, Anne Piantadosi, Jesse J. Waggoner, Armando J. Matute, Lakshmanane Premkumar, Aravinda M. de Silva, Matthew H. Collins, Megan E. Reller and Filemón Bucardo
Viruses 2025, 17(8), 1113; https://doi.org/10.3390/v17081113 - 13 Aug 2025
Viewed by 755
Abstract
Historically, DENV-4 has been rarely associated with epidemics and has been less well-studied than DENV-1 to -3. Epidemic dengue struck several South and Central American countries in 2022, with Nicaragua reporting the highest incidence. In an acute febrile illness (AFI) cohort enrolled from [...] Read more.
Historically, DENV-4 has been rarely associated with epidemics and has been less well-studied than DENV-1 to -3. Epidemic dengue struck several South and Central American countries in 2022, with Nicaragua reporting the highest incidence. In an acute febrile illness (AFI) cohort enrolled from June to September 2022, 58 (34%) of 172 patients had PCR-confirmed dengue, of which 46 (79%) were serotyped as DENV-4. In this cohort, acute dengue, as a proportion of AFI, increased from 8% in June to a peak of 58% in August. Genome sequencing and phylogenetic analysis identified a lineage of DENV-4 Genotype IIb (GIIb) with six amino acid substitutions on the surface-exposed regions of the envelope (E) protein as compared to a reference sequence from 2005. Indeed, two of these mutations appear to be novel and located at G172E or near N174K, an antigenic epitope on domain I. Most (90%, 43/48) DENV-4 patients had pre-existing DENV IgG (secondary dengue), at the acute phase. Secondary dengue was associated with the male sex (prevalence ratio (PR)), 6.88) and being younger than 11 years of age (PR, 8.38). Further analysis showed no association between past Zika exposure and DENV-4 acute illness in older subjects (≥12 years of age). In conclusion, our study describes an epidemic of DENV-4 in León, Nicaragua, associated with a novel lineage of genotype GIIb, which contains two amino acid changes not observed in DENV-4 before 2022. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

24 pages, 5906 KB  
Article
In Silico Mining of the Streptome Database for Hunting Putative Candidates to Allosterically Inhibit the Dengue Virus (Serotype 2) RdRp
by Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Tarad Abalkhail, Shahzeb Khan and Mahmoud A. A. Ibrahim
Pharmaceuticals 2025, 18(8), 1135; https://doi.org/10.3390/ph18081135 - 30 Jul 2025
Viewed by 576
Abstract
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is [...] Read more.
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is a charming druggable target owing to its crucial function in viral reproduction. In recent years, streptomycetes natural products (NPs) have attracted considerable attention as a potential source of antiviral drugs. Methods: Seeking prospective inhibitors that inhibit the DENV2 RdRp allosteric site, in silico mining of the Streptome database was executed. AutoDock4.2.6 software performance in predicting docking poses of the inspected inhibitors was initially conducted according to existing experimental data. Upon the assessed docking parameters, the Streptome database was virtually screened against DENV2 RdRp allosteric site. The streptomycetes NPs with docking scores less than the positive control (68T; calc. −35.6 kJ.mol−1) were advanced for molecular dynamics simulations (MDS), and their binding affinities were computed by employing the MM/GBSA approach. Results: SDB9818 and SDB4806 unveiled superior inhibitor activities against DENV2 RdRp upon MM/GBSA//300 ns MDS than 68T with ΔGbinding values of −246.4, −242.3, and −150.6 kJ.mol−1, respectively. A great consistency was found in both the energetic and structural analyses of the identified inhibitors within the DENV2 RdRp allosteric site. Furthermore, the physicochemical characteristics of the identified inhibitors demonstrated good oral bioavailability. Eventually, quantum mechanical computations were carried out to evaluate the chemical reactivity of the identified inhibitors. Conclusions: As determined by in silico computations, the identified streptomycetes NPs may act as DENV2 RdRp allosteric inhibitors and mandate further experimental assays. Full article
Show Figures

