Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,058)

Search Parameters:
Keywords = shearing deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2932 KB  
Article
Correlation Model of Damage Class and Deformation for Reinforced Concrete Beams Damaged by Earthquakes
by Chunri Quan, Ho Choi and Kiwoong Jin
Materials 2025, 18(19), 4638; https://doi.org/10.3390/ma18194638 (registering DOI) - 9 Oct 2025
Abstract
The objective of this study was to propose a correlation model of the damage class and deformation of reinforced concrete (RC) beams damaged by earthquakes with a focus on columns and walls. For this purpose, a series of full-scale RC beam specimens with [...] Read more.
The objective of this study was to propose a correlation model of the damage class and deformation of reinforced concrete (RC) beams damaged by earthquakes with a focus on columns and walls. For this purpose, a series of full-scale RC beam specimens with different shear strength margins were tested under cyclic lateral loading to examine their deformation performance and damage states. Then, the damage class and seismic capacity reduction factor of RC beams were evaluated based on the test results. The results showed that the tendency of shear failure, such as shear crack pattern and shear deformation component, of specimens with small shear strength margins was more remarkable, and its maximum residual crack widths tended to be slightly larger and dominated by shear cracks. The results also indicated that the effect of the shear strength margin on the seismic capacity reduction factor which represents the residual seismic performance of RC beams was limited, whereas the specimen with a smaller shear strength margin exhibited lower ultimate deformation capacity. In addition, there was a difference in the boundary value of the lateral drift angle which classifies the damage class of specimens with different shear strength margins. Finally, correlation models between the damage class and deformation of RC beams with different deformation capacities were proposed. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 6683 KB  
Article
Numerical Simulation Study on Shear Mechanical Properties of Unfilled Three-Dimensional Rough Joint Surfaces Under Constant Normal Stiffness Boundary Conditions
by Xinmu Xu, Kui Zhao, Liangfeng Xiong, Peng Zeng, Cong Gong and Yifan Chen
Appl. Sci. 2025, 15(19), 10827; https://doi.org/10.3390/app151910827 - 9 Oct 2025
Abstract
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the [...] Read more.
When jointed rock masses are in a high-stress environment, the roughness of the joints is the key factor controlling their shear strength. Their loading behavior is also different from the constant normal load (CNL) conditions controlled in conventional laboratories; rather, they follow the constant normal stiffness (CNS) conditions. To investigate the effects of normal stiffness and roughness on the shear mechanical properties of unfilled joint surfaces, shear tests were simulated using PFC3D (5.0) software under CNS conditions. The effects of normal stiffness of 0 (constant normal stress of 4 MPa), 0.028 GPa/m (low normal stiffness), 0.28 GPa/m (medium normal stiffness), and 2.8 GPa/m (high normal stiffness), and joint roughness coefficients (JRC) of 2~4 (low roughness), 10~12 (medium roughness), and 18~20 (high roughness) on the shear stress, normal stress, normal deformation, surface resistance index, and block failure characteristics of the joint surface were obtained. The results indicate that for different combinations of normal stiffness—JRC—the shear simulation process primarily exhibits three deformation stages: linear stage, yield stage, and post-peak stage. Shear stress increases initially and then decreases as shear displacement increases. When normal stiffness is no less than 0.28 GPa/m, both normal stress and JRC increase gradually with increasing JRC and normal stiffness. When the normal stiffness is no greater than 0.028 GPa/m, the normal stress shows no significant change. The normal displacement changes from “shear contraction” to “shear expansion” with increasing shear displacement and from positive to negative values while the displacement gradually increases; the maximum normal displacement decreases with increasing normal stiffness and increases with increasing JRC. The peak SRI value increases with increasing JRC and decreases with increasing normal stiffness. As normal stiffness increases, the number of tensile cracks for JRC 2~4 first decreases and then increases, while the number of shear cracks gradually increases; for JRC 10~12 and 18~20, both the number of shear cracks and tensile cracks increase with increasing normal stiffness. This paper simulates the actual mechanical environment of deep underground joints to expound the influence of normal stiffness and joint roughness on the stability of deep rock masses. The research results can provide certain theoretical references for predicting the stability of deep surrounding rocks and the stress of support structures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 4961 KB  
Article
Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings
by Piero A. Cabrera, Gianella M. Medina and Rick M. Delgadillo
Buildings 2025, 15(19), 3618; https://doi.org/10.3390/buildings15193618 - 9 Oct 2025
Abstract
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of [...] Read more.
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence. Full article
(This article belongs to the Special Issue Building Safety Assessment and Structural Analysis)
Show Figures

