Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = shallow foundation design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14157 KiB  
Article
A Spatial–Frequency Combined Transformer for Cloud Removal of Optical Remote Sensing Images
by Fulian Zhao, Chenlong Ding, Xin Li, Runliang Xia, Caifeng Wu and Xin Lyu
Remote Sens. 2025, 17(9), 1499; https://doi.org/10.3390/rs17091499 - 23 Apr 2025
Viewed by 340
Abstract
Cloud removal is a vital preprocessing step in optical remote sensing images (RSIs), directly enhancing image quality and providing a high-quality data foundation for downstream tasks, such as water body extraction and land cover classification. Existing methods attempt to combine spatial and frequency [...] Read more.
Cloud removal is a vital preprocessing step in optical remote sensing images (RSIs), directly enhancing image quality and providing a high-quality data foundation for downstream tasks, such as water body extraction and land cover classification. Existing methods attempt to combine spatial and frequency features for cloud removal, but they rely on shallow feature concatenation or simplistic addition operations, which fail to establish effective cross-domain synergistic mechanisms. These approaches lead to edge blurring and noticeable color distortions. To address this issue, we propose a spatial–frequency collaborative enhancement Transformer network named SFCRFormer, which significantly improves cloud removal performance. The core of SFCRFormer is the spatial–frequency combined Transformer (SFCT) block, which implements cross-domain feature reinforcement through a dual-branch spatial attention (DBSA) module and frequency self-attention (FreSA) module to effectively capture global context information. The DBSA module enhances the representation of spatial features by decoupling spatial-channel dependencies via parallelized feature refinement paths, surpassing the performance of traditional single-branch attention mechanisms in maintaining the overall structure of the image. FreSA leverages fast Fourier transform to convert features into the frequency domain, using frequency differences between object and cloud regions to achieve precise cloud detection and fine-grained removal. In order to further enhance the features extracted by DBSA and FreSA, we design the dual-domain feed-forward network (DDFFN), which effectively improves the detail fidelity of the restored image by multi-scale convolution for local refinement and frequency transformation for global structural optimization. A composite loss function, incorporating Charbonnier loss and Structural Similarity Index (SSIM) loss, is employed to optimize model training and balance pixel-level accuracy with structural fidelity. Experimental evaluations on the public datasets demonstrate that SFCRFormer outperforms state-of-the-art methods across various quantitative metrics, including PSNR and SSIM, while delivering superior visual results. Full article
Show Figures

Figure 1

16 pages, 6369 KiB  
Article
Imaging of Groundwater Salinity and Seawater Intrusion in Subiya Peninsula, Northern Kuwait, Using Transient Electromagnetics
by Firyal Bou-Rabee, Pritam Yogeshwar, Sven Burberg, Bülent Tezkan, Michael Duane and Ismael M. Ibraheem
Water 2025, 17(5), 652; https://doi.org/10.3390/w17050652 - 24 Feb 2025
Viewed by 1081
Abstract
This study investigates the presence and spatial extent of saline water and seawater intrusion in the Subiya Peninsula, Kuwait, a region designated for the establishment of the new Silk City. We collected transient electromagnetic (TEM) data at 63 stations using a coincident loop [...] Read more.
This study investigates the presence and spatial extent of saline water and seawater intrusion in the Subiya Peninsula, Kuwait, a region designated for the establishment of the new Silk City. We collected transient electromagnetic (TEM) data at 63 stations using a coincident loop setup on a regional, as well as local, scale. The data were analyzed through conventional 1D inversion techniques, including Occam and Levenberg–Marquardt methods, to create detailed resistivity models of the subsurface. Our findings indicate significant variations in groundwater salinity, with increased salinity towards the coast and partly decreasing resistivity with depth, suggesting a transition from brackish to saline water. In the northern region, close to the Abdali farms and Al-Raudhatain freshwater fields, groundwater remains fresher at greater depths, while in the south, saline conditions are encountered, occurring at shallower depths. Local scale analysis reveals potential saltwater intrusion pathways and highlighted geological features such as faults. A thorough understanding of the hydrogeological conditions is crucial, as saltwater injection for oil recovery is common in Kuwait, and may correlate with present-day seismic activity. These insights are critical for the sustainable planning and development of Silk City, emphasizing the necessity for further geophysical studies and borehole data to ensure construction safety and sustainable water supply management. This research provides a foundational understanding of the hydrogeological conditions essential for the successful implementation of the Silk City project and for groundwater management in northern Kuwait. Full article
Show Figures