Graphical abstract

20 pages, 3015 KB  
Article
Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil
by Nathaly Barros Nunes, Vinicius Silva Castro, Adelino da Cunha-Neto, Fernanda Tavares Carvalho, Ricardo César Tavares Carvalho and Eduardo Eustáquio de Souza Figueiredo
Genes 2025, 16(8), 880; https://doi.org/10.3390/genes16080880 - 26 Jul 2025
Viewed by 653
Abstract
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was [...] Read more.
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was extracted and sequenced on the NovaSeq 6000 platform; the pangenome was assembled using the Roary tool; and the phylogenetic tree was constructed via IQ-TREE. Results and Discussion: For contextualization and comparison, 3493 Salmonella genomes of Brazilian origin from NCBI were analyzed. In our isolates, both strains carried the aac(6′)-Iaa_1 gene, while only Schwarzengrund harbored the qnrB19_1 gene and the Col440I_1 plasmid. Cerro presented the islands SPI-1, SPI-2, SPI-3, SPI-4, SPI-5 and SPI-9, while Schwarzengrund also possessed SPI-13 and SPI-14. Upon comparison with other Brazilian genomes, we observed that Cerro and Schwarzengrund represented only 0.40% and 2.03% of the national database, respectively. Furthermore, they revealed that Schwarzengrund presented higher levels of antimicrobial resistance, a finding supported by the higher frequency of plasmids in this serovar. Furthermore, national data corroborated our findings that SPI-13 and SPI-14 were absent in Cerro. A virulence analysis revealed distinct profiles: the cdtB and pltABC genes were present in the Schwarzengrund isolates, while the sseK and tldE1 family genes were exclusive to Cerro. The results indicated that the sequenced strains have pathogenic potential but exhibit low levels of antimicrobial resistance compared to national data. The greater diversity of SPIs in Schwarzengrund explains their prevalence and higher virulence potential. Conclusions: Finally, the serovars exhibit distinct virulence profiles, which results in different clinical outcomes. Full article
Show Figures

Figure 1

15 pages, 4418 KB  
Article
Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China
by Wei Yan, Liping Chen, Lei Ji, Rui Yuan, Fenfen Dong and Peng Zhang
Foods 2025, 14(14), 2481; https://doi.org/10.3390/foods14142481 - 15 Jul 2025
Viewed by 499
Abstract
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of [...] Read more.
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of the strains. A total of 306 isolates were detected from 1314 aquatic food samples from 2022 to 2024. The results indicated that the most prevalent serotypes were O1:KUT (17.0%), O2:K28 (13.7%), and O2:KUT (13.1%). Multilocus sequence typing analysis divided the 306 isolates into 175 sequence types (STs), and the predominant sequence type was ST864 (3.3%). Antimicrobial susceptibility tests showed that 2.6% of isolates were multidrug resistant. High resistance was observed to ampicillin (64.7%) and streptomycin (44.4%). A total of seven antimicrobial categories of resistance genes were identified, and the resistance gene blaCARB was detected in all isolates. The virulence genes tdh and trh were found in 16 (5.2%) and 12 (3.9%) isolates, respectively. In addition, we observed that all the 306 V. parahaemolyticus isolates encode type III secretion systems 1. The phylogenomic analysis based on the whole-genome sequence revealed that the 306 isolates were divided into four clusters. Our findings broaden perspectives on V. parahaemolyticus genetic diversity and enhance our ability to assess the potential risks of its spread. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 2497 KB  
Article
Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
by Yanjun Lu, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang and Ying Li
Microorganisms 2025, 13(7), 1544; https://doi.org/10.3390/microorganisms13071544 - 30 Jun 2025
Viewed by 401
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our [...] Read more.
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our knowledge, depolymerases targeting K. pneumoniae K54-type strains have rarely been identified. Here, we identified and characterized three novel capsule depolymerases, Dep_C, Dep_Y, and Dep_Z, derived from three different K. pneumoniae phages, which retained robust activity across a broad pH range (pH 3.0–12.0) and demonstrated thermal stability up to 50 °C. These depolymerases could efficiently digest the CPS of K. pneumoniae K54-serotype strains, significantly inhibit biofilm formation, and remove their mature biofilms. Although no bactericidal activity was detected, these depolymerases rendered host bacteria susceptible to serum complement-mediated killing. We further demonstrate that Dep_C, Dep_Y, and Dep_Z can effectively and significantly prolong the survival time of mice in a pneumonia model infected with K54-type K. pneumoniae and reduce the colonization and virulence of the bacteria in the mice. These findings indicate that depolymerases Dep_C, Dep_Y, and Dep_Z could increase bacterial susceptibility to host immune responses of hvKp to the host through their degradation effect on the CPS. In conclusion, our study demonstrates that the three capsule depolymerases are promising antivirulent agents to combat CR-hvKp infections. Full article
Show Figures

