Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = shoot proliferation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4159 KB  
Article
Production of Bioactive Compounds in Grammatophyllum speciosum Blume Using Bioreactor Cultures Under Elicitation with Sodium Chloride
by Jittraporn Chusrisom, Gadewara Matmarurat, Nattanan Panjaworayan T-Thienprasert, Wannarat Phonphoem and Pattama Tongkok
Plants 2025, 14(19), 3083; https://doi.org/10.3390/plants14193083 - 6 Oct 2025
Viewed by 349
Abstract
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive [...] Read more.
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive compounds. Half-strength Murashige and Skoog (½ MS) medium supplemented with a combination of 1 mg of L−1 1-naphthaleneacetic acid (NAA) and 0.5 mg of L−1 6-benzylaminopurine (BAP) proved to be a more suitable medium for shoot formation (32.33 ± 2.52 shoots per explant). The protocorm-like bodies, derived from embryogenic callus, were transferred into a temporary immersion bioreactor (TIB) system; 10-min of immersion every 3 h enhanced the maximum number of shoots, shoot height, and the fresh growth index (127.00 ± 2.16, 5.00 ± 0.51 cm and 4.26 ± 0.52, respectively). The proliferated plantlets from the TIB system successfully rooted in Vacin and Went medium. Furthermore, the plantlets were maintained in ½ MS medium supplemented with sodium chloride (NaCl) (0, 50, 100 or 200 µM) under a white light-emitting diode for 72 h to determine the total phenolic content (TPC) in the in vitro cultures. The TPC was highest in the medium with 100 µM of NaCl (111.06 ± 2.24 mg gallic acid equivalent g−1 dry weight), the diphenyl picrylhydrazyl antioxidant activity was 24.50 ± 0.76% and ferric-reducing antioxidant power values were in the range 2441.79 ± 1.21 to 2491.96 ± 3.23 µM ascorbic acid equivalent g−1 dry weight. The G. speciosum extracts showed antibacterial activity against acne pathogens, with minimum inhibitory concentration and minimum bactericidal concentration values in the ranges 6.4–12.8 mg mL−1 and 12.8–25.6 mg mL−1, respectively. Full article
Show Figures

Graphical abstract

15 pages, 436 KB  
Review
Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture
by Bochao Yang, Zhi Luo, Xingyu Zhu, Yinzhong Ji, Quanhui Ma and Fenfen Yan
Plants 2025, 14(19), 3012; https://doi.org/10.3390/plants14193012 - 29 Sep 2025
Viewed by 434
Abstract
Jujube (Ziziphus jujuba Mill.) is an important economic fruit tree in China, and its in vitro culture technology is the key to achieving large-scale seedling cultivation. PGRs (Plant growth regulators) play a central regulatory role in all stages of jujube micropropagation, including [...] Read more.
Jujube (Ziziphus jujuba Mill.) is an important economic fruit tree in China, and its in vitro culture technology is the key to achieving large-scale seedling cultivation. PGRs (Plant growth regulators) play a central regulatory role in all stages of jujube micropropagation, including explant initiation, proliferation, and rooting. This article provides a comprehensive overview of recent advances in in vitro culture of jujube, with a focus on the recommended exogenous phytohormone ratios, their effects, and underlying regulatory mechanisms across distinct varieties during the key stages such as in vitro culture, shoot proliferation, and root formation. The primary culture of most jujube varieties usually employs the MS medium, and it is recommended that auxin and cytokinin be used in combination. During the initial cultivation stage, the use of NAA (1-naphthaleneacetic acid) or IBA (indole butyric acid) is recommended at concentrations ranging from 0.1 to 1.0 mg/L. At the same time, 6-BA (6-benzylaminopurine) is suggested, with a concentration range of 0.5 to 2.5 mg/L. In the subculture multiplication of most jujube varieties, MS medium is used, and auxin (such as NAA, IBA), and TDZ (thidiazuron) and cytokinin (e.g., 6-BA) are used in combination. The recommended concentration range for auxin remains between 0.1 and 1.0 mg/L, and for cytokinin 6-BA between 0.5 and 2.5 mg/L, while the recommended concentration of TDZ is suggested to be below 0.01 mg/L. Rooting induction for most jujube varieties has predominantly been achieved using 1/2 MS medium, with growth regulator concentrations typically ranging from 0.5 to 3.0 mg/L. Full article
(This article belongs to the Special Issue Advances in Jujube Research, Second Edition)
Show Figures

Figure 1

15 pages, 3351 KB  
Article
Biotic Elicitor-Driven Enhancement of In Vitro Micropropagation and Organogenesis in Solanum tuberosum L. cv. Fianna
by Mario James-Forest, Ma del Carmen Ojeda-Zacarías, Alhagie K. Cham, Héctor Lozoya-Saldaña, Rigoberto E. Vázquez-Alvarado, Emilio Olivares-Sáenz and Alejandro Ibarra-López
BioTech 2025, 14(4), 77; https://doi.org/10.3390/biotech14040077 - 24 Sep 2025
Viewed by 333
Abstract
This study evaluates the impact of biotic elicitors and hormone regimes on the in vitro establishment, shoot multiplication, and organogenesis of Solanum tuberosum L. cv. Fianna under controlled laboratory conditions. Explants derived from pre-treated tubers were cultured on Murashige and Skoog (MS) medium [...] Read more.
This study evaluates the impact of biotic elicitors and hormone regimes on the in vitro establishment, shoot multiplication, and organogenesis of Solanum tuberosum L. cv. Fianna under controlled laboratory conditions. Explants derived from pre-treated tubers were cultured on Murashige and Skoog (MS) medium supplemented with vitamins and varying concentrations of growth regulators or elicitors. Aseptic establishment achieved a high success rate (~95%) using a 6% sodium hypochlorite disinfection protocol. Multiplication was significantly enhanced with a combination of 0.2 mg L−1 naphthaleneacetic acid (NAA) and 0.5–1.0 mg L−