Figure 1

17 pages, 8470 KiB  
Technical Note
Mathematical Modeling of Wave-Induced Pore Pressure Dynamics in Silty Seabeds
by Changjing Fu, Baoer Wen, Ye Lu and Tianlong Zhao
J. Mar. Sci. Eng. 2025, 13(2), 194; https://doi.org/10.3390/jmse13020194 - 21 Jan 2025
Viewed by 723
Abstract
This study investigates the dynamic response of seabed pore pressure under wave loading, focusing on silty and layered seabed conditions, with the aim of providing insights into seabed stability and coastal engineering design. A series of wave flume experiments were conducted to explore [...] Read more.
This study investigates the dynamic response of seabed pore pressure under wave loading, focusing on silty and layered seabed conditions, with the aim of providing insights into seabed stability and coastal engineering design. A series of wave flume experiments were conducted to explore the spatial and temporal evolution of pore pressure under varying wave parameters, soil permeability conditions, and degrees of sediment stratification. The pore pressure signals were analyzed using Daubechies wavelets to distinguish between oscillatory and cumulative components in homogeneous silty seabeds. For layered seabeds, two distinct response patterns were observed. In shallow layers, pore pressure accumulation occurs gradually, enhancing stability by mitigating dynamic stresses. However, in deeper layers, pore pressure accumulation increased significantly, posing potential risks to structural stability. The experiments revealed that the permeability of the surface soil layer plays a critical role in modulating the amplitude and rate of pore pressure oscillations, as well as the accumulation patterns across depths. Based on the experimental findings, a mathematical model was developed to characterize the spatial–temporal evolution of excess pore pressure, incorporating key parameters related to wave properties, water depth, and soil characteristics. These parameters were fitted using nonlinear optimization techniques. Validation against established experimental and analytical data confirmed the model’s accuracy and capability in describing the complex interactions between wave loading and seabed dynamics. The outcomes of this study provide a theoretical foundation for understanding wave-induced pore pressure responses and offer practical guidance for the design and stability assessment of nearshore structures under dynamic wave conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 11461 KiB  
Article
Optimizing Subsurface Geotechnical Data Integration for Sustainable Building Infrastructure
by Nauman Ijaz, Zain Ijaz, Nianqing Zhou, Zia ur Rehman, Hamdoon Ijaz, Aashan Ijaz and Muhammad Hamza
Buildings 2025, 15(1), 140; https://doi.org/10.3390/buildings15010140 - 5 Jan 2025
Viewed by 1233
Abstract
Sustainable building construction encounters challenges stemming from escalating expenses and time delays associated with geotechnical assessments. Developing and optimizing geotechnical soil maps (SMs) using existing data across heterogeneous geotechnical formations offer strategic and dynamic solutions. This strategic approach facilitates economical and prompt site [...] Read more.
Sustainable building construction encounters challenges stemming from escalating expenses and time delays associated with geotechnical assessments. Developing and optimizing geotechnical soil maps (SMs) using existing data across heterogeneous geotechnical formations offer strategic and dynamic solutions. This strategic approach facilitates economical and prompt site evaluations, and offers preliminary ground models, enhancing efficient and sustainable building foundation design. In this framework, this paper aimed to develop SMs for the first time in the rapidly growing district of Gujrat using the optimal interpolation technique (OIT). The subsurface conditions were evaluated using the standard penetration test (SPT) N-values and soil classification including seismic wave velocity to account for seismic effects. Among the different geostatistical and geospatial models, the inverse distance weighting (IDW) model based on an optimized spatial analyst approach yielded the minimum