Figure 1

23 pages, 3999 KB  
Article
Genomic Characterization of Escherichia coli Isolates from Alpaca Crias (Vicugna pacos) in the Peruvian Highlands: Insights into Functional Diversity and Pathogenicity
by Celso Zapata, Lila Rodríguez, Yolanda Romero, Pedro Coila, Renán Dilton Hañari-Quispe, Oscar Oros, Victor Zanabria, Carlos Quilcate, Diórman Rojas, Juancarlos Cruz, Narda Ortiz and Richard Estrada
Microorganisms 2025, 13(7), 1533; https://doi.org/10.3390/microorganisms13071533 - 30 Jun 2025
Viewed by 535
Abstract
Diarrhea in alpaca crias significantly impacts livestock health in high-altitude regions, with Escherichia coli as a common pathogen. This study analyzed 10 E. coli isolates from diarrheic and healthy alpacas using whole-genome sequencing to assess genetic diversity, virulence factors, and antibiotic resistance. Predominant [...] Read more.
Diarrhea in alpaca crias significantly impacts livestock health in high-altitude regions, with Escherichia coli as a common pathogen. This study analyzed 10 E. coli isolates from diarrheic and healthy alpacas using whole-genome sequencing to assess genetic diversity, virulence factors, and antibiotic resistance. Predominant sequence types (ST73, ST29), serotypes (O22:H1, O109:H11), and phylogroups (B2, B1, A) were identified. Virulence profiling revealed ExPEC-like and EPEC pathotypes, while resistance genes for β-lactams (blaEC-15), fosfomycin (glpT_E448K), and colistin (pmrB) were prevalent. These findings highlight the need for genomic surveillance and antimicrobial stewardship to manage E. coli infections in alpacas and reduce public health risks. Full article
(This article belongs to the Special Issue Gut Microbiota in DiseaseThird Edition)
Show Figures

Figure 1

10 pages, 542 KB  
Article
First Report of Streptococcus agalactiae Meningitis in a Non-Pregnant Adult in Italy
by Giorgia Borriello, Giovanna Fusco, Francesca Greco, Maria Vittoria Mauro, Lorella Barca, Antonio Limone, Maria Garzi Cosentino, Agata Campione, Antonio Rinaldi, Saveria Dodaro, Esterina De Carlo, Sonia Greco, Valeria Vangeli, Rubina Paradiso and Antonio Mastroianni
Microorganisms 2025, 13(5), 978; https://doi.org/10.3390/microorganisms13050978 - 24 Apr 2025
Cited by 1 | Viewed by 652
Abstract
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular [...] Read more.
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular characterization evidenced the presence of resistance genes to tetracycline and macrolide (tet(M) and mre(A)) and several virulence genes coding for adhesion and immune evasion factors (bca, cps family, neu family, scpB, gbs family, pil family and hylB), toxins (cfa/cfb, cyl family), pro-inflammatory factors (lepA), and two homologous genes that contributed to bacterial escape from the host immune system (lmb, luxS). SNP analysis showed 18 different alleles, with 9 missense SNP mutations related to genes involved in cellular metabolism (dhaS, ftsE, ligA, nrdD and secA), virulence (bgrR and galE) and antimicrobial resistance (glpK and mutL). SNPs in glpK and mutL genes might reduce susceptibility to drugs. The SNP analysis highlighted the presence of mutations conferring pathogenicity to the strain. The evidence in this study could explain the development of Meningitis in a healthy patient. This case highlights the importance of using molecular methods to characterize the complete genome of a bacterial species that could seriously affect human health. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