Figure 1

12 pages, 2841 KB  
Article
Mesoscopic Liquids Emit Thermal Waves Under Shear Strain or Microflow
by Laurence Noirez, Eni Kume and Patrick Baroni
Liquids 2025, 5(4), 27; https://doi.org/10.3390/liquids5040027 - 9 Oct 2025
Abstract
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of [...] Read more.
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of non-equilibrium hot and cold thermal states occurring when a mesoscopic confined liquid is set in motion. Two stress situations are considered: low-frequency shear stress at large strain amplitude and microfluidic transport (pressure gradient). Two liquids are tested: water and glycerol at room temperature. In confined conditions (submillimeter scale), these liquids exhibit stress-induced thermal waves. We interpret the emergence of non-equilibrium temperatures as a consequence of the solicitation of the mesoscopic liquid elasticity. In analogy with elastic deformation, the mesoscopic volume decreases or increases slightly, which leads to a change in temperature (thermo-mechanical energy conversion). The energy acquired or released is converted to heat or cold, respectively. To account for these non-equilibrium temperatures, the mesoscopic flow is no longer considered as a complete dissipative process but as a way of propagating shear and thus compressive waves. This conclusion is consistent with recent theoretical developments showing that liquids propagate shear elastic waves at small scales. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

24 pages, 7945 KB  
Article
Asphalt Binder Rheological Performance Properties Using Recycled Plastic Wastes and Commercial Polymers
by Hamad I. Al Abdul Wahhab, Waqas Rafiq, Mohammad Ahsan Habib, Ali Mohammed Babalghaith, Suleiman Abdulrahman and Shaban Shahzad
Constr. Mater. 2025, 5(4), 75; https://doi.org/10.3390/constrmater5040075 - 4 Oct 2025
Viewed by 195
Abstract
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia [...] Read more.
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia (KSA) has resulted in a significant increase in waste generation. This study was conducted on the utilization of recycled plastic waste (RPW) polymer along with commercial polymer (CP) for the modification of the local binder. The hot environmental conditions and increased traffic loading are the major reasons for the permanent deformation and thermal cracks on the pavements, which require improved and modified road performance materials. The Ministry of Transport and Logistical Support (MOTLS) in Saudi Arabia, along with other related agencies, spends a substantial amount of money each year on importing modifiers, including chemicals, hydrocarbons, and polymers, for modification purposes. This research was conducted to investigate and utilize available local recycled plastic materials. Comprehensive laboratory experiments were designed and carried out to enhance recycled plastic waste, including low-density polyethylene (rLDPE), high-density polyethylene (rHDPE), and polypropylene (rPP), combined with varying percentages of commercially available polymers such as Styrene-Butadiene-Styrene (SBS) and Polybilt (PB). The results indicated that incorporating recycled plastic waste expanded the binder’s susceptible temperature range from 64 °C to 70 °C, 76 °C, and 82 °C. The resistance to rutting was shown to have significantly improved by the dynamic shear rheometer (DSR) examination. Achieving the objectives of this research, combined with the intangible environmental benefits of utilizing plastic waste, provides a sustainable pavement development option that is also environmentally beneficial. Full article
Show Figures

Figure 1

18 pages, 1439 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Viewed by 170
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
Show Figures

Figure 1

21 pages, 3530 KB  
Article
Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains
by Chenyu Hu, Bo Li, Shaoyi Bei and Jingyi Gu
World Electr. Veh. J. 2025, 16(10), 569; https://doi.org/10.3390/wevj16100569 - 3 Oct 2025
Viewed by 190
Abstract
In order to tackle the issues of poor mobility and unstable traction of electric vehicles on sandy landscapes, this research develops a high-accuracy numerical model for wheel–sand interaction relying on the Discrete Element Method (DEM). An innovative parameter calibration procedure is proposed herein, [...] Read more.
In order to tackle the issues of poor mobility and unstable traction of electric vehicles on sandy landscapes, this research develops a high-accuracy numerical model for wheel–sand interaction relying on the Discrete Element Method (DEM). An innovative parameter calibration procedure is proposed herein, which optimizes the sand contact parameters. This reduces the error between the simulated and measured angles of repose to merely 1.2% and substantially improves the model’s reliability. The model was then used to systematically compare the performance of a 205/55 R16 slick tire with a treaded tire on sand. Simulations demonstrate that at a 30% slip ratio, the treaded tire exhibited significantly higher traction and greater sinkage than the slick tire. This indicates that tread patterns enhance traction mechanically by increasing the contact area and promoting shear deformation of the sand. The trends of traction with slip ratio and the corresponding sand flow patterns showed excellent agreement with experimental observations, which validated the simulation approach. This research provides an efficient and accurate tool for evaluating tire-sand interaction, providing critical support for the design and control of electric vehicles on complex terrains. Full article
Show Figures

Figure 1

17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Viewed by 195
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