error and a higher association with the field data for the understudy region. Overall, the optimized IDW technique yielded root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (CC) ranges between 0.57 and 0.98. Furthermore, analytical depth-dependent models were developed using SPT-N values to assess the bearing capacity, demonstrating the association of R2 > 0.95. Moreover, the study area was divided into three geotechnical zones based on the average SPT-N values. Comprehensive validation of different strata evaluation based on the optimal IDW for the SPT-N and soil type-based SMs revealed that the RMSE and MAE ranged between 0.36–1.65 and 0.30–0.59, while the CC ranged between 0.93 and 0.98 at multiple depths. The allowable bearing capacity (ABC) for spread footings was determined by evaluating the shear, settlement, and seismic factors. The study offers insights into regional variations in geotechnical formations along with shallow foundation design guidelines for practitioners and researchers working with similar soil conditions. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 4647 KiB  
Article
DeSPPNet: A Multiscale Deep Learning Model for Cardiac Segmentation
by Elizar Elizar, Rusdha Muharar and Mohd Asyraf Zulkifley
Diagnostics 2024, 14(24), 2820; https://doi.org/10.3390/diagnostics14242820 - 14 Dec 2024
Viewed by 1063
Abstract
Background: Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence [...] Read more.
Background: Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence making it an indispensable tool for monitoring the disease and treatment response. Deep learning-based segmentation enables the precise delineation of cardiac structures including the myocardium, right ventricle, and left ventricle. The accurate segmentation of these structures helps in the diagnosis of heart failure, cardiac functional response to therapies, and understanding the state of the heart functions after treatment. Objectives: The objective of this study is to develop a multiscale deep learning model to segment cardiac organs based on MRI imaging data. Good segmentation performance is difficult to achieve due to the complex nature of the cardiac structure, which includes a variety of chambers, arteries, and tissues. Furthermore, the human heart is also constantly beating, leading to motion artifacts that reduce image clarity and consistency. As a result, a multiscale method is explored to overcome various challenges in segmenting cardiac MRI images. Methods: This paper proposes DeSPPNet, a multiscale-based deep learning network. Its foundation follows encoder–decoder pair architecture that utilizes the Spatial Pyramid Pooling (SPP) layer to improve the performance of cardiac semantic segmentation. The SPP layer is designed to pool features from densely convolutional layers at different scales or sizes, which will be combined to maintain a set of spatial information. By processing features at different spatial resolutions, the multiscale densely connected layer in the form of the Pyramid Pooling Dense Module (PPDM) helps the network to capture both local and global context, preserving finer details of the cardiac structure while also capturing the broader context required to accurately segment larger cardiac structures. The PPDM is incorporated into the deeper layer of the encoder section of the deep learning network to allow it to recognize complex semantic features. Results: An analysis of multiple PPDM placement scenarios and structural variations revealed that the 3-path PPDM, positioned at the encoder layer 5, yielded optimal segmentation performance, achieving dice, intersection over union (IoU), and accuracy scores of 0.859, 0.800, and 0.993, respectively. Conclusions: Different PPDM configurations produce a different effect on the network; as such, a shallower layer placement, like encoder layer 4, retains more spatial data that need more parallel paths to gather the optimal set of multiscale features. In contrast, deeper layers contain more informative features but at a lower spatial resolution, which reduces the number of parallel paths required to provide optimal multiscale context. Full article
Show Figures