17 pages, 3560 KB  
Article
Preparation and Evaluation of Novel Epitope-Based ETEC K88-K99 Bivalent Vaccine
by Shuangshuang Wang, Yuxin Yang, Xinru Yue, Zewen Liu, Fangyan Yuan, Keli Yang, Jiajia Zhu, Wei Liu, Yongxiang Tian, Qiong Wu, Ting Gao, Chang Li, Haofei Song, Danna Zhou and Weicheng Bei
Vet. Sci. 2025, 12(4), 381; https://doi.org/10.3390/vetsci12040381 - 18 Apr 2025
Viewed by 854
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope design have emerged as a safer and more effective approach for prevention and control. Unlike vaccine development strategies that involve the tandem arrangement of multiple antigenic epitopes, this study used the K88-FaeG protein as a backbone and incorporated the antigenic epitopes of K99-FanC to achieve a better immunogenicity. By using bioinformatics software to predict B-cell linear epitopes (score of over 0.6), B-cell epitopes from three-dimensional structures (50% amino acid score of ≥0.2), and B-cell epitope IgG antibody subtypes, as well as docking analysis with Sus scrofa aminopeptidase N (APN) receptors, six antigenic epitopes of K99-FanC were selected. Through Western blotting and competitive ELISA, we confirmed that all six recombinant proteins exhibited binding capabilities to K88- and K99-positive serum. The ELISA results showed that the serum levels of specific IgG and IgA antibodies increased after immunization, with FaeG-Ep3 and FaeG-Ep5 inducing the highest antibody titers against FanC-IgG (Log2 = 14.96) and FaeG-IgG (Log2 = 17.96), respectively. Bacterial adhesion assays revealed that only FaeG-Ep3 effectively blocked the adhesion of both K99 and K88 to IPEC-J2 cells. Immunization challenge experiments showed that, in the unimmunized group, mice infected with K88 and K99 experienced weight loss (p < 0.05) with intestinal villus shedding and intestinal wall structural damage. However, in the FaeG-Ep3-immunized group, no significant weight loss occurred after infection, and the villus protection rate (83%) was the same as that in the FaeG and FanC immunized groups. Overall, the FaeG-Ep3 recombinant protein identified in this study shows potential vaccine application value and provides new insights for developing multivalent vaccines against ETEC. Full article
Show Figures

Figure 1

21 pages, 6143 KB  
Article
Development and Characterization of a Recombinant galT-galU Protein for Broad-Spectrum Immunoprotection Against Porcine Contagious Pleuropneumonia
by Jia-Yong Chen, Yi Deng, Jiale Liu, Xin Wen, Yu-Qin Cao, Yu Mu, Mengke Sun, Chang Miao, Zhiling Peng, Kun Lu, Yu-Luo Wang, Xizhu Chen, Siyu Pang, Dan Wang, Jiayu Zhou, Miaohan Li, Yiping Wen, Rui Wu, Shan Zhao, Yi-Fei Lang, Qi-Gui Yan, Xiaobo Huang, Senyan Du, Yiping Wang, Xinfeng Han, San-Jie Cao and Qin Zhaoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(8), 3634; https://doi.org/10.3390/ijms26083634 - 11 Apr 2025
Viewed by 621
Abstract
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, [...] Read more.
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, underscoring the need for vaccines with broad-spectrum protection. Previous studies identified galT and galU as promising antigen candidates. In this study, we expressed and characterized a soluble recombinant galT-galU protein (rgalT-galU) from the pET-28a-galT-galU plasmid. The protein, with a molecular weight of 73 kDa, exhibited pronounced immunogenicity in murine models, as indicated by a significant elevation in IgG titers determined through an indirect ELISA. This immune response was further corroborated by substantial antigen-specific splenic lymphocyte proliferation, with a stimulation index of 51.5%. Immunization also resulted in elevated serum cytokines levels of IL-4, IL-12, and IFN-γ, as detected by cytokine assays. Vaccination with rgalT-galU provided immunoprotection against three predominant APP strains (APP1, APP5b, and APP7), achieving protection rates of 71.4%, 71.4%, and 85.7%, respectively. It also effectively mitigated pulmonary lesions and neutrophil infiltration, as verified by histopathological and immunohistochemical analyses. These results indicate that rgalT-galU is a promising candidate for developing cross-protective subunit vaccines against APP infection. Full article
Show Figures