26 pages, 11614 KB  
Article
Layer Thickness Impact on Shock-Accelerated Interfacial Instabilities in Single-Mode Stratifications
by Salman Saud Alsaeed, Satyvir Singh and Nouf A. Alrubea
Appl. Sci. 2025, 15(19), 10687; https://doi.org/10.3390/app151910687 - 3 Oct 2025
Viewed by 141
Abstract
This study investigates the influence of heavy-layer thickness on shock-accelerated interfacial instabilities in single-mode stratifications using high-order discontinuous Galerkin simulations at a fixed shock Mach number (Ms=1.22). By systematically varying the layer thickness, we quantify how acoustic transit [...] Read more.
This study investigates the influence of heavy-layer thickness on shock-accelerated interfacial instabilities in single-mode stratifications using high-order discontinuous Galerkin simulations at a fixed shock Mach number (Ms=1.22). By systematically varying the layer thickness, we quantify how acoustic transit time, shock attenuation, and phase synchronization modulate vorticity deposition, circulation growth, and interface deformation. The results show that thin layers (d=2.5–5 mm) generate strong and early baroclinic vorticity due to frequent reverberations, leading to rapid circulation growth, vigorous Kelvin–Helmholtz roll-up, and early jet pairing. In contrast, thick layers (d=20–40 mm) attenuate and dephase shock returns, producing weaker baroclinic reinforcement, delayed shear-layer growth, and smoother interfaces with reduced small-scale activity, while the intermediate case (d=10 mm) exhibits transitional behavior. Integral diagnostics reveal that thin layers amplify dilatational, baroclinic, and viscous vorticity production; sustain stronger circulation and enstrophy growth; and transfer bulk kinetic energy more efficiently into interface deformation and small-scale mixing. Full article
Show Figures

Figure 1

21 pages, 6332 KB  
Article
Numerical Simulation and Empirical Validation of Casing Stability in Coalbed Methane Wells Under Mining-Induced Stress: A Case Study of Xiaobaodang Coal Mine in Yulin-Shenmu Mining Area
by Zeke Gao, Wenping Li, Dongding Li, Yangmin Ye and Yuchu Liu
Appl. Sci. 2025, 15(19), 10674; https://doi.org/10.3390/app151910674 - 2 Oct 2025
Viewed by 189
Abstract
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site [...] Read more.
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site monitoring to analyze the impact of mining activities on the stability of gas well casings. Simulation results indicate that mining activities cause stress redistribution in the surrounding rock, with a maximum shear stress of 5.8 MPa, which is far below the shear strength of the casing. The maximum horizontal displacement of the wellbore is only 23 mm, with uniform overall deformation and no shear failure. On-site monitoring showed that the airtightness was intact, and the wellbore diameter test did not detect any destructive damage such as deformation or cracks. Concurrently, fiber optic strain monitoring of the inner and outer casings aligns with simulation results, confirming no significant instability caused by mining activities. The conclusion is that mining activities have a negligible impact on the stability of the gas well casing-concrete composite structure. The dual casing-cement ring structure effectively coordinates deformation to ensure safety. This finding provides a reliable technical basis for the coordinated exploitation of coal, oil and gas resources at the Xiaobaodang No. 1 Coal Mine and similar mines. Full article
Show Figures

Figure 1

15 pages, 1556 KB  
Article
Physicochemical Characterization of Soluble and Insoluble Fibers from Berry Pomaces
by Jolita Jagelavičiūtė, Simona Šimkutė, Aurelija Kairė, Gabrielė Kaminskytė, Loreta Bašinskienė and Dalia Čižeikienė
Gels 2025, 11(10), 796; https://doi.org/10.3390/gels11100796 - 2 Oct 2025
Viewed by 202
Abstract
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, [...] Read more.
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, and sea buckthorn pomace. SDF fractions demonstrated higher water solubility and lower swelling capacity, compared with IDF fractions. Meanwhile, water and oil retention capacities depended on fiber type and the sources of pomace. Fractionation notably affected color parameters, with SDFs generally being lighter. Rheological analysis revealed pseudoplastic, shear-thinning behavior in all SDF samples, with viscosity dependent on both pH and shear rate. In particular, the black currant SDF demonstrated higher yield stress compared to other SDFs, suggesting enhanced resistance to deformation and superior structural stability under low shear conditions. The consistency coefficient varied across samples, indicating differences in gel-forming potential. These findings highlight the importance of berry source and fiber fraction in determining functionality. The distinct hydration, binding, and rheological properties suggest that both SDF and IDF from berry pomace can be strategically applied as thickeners, stabilizers, or texture enhancers in food systems. This study supports the valorization of berry by-products as sustainable and functional ingredients in the formulation of fiber-enriched foods. Full article
(This article belongs to the Special Issue Food Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