Figure 1

22 pages, 7294 KiB  
Article
A Study on the Hydrodynamic Response Characteristics of Vessel-Shaped Cages Based on the Smoothed Particle Hydrodynamics Method
by Yue Zhuo, Junhua Chen, Lingjie Bao, Hao Li, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(12), 2199; https://doi.org/10.3390/jmse12122199 - 1 Dec 2024
Viewed by 815
Abstract
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish [...] Read more.
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish cages are prone to damage in the more hostile environments of the deep sea. In this paper, we present a design for a single-point mooring vessel-shaped fish cage that can quickly adjust its bow direction when subjected to waves from various angles. This design ensures that the floating frame consistently responds effectively to wave impacts, thereby reducing the wave forces experienced. The dynamic response of the floating frame and the mooring forces were simulated by coupling the Smoothed Particle Hydrodynamics method with the Moordyn numerical model for mooring analysis. The three degrees of freedom (heave, surge, and pitch) and the mooring forces of a scaled-down vessel-type ship cage model under wave conditions were investigated both numerically and experimentally. The results indicate that the error between the simulation data and the experimental results is maintained within 6%. Building on this foundation, the motion response and mooring force of a full-sized ship-shaped net box under wave conditions off the southeast coast of China were simulated. This study examined the effects of varying mooring lengths and buoy configurations on the motion response and mooring force of the fish cage. Finally, we constructed the fish cage and tested it under the influence of a typhoon. The results demonstrate that the fish cage could operate stably without structural damage, such as mooring failure or floating frame breakage, despite the significant deformation of the floating frame. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3972 KiB  
Article
Influence of Rocking Shallow Foundation Parameters and Analysis of Seismic Response Characteristics
by Jia Bin, Ziwei Huang, Junpeng Wu, Panyu Pan and Liping Jing
Buildings 2024, 14(12), 3788; https://doi.org/10.3390/buildings14123788 - 27 Nov 2024
Cited by 1 | Viewed by 819
Abstract
Rocking shallow foundations interrupt the seismic transmission path from the base of the structure and possess advantages, such as effective seismic isolation, self-resetting capabilities post-earthquake, and low costs. A numerical model of the rocking shallow foundation was developed in OpenSees (version: Opensees 3.5.0) [...] Read more.
Rocking shallow foundations interrupt the seismic transmission path from the base of the structure and possess advantages, such as effective seismic isolation, self-resetting capabilities post-earthquake, and low costs. A numerical model of the rocking shallow foundation was developed in OpenSees (version: Opensees 3.5.0) based on field test data using numerical simulation. The effect of different parameters (column height, foundation sizes, top mass, and soil softness and stiffness) on the seismic response characteristics of rocking shallow foundations is investigated, and the seismic response characteristics of rocking shallow foundations are analyzed under the action of sinusoidal waves of different frequencies and various seismic wave types. The results of the study show that, as the height of the column increases, the bending moment decreases and settlement decreases; as the size of the foundation increases, the bending moment increases and settlement increases; as the mass of the top increases, the bending moment increases and settlement increases; and as the soil becomes softer, the bending moment decreases, and settlement increases. Inputting a sine wave that matches the structure’s natural oscillation frequency may induce resonance. This phenomenon can significantly amplify the structure’s vibrations; thus, it is essential to avoid external excitation frequencies that coincide with the foundation’s natural oscillation frequency. Under seismic loading, the rocking shallow foundation can mitigate the bending moment in the superstructure. When the displacement ratio remains within −0.5 to 0.5 percent, the foundation settlement is minimal. However, when the absolute displacement ratio exceeds 0.5 percent, the soil exhibits plastic deformation characteristics, resulting in increased foundation settlement. This study is an important contribution to the improvement of seismic performance of buildings and an important reference for improving seismic design standards and practices for buildings in earthquake-prone areas. In the future, the seismic response characteristics of rocking shallow foundations under bidirectional seismic action will be investigated. Full article
Show Figures