Figure 1

11 pages, 706 KB  
Article
Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever
by Minhui Yang, Yan Su, Chenyang Zhao and Youhe Gao
Biology 2025, 14(4), 318; https://doi.org/10.3390/biology14040318 - 21 Mar 2025
Viewed by 767
Abstract
Background: To provide clues and a diagnostic basis for patients with fever of unknown origin through urinary proteomics analysis. Methods: For the first time, an attempt was made to conduct a full-library search for viruses in urine samples. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) [...] Read more.
Background: To provide clues and a diagnostic basis for patients with fever of unknown origin through urinary proteomics analysis. Methods: For the first time, an attempt was made to conduct a full-library search for viruses in urine samples. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) technology was employed to analyze the urinary proteomes of patients with fever of unknown origin, and to search for and identify viral protein fragments. In this study, there is no need to pre-determine the types of substances present in the samples. As long as the relevant sequences of viruses are available in the database, virus searches can be performed on the samples. Results: In the urine samples, multiple specific peptides from various viruses, such as the monkeypox virus, salivirus A, human herpesvirus 8 type P, Middle East respiratory syndrome-related coronavirus, rotavirus A, Orf virus (strain NZ2), human herpesvirus 2 (strain HG52), human adenovirus E serotype 4, influenza A virus, human coronavirus NL63, parainfluenza virus 5 (strain W3), Nipah virus, and hepatitis C virus genotype 2k (isolate VAT96), could be observed. It was found that the detection amounts of multiple viruses in febrile patients were much higher than those in the control group. Among them, the increase multiple of salivirus A was as high as more than 4200 times, and the increase multiples of multiple viral proteins were higher than 20 times. Conclusions: Viral fragments in urinary proteins can be reliably identified using mass spectrometry, which provides clues for the investigation of unexplained fever and may also be applied to the exploration of any unknown diseases. Full article
(This article belongs to the Special Issue Applications of Proteomics in Biological Fluids and Biopsies)
Show Figures

Figure 1

18 pages, 7061 KB  
Article
Exploration of a GMMA-Based Bivalent Vaccine Against Klebsiella pneumoniae
by Qikun Ou, Lu Lu, Lina Zhai, Shuli Sang, Yiyan Guan, Yuling Xiong, Chunjie Liu, Haibin Wang, Qiping Hu and Yanchun Wang
Vaccines 2025, 13(3), 226; https://doi.org/10.3390/vaccines13030226 - 24 Feb 2025
Cited by 1 | Viewed by 1236
Abstract
Background: An emerging trend of mutual convergence between drug-resistant and highly virulent strains of K. pneumoniae has been identified, highlighting the urgent need for the development of novel vaccines. Methods: To delete the target genes and eliminate the plasmids carrying antibiotic resistance genes, [...] Read more.
Background: An emerging trend of mutual convergence between drug-resistant and highly virulent strains of K. pneumoniae has been identified, highlighting the urgent need for the development of novel vaccines. Methods: To delete the target genes and eliminate the plasmids carrying antibiotic resistance genes, CRISPR-Cas9 technology was employed to perform genome editing on a clinically isolated O2 serotype of K. pneumoniae. Subsequently, this strain was utilized as a host to express genes associated with the synthesis of O1 serotype LPSs to construct the recombinant strain capable of simultaneously expressing LPSs of both O1 and O2 serotypes. This recombinant strain was then used as the production strain for the preparation of vaccines based on GMMAs (Generalized Modules for Membrane Antigens), and its biological characteristics were characterized. Finally, the safety and immunogenicity of the vaccine were evaluated using mice as the model animals. Result: a GMMA vaccine characterized by a high yield and low toxicity was gained. Importantly, the lipopolysaccharides (LPSs) of both O1 and O2 serotypes of K. pneumoniae were successfully expressed on the surface of the outer membrane vesicles. Following immunization with the GMMA vaccine, mice were capable of producing antibodies against the GMMA and demonstrated resistance to the invasion of both serotypes of clinically isolated K. pneumoniae. Conclusions: The GMMA vaccine showed significant promise as a bivalent vaccine against K. pneumoniae. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