18 pages, 2429 KB  
Article
Research on Fatigue Performance of Fast Melting Styrene-Butadiene-Styrene-Modified Asphalt with High Viscosity and Elasticity
by Hao Zhang, Fei Guo, Xiaoyu Li, Shige Wang and Jinchao Yue
Coatings 2025, 15(10), 1143; https://doi.org/10.3390/coatings15101143 - 2 Oct 2025
Viewed by 183
Abstract
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate [...] Read more.
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate phase separation and thermal degradation while simplifying the production process, thereby offering a more robust and cost-effective alternative. The viscoelastic properties of SBS-T-modified asphalt were characterized through frequency sweep tests under varying loading conditions, while its fatigue behavior was quantitatively assessed using the Simplified Viscoelastic Continuum Damage (S-VECD) model. The results indicate that the SBS-T-modified asphalt exhibits outstanding viscoelastic performance across a broad range of temperatures and loading frequencies, and can better adapt to the temperature and load changes in complex pavement environments. Among them, the influence of long-term aging on the linear viscoelastic characteristics of SBS-T-modified asphalt is greater than that of ultraviolet aging. The SBS-T-modified asphalt also shows better stiffness and resistance to shear deformation. The fatigue life of asphalt gradually decreases with the deepening of the aging degree, among which the impact of long-term aging on fatigue life is greater than that of ultraviolet aging. Under different aging conditions, SBS-T-modified asphalt has shown good fatigue performance and is suitable for practical engineering applications. Full article
Show Figures

Figure 1

51 pages, 7071 KB  
Article
Interpretable AI-Driven Modelling of Soil–Structure Interface Shear Strength Using Genetic Programming with SHAP and Fourier Feature Augmentation
by Rayed Almasoudi, Abolfazl Baghbani and Hossam Abuel-Naga
Geotechnics 2025, 5(4), 69; https://doi.org/10.3390/geotechnics5040069 - 1 Oct 2025
Viewed by 143
Abstract
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed [...] Read more.
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed on five sands and three interface materials (steel, PVC, and stone) under normal stresses of 25–100 kPa. The results showed that particle morphology, quantified by the regularity index (RI), and surface roughness (Rt) are dominant factors. Irregular grains and rougher interfaces mobilised higher τmax through enhanced interlocking, while smoother particles reduced this benefit. Harder surfaces resisted asperity crushing and maintained higher shear strength, whereas softer materials such as PVC showed localised deformation and lower resistance. These experimental findings formed the basis for a hybrid symbolic regression framework integrating Genetic Programming (GP) with Shapley Additive Explanations (SHAP), Fourier feature augmentation, and physics-informed constraints. Compared with multiple linear regression and other hybrid GP variants, the Physics-Informed Neural Fourier GP (PIN-FGP) model achieved the best performance (R2 = 0.9866, RMSE = 2.0 kPa). The outcome is a set of five interpretable and physics-consistent formulas linking measurable soil and interface properties to τmax. The study provides both new experimental insights and transparent predictive tools, supporting safer and more defensible geotechnical design and analysis. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Viewed by 173
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

16 pages, 2677 KB  
Article
Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone
by Yujia Wang, Ruitao Gao, Yingbo Wu, Xuwei Yang, Guirong Wei and Jianwen Chen
Appl. Sci. 2025, 15(19), 10617; https://doi.org/10.3390/app151910617 - 30 Sep 2025
Viewed by 171
Abstract
This study focuses on the sandstone of the Kizil Grottoes as the research object. Sandstone samples reinforced with barium hydroxide nanoparticle (Ba(OH)2) solutions at different concentrations were subjected to mass and deformation monitoring, wave velocity tests, triaxial shear tests, and conventional [...] Read more.
This study focuses on the sandstone of the Kizil Grottoes as the research object. Sandstone samples reinforced with barium hydroxide nanoparticle (Ba(OH)2) solutions at different concentrations were subjected to mass and deformation monitoring, wave velocity tests, triaxial shear tests, and conventional mercury intrusion porosimetry (MIP) to investigate the reinforcement mechanism and effectiveness of nano-Ba(OH)2 on Kizil sandstone. The results indicate that after treatment with nano-Ba(OH)2, the strength and wave velocity of the sandstone samples significantly increased, with the 15% concentration showing the optimal reinforcement effect. Nano-Ba(OH)2 enhances the cementation between sandstone particles, alters pore morphology and size distribution, reduces capillary water rise height, and inhibits sulfate ion crystallization and recrystallization, thereby achieving the dual effects of strength reinforcement and deterioration prevention. Full article
(This article belongs to the Special Issue Geological Disasters: Mechanisms, Detection, and Prevention)
Show Figures

Figure 1

Back to TopTop