Figure 1

20 pages, 36292 KiB  
Article
ICTH: Local-to-Global Spectral Reconstruction Network for Heterosource Hyperspectral Images
by Haozhe Zhou, Zhanhao Liu, Zhenpu Huang, Xuguang Wang, Wen Su and Yanchao Zhang
Remote Sens. 2024, 16(18), 3377; https://doi.org/10.3390/rs16183377 - 11 Sep 2024
Cited by 1 | Viewed by 1429
Abstract
To address the high cost associated with acquiring hyperspectral data, spectral reconstruction (SR) has emerged as a prominent research area. However, contemporary SR techniques are more focused on image processing tasks in computer vision than on practical applications. Furthermore, the prevalent approach of [...] Read more.
To address the high cost associated with acquiring hyperspectral data, spectral reconstruction (SR) has emerged as a prominent research area. However, contemporary SR techniques are more focused on image processing tasks in computer vision than on practical applications. Furthermore, the prevalent approach of employing single-dimensional features to guide reconstruction, aimed at reducing computational overhead, invariably compromises reconstruction accuracy, particularly in complex environments with intricate ground features and severe spectral mixing. Effectively utilizing both local and global information in spatial and spectral dimensions for spectral reconstruction remains a significant challenge. To tackle these challenges, this study proposes an integrated network of 3D CNN and U-shaped Transformer for heterogeneous spectral reconstruction, ICTH, which comprises a shallow feature extraction module (CSSM) and a deep feature extraction module (TDEM), implementing a coarse-to-fine spectral reconstruction scheme. To minimize information loss, we designed a novel spatial–spectral attention module (S2AM) as the foundation for constructing a U-transformer, enhancing the capture of long-range information across all dimensions. On three hyperspectral datasets, ICTH has exhibited remarkable strengths across quantitative, qualitative, and single-band detail assessments, while also revealing significant potential for subsequent applications, such as generalizability and vegetation index calculations) in two real-world datasets. Full article
(This article belongs to the Special Issue Geospatial Artificial Intelligence (GeoAI) in Remote Sensing)
Show Figures

Figure 1

18 pages, 918 KiB  
Article
Self-Attention Progressive Network for Infrared and Visible Image Fusion
by Shuying Li, Muyi Han, Yuemei Qin and Qiang Li
Remote Sens. 2024, 16(18), 3370; https://doi.org/10.3390/rs16183370 - 11 Sep 2024
Cited by 1 | Viewed by 1403
Abstract
Visible and infrared image fusion is a strategy that effectively extracts and fuses information from different sources. However, most existing methods largely neglect the issue of lighting imbalance, which makes the same fusion models inapplicable to different scenes. Several methods obtain low-level features [...] Read more.
Visible and infrared image fusion is a strategy that effectively extracts and fuses information from different sources. However, most existing methods largely neglect the issue of lighting imbalance, which makes the same fusion models inapplicable to different scenes. Several methods obtain low-level features from visible and infrared images at an early stage of input or shallow feature extraction. However, these methods do not explore how low-level features provide a foundation for recognizing and utilizing the complementarity and common information between the two types of images. As a result, the complementarity and common information between the images is not fully analyzed and discussed. To address these issues, we propose a Self-Attention Progressive Network for the fusion of infrared and visible images in this paper. Firstly, we construct a Lighting-Aware Sub-Network to analyze lighting distribution, and introduce intensity loss to measure the probability of scene illumination. This approach enhances the model’s adaptability to lighting conditions. Secondly, we introduce self-attention learning to design a multi-state joint feature extraction module (MSJFEM) that fully utilizes the contextual information among input keys. It guides the learning of a dynamic attention matrix to strengthen the capacity for visual representation. Finally, we design a Difference-Aware Propagation Module (DAPM) to extract and integrate edge details from the source images while supplementing differential information. The experiments across three benchmark datasets reveal that the proposed approach exhibits satisfactory performance compared to existing methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