13 pages, 1724 KB  
Article
A Novel Genotype of Orientia tsutsugamushi in Human Cases of Scrub Typhus from Southeastern India
by Krishnamoorthy Nallan, Bhuvaneshwari Chinnathambi Kalidoss, Eunice Swarna Jacob, Samyuktha Krishnasamy Mahadevan, Steny Joseph, Ramkumar Ramalingam, Govindarajan Renu, Balaji Thirupathi, Balajinathan Ramasamy, Bhavna Gupta, Manju Rahi and Paramasivan Rajaiah
Microorganisms 2025, 13(2), 333; https://doi.org/10.3390/microorganisms13020333 - 4 Feb 2025
Cited by 1 | Viewed by 1602
Abstract
Scrub typhus is a mite-borne, re-emerging public health problem in India, particularly in Tamil Nadu, South India. More than 40 serotypes of Orientia tsutsugamushi have been documented worldwide. However, the information on the circulation of its molecular sub-types in India is scanty. A [...] Read more.
Scrub typhus is a mite-borne, re-emerging public health problem in India, particularly in Tamil Nadu, South India. More than 40 serotypes of Orientia tsutsugamushi have been documented worldwide. However, the information on the circulation of its molecular sub-types in India is scanty. A retrospective study was conducted among serologically confirmed cases of scrub typhus. DNA isolated from blood was screened by a nested polymerase chain reaction (nPCR) targeting the GroEL and the 56 kDa type-specific antigen (TSA) genes. Out of 59 samples, 14 partial fragments of GroEL and the twelve 56 kDa genes were PCR-amplified and DNA-sequenced. The neighbor-joining (NJ) analysis indicated three distinct phylogenetic clades, including a novel genotype designated as Ot-Thanjavur-Tamil Nadu (Ot-TJTN, 9 nos. 64.3%); Karp-like (4 nos. 28.6%); and Kuroki-Gilliam type (1 no. 7.1%). Also, phylogenetic analysis of twelve 56 kDa variable domains (VDΙ-ΙΙΙ) of TSA gene sequences revealed a distinctive new genotypic cluster of eight samples (66.6%), and the remaining four (33.4%) were Karp-like genotypes. The Simplot analysis for the similarity and event of recombination testing elucidated the existence of the new genotype of the Ot-TJTN cluster, which was undescribed so far, in the Kato and TA716 lineages. The significant findings recommend further studies to understand the ongoing transmission dynamics of different O. tsutsugamushi strains in vector mites, rodent hosts, and humans in this region. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

28 pages, 11515 KB  
Article
A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae
by Dorien Dams, Célia Pas, Agnieszka Latka, Zuzanna Drulis-Kawa, Lars Fieseler and Yves Briers
Antibiotics 2025, 14(1), 104; https://doi.org/10.3390/antibiotics14010104 - 18 Jan 2025
Cited by 2 | Viewed by 2186
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target [...] Read more.
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections. Full article
(This article belongs to the Section Bacteriophages)
Show Figures

Figure 1

23 pages, 7078 KB  
Article
Phage vB_KlebPS_265 Active Against Resistant/MDR and Hypermucoid K2 Strains of Klebsiella pneumoniae
by Vyacheslav I. Yakubovskij, Vera V. Morozova, Yuliya N. Kozlova, Artem Yu. Tikunov, Valeria A. Fedorets, Elena V. Zhirakovskaya, Igor V. Babkin, Alevtina V. Bardasheva and Nina V. Tikunova
Viruses 2025, 17(1), 83; https://doi.org/10.3390/v17010083 - 9 Jan 2025
Viewed by 1222
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by K. pneumoniae. Klebsiella phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with Klebsiella infection. [...] Read more.
Klebsiella pneumoniae is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by K. pneumoniae. Klebsiella phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with Klebsiella infection. KlebP_265 was specific mainly to K. pneumoniae-type K2 strains including hypermucoid strains. Most of the hypermucoid KlebP_265-susceptible strains were antibiotic-resistant. This siphophage demonstrated good lytic activity and stability. The KlebP_265 genome was 46,962 bp and contained 88 putative genes; functions were predicted for 37 of them. No genes encoding integrases, toxins, or antibiotic resistance were found in the genome. So, KlebP_265 could potentially be a therapeutic phage. Comparative analysis indicated that KlebP_265 with the most relative Klebsiella phage DP01 formed the putative Dipiunovirus genus. Genome analysis revealed a large monophyletic group of phages related to KlebP_265 and DP01. This group is divided into two monophyletic clusters of phages forming new putative subfamilies Skatevirinae and Roufvirinae. Phylogenetic analysis showed extensive gene exchange between phages from the putative subfamilies. Horizontal transfer even involved conservative genes and led to clear genomic mosaicism, indicating multiple recombination events in the ancestral phages during evolution. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

Back to TopTop