15 pages, 21052 KiB  
Article
Response of a Coral Reef Sand Foundation Densified through the Dynamic Compaction Method
by Linlin Gu, Weihao Yang, Zhen Wang, Jianping Wang and Guanlin Ye
J. Mar. Sci. Eng. 2024, 12(9), 1479; https://doi.org/10.3390/jmse12091479 - 26 Aug 2024
Cited by 1 | Viewed by 967
Abstract
Dynamic compaction is a method of ground reinforcement that uses the huge impact energy of a free-falling hammer to compact the soil. This study presents a DC method for strengthening coral reef foundations in the reclamation area of remote sea islands. Pilot tests [...] Read more.
Dynamic compaction is a method of ground reinforcement that uses the huge impact energy of a free-falling hammer to compact the soil. This study presents a DC method for strengthening coral reef foundations in the reclamation area of remote sea islands. Pilot tests were performed to obtain the design parameters before official DC operation. The standard penetration test (SPT), shallow plate-load test (PLT), and deformation investigation were conducted in two improvement regions (A1 and A2) with varying tamping energies. During the deformation test, the depth of the tamping crater for the first two points’ tamping and the third full tamping was observed at two distinct sites. The allowable ground bearing capacity at two disparate field sites was at least 360 kPa. The reinforcement depths were 3.5 and 3.2 m in the A1 and A2 zones, respectively. The DC process was numerically analyzed by the two-dimensional particle flow code, PFC2D. It indicated that the reinforcement effect and effective reinforcement depth were consistent with the field data. The coral sand particles at the bottom of the crater were primarily broken down in the initial stage, and the particle-crushing zone gradually developed toward both sides of the crater. The force chain developed similarly at the three tamping energies (800, 1500, and 2000 kJ), and the impact stress wave propagated along the sand particles primarily in the vertical direction. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

23 pages, 7639 KiB  
Article
Experimental Study on the Water Absorption, Compaction Effect, and Pull-Out Bearing Characteristics of Water-Absorbing and Compaction Anchoring Bolts
by Xin Ren, Tianhu He, Feng Yue and Pengfei He
Appl. Sci. 2024, 14(16), 6960; https://doi.org/10.3390/app14166960 - 8 Aug 2024
Cited by 1 | Viewed by 1137
Abstract
In response to a series of engineering disasters encountered during the excavation and support construction of loess tunnels, considering the issues of water enrichment in surrounding rock induced by excavation disturbance and system bolt failure, drawing on the concepts of lime pile composite [...] Read more.
In response to a series of engineering disasters encountered during the excavation and support construction of loess tunnels, considering the issues of water enrichment in surrounding rock induced by excavation disturbance and system bolt failure, drawing on the concepts of lime pile composite foundation and composite bearing arch, and based on the principle of the New Austrian Tunneling Method (NATM) that fully mobilizes and leverages the self-supporting capacity of surrounding rock, this study comprehensively considers the wetting and stress adjustment processes of the surrounding rock after excavation disturbance in loess tunnels. By adopting the technical principle of “water absorption and densification of shallow surrounding rock, suspension and anchoring of deep surrounding rock, and composite arch bearing”, a new type of water-absorbing, densifying, and anchoring bolt was developed that can reduce the water content of surrounding rock while enhancing its resistance. To further investigate the water absorption, densification effect, and pull-out bearing characteristics of this new bolt, laboratory model tests were conducted, examining the temperature, pore water pressure, densification stress of the soil around the bolt, as well as the physical properties of the soil in the consolidation zone. The test results indicate that a cylindrical heat source forms around the water-absorbing, densifying, and anchoring bolt, significantly inducing the thermal consolidation of the surrounding soil. The variations in temperature, pore water pressure, and densification stress of the soil around the bolt truly reflect the qualitative patterns of hydro-thermal–mechanical changes during the water absorption, curing, and exothermic reaction processes. The water absorption and densification segment of the bolt effectively enhances the density of the soil in the water absorption, densification, and consolidation zone, improving soil strength parameters. Compared to traditional mortar-bonded bolts, the water-absorbing, densifying, and anchoring bolt exhibits a greater pull-out bearing capacity. The research findings provide important guidance for the theoretical design and engineering application of this new type of bolt. Full article
Show Figures

Figure 1

23 pages, 9564 KiB  
Article
Integrated Assessment of Bearing Capacity and GHG Emissions for Foundation Treatment Piles Considering Stratum Variability
by Huaicen Yuan, Jun Shen, Xinrui Zheng, Xiaohua Bao, Xiangsheng Chen and Hongzhi Cui
Sustainability 2024, 16(15), 6319; https://doi.org/10.3390/su16156319 - 24 Jul 2024
Viewed by 1258
Abstract
Foundation treatment piles are crucial for enhancing the bearing capacity and stability of weak foundations and are widely utilized in construction projects. However, owing to the complexity of geological conditions, traditional construction methods fail to meet the demand for low-carbon development. To address [...] Read more.
Foundation treatment piles are crucial for enhancing the bearing capacity and stability of weak foundations and are widely utilized in construction projects. However, owing to the complexity of geological conditions, traditional construction methods fail to meet the demand for low-carbon development. To address these challenges, this study introduced a comprehensive decision-making approach that considers the impact of stratum variability on greenhouse gas (GHG) emissions and pile bearing capacity from the design phase. During the design process, the GHG emissions and bearing capacities of deep cement mixing (DCM) and high-pressure jet grouting (HPJG) piles were quantitatively assessed by analyzing the environmental and performance impacts of foundation treatment piles related to materials, transportation, and equipment usage. The results suggest that the bearing capacity of piles in shallow strata is highly susceptible to stratum variability. Using piles with a diameter of 800 mm and a length of 20 m as an example, compared with DCM piles, HPJG piles demonstrated a superior bearing capacity; however, their total GHG emissions were 6.58% higher, primarily because of the extensive use of machinery during HPJG pile construction. The GHG emissions of foundation treatment piles in shallow strata were influenced more by geological variability than those in deep strata. Sensitivity analysis revealed that the pile diameter is a critical determinant of GHG emissions and bearing capacity. Based on the bearing capacity–GHG emission optimization framework, a foundation treatment strategy that integrates overlapping and spaced pile arrangements was introduced. This innovative construction method reduced the total GHG emissions by 22.7% compared with conventional methods. These research findings contribute to low-carbon design in the construction industry. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

17 pages, 4913 KiB  
Review
Recent Advancements in Geothermal Energy Piles Performance and Design
by Ahmed Khalil, Mousa Attom, Zahid Khan, Philip Virgil Astillo and Oussama M. El-Kadri
Energies 2024, 17(14), 3386; https://doi.org/10.3390/en17143386 - 10 Jul 2024
Cited by 3 | Viewed by 2458
Abstract
Geothermal energy piles or ground heat exchange (GHE) systems embrace a sustainable source of energy that utilizes the geothermal energy naturally found inside the ground in order to heat and/or cool buildings. GHE is a highly innovative system that consists of energy loops [...] Read more.
Geothermal energy piles or ground heat exchange (GHE) systems embrace a sustainable source of energy that utilizes the geothermal energy naturally found inside the ground in order to heat and/or cool buildings. GHE is a highly innovative system that consists of energy loops within foundation elements (shallow foundations or piles) through which a heat carrier fluid circulates, enabling heat extraction or storage in the ground. Despite the innovation and potential of GHE systems, there are significant challenges in harmonizing their thermal and mechanical designs due to the complex interactions involved. This review critically examines state-of-the-art design methodologies developed to address these complexities, providing insights into the most recent advancements in GHE performance and design. Key findings include innovative techniques such as advanced numerical modeling to predict thermomechanical behavior, the use of different pipe configurations to optimize heat transfer, and strategies to minimize thermal stress on the foundation. Additionally, this review identifies research gaps, including the need for more comprehensive full-scale experimental validations, the impact of soil properties on system performance, and the long-term effects of thermal cycling on pile integrity. These insights aim to contribute to a better understanding of the thermomechanical behavior of energy piles, ultimately facilitating more accurate and effective design solutions. Full article
(This article belongs to the Special Issue Review of Geothermal Energy Production)
Show Figures

Figure 1

25 pages, 7559 KiB  
Article
Impact of Geometrical Misplacement of Heat Exchanger Pipe Parallel Configuration in Energy Piles
by Qusi I. Alqawasmeh, Guillermo A. Narsilio and Nikolas Makasis
Energies 2024, 17(11), 2580; https://doi.org/10.3390/en17112580 - 27 May 2024
Cited by 2 | Viewed by 1263
Abstract
Shallow geothermal or ground source heat pump (GSHP) energy systems offer efficient space heating and cooling, reducing greenhouse gas emissions and electrical consumption. Incorporating ground heat exchangers (GHEs) within pile foundations, as part of these GSHP systems, has gained significant attention as it [...] Read more.
Shallow geothermal or ground source heat pump (GSHP) energy systems offer efficient space heating and cooling, reducing greenhouse gas emissions and electrical consumption. Incorporating ground heat exchangers (GHEs) within pile foundations, as part of these GSHP systems, has gained significant attention as it can reduce capital costs. The design and optimisation of GHEs connected in parallel within energy piles have been researched widely, considering symmetrical placement, while the potential misplacement due to construction errors and the optimal placement remain mostly unexplored. This study utilises 3D finite element numerical methods, analysing energy piles with diameters from 0.5 m to 1.4 m, equipped with parallelly connected U-tube and W-tube GHEs. The impact of GHE loop placement is analysed, considering the influence of the ground and concrete thermal conductivities, pile length, fluid flow rate, GHE pipe diameter, and pile spacing. Results indicate a marginal impact, less than 3%, on the overall heat transfer when loops deviate from symmetry and less than 5% on the total heat transfer shared by each loop, except for highly non-symmetric configurations. Symmetrical and evenly spaced loop placement generally maintains favourable thermal performance and ease of installation. This study underscores the flexibility in GHE design and construction with a low risk of thermal yield variations due to uncertainties, particularly with a separation-to-shank distance ratio between 0.5 and 1.5 in a symmetrical distribution. Full article
(This article belongs to the Special Issue Energy Geotechnics and Geostructures—2nd Edition)
Show Figures

Figure 1

32 pages, 7669 KiB  
Review
Induced Partial Saturation: From Mechanical Principles to Engineering Design of an Innovative and Eco-Friendly Countermeasure against Earthquake-Induced Soil Liquefaction
by Lucia Mele, Stefania Lirer and Alessandro Flora
Geosciences 2024, 14(6), 140; https://doi.org/10.3390/geosciences14060140 - 23 May 2024
Cited by 4 | Viewed by 2000
Abstract
Earthquake-induced soil liquefaction is a catastrophic phenomenon that can damage existing building foundations and other structures, resulting in significant economic losses. Traditional mitigation techniques against liquefaction present critical aspects, such as high construction costs, impact on surrounding infrastructure and effects on the surrounding [...] Read more.
Earthquake-induced soil liquefaction is a catastrophic phenomenon that can damage existing building foundations and other structures, resulting in significant economic losses. Traditional mitigation techniques against liquefaction present critical aspects, such as high construction costs, impact on surrounding infrastructure and effects on the surrounding environment. Therefore, research is ongoing in order to develop new approaches and technologies suitable to mitigate liquefaction risk. Among the innovative countermeasures against liquefaction, Induced Partial Saturation (IPS) is considered one of the most promising technologies. It consists of introducing gas/air bubbles into the pore water of sandy soils in order to increase the compressibility of the fluid phase and then enhance liquefaction resistance. IPS is economical, eco-friendly and suitable for urbanised areas, where the need to reduce the risk of liquefaction must be addressed, taking into account the integrity of existing buildings. However, IPS is still far from being a routine technology since more aspects should be better understood. The main aim of this review is to raise some important questions and encourage further research and discussions on this topic. The review first analyses and discusses the effects of air/gas bubbles on the cyclic behaviour of sandy soils, focusing on the soil volume element scale and then extending the considerations to the real scale. The use of useful design charts is also described. Moreover, a section will be devoted to the effect of IPS under shallow foundations. The readers will fully understand the research trend of IPS liquefaction mitigation and will be encouraged to further explore new practical aspects to overcome the application difficulties and contribute to spreading the use of this technology. Full article
(This article belongs to the Special Issue Earthquake-Induced Soil Liquefaction: From Small to Large Scale)
Show Figures

Figure 1

Back to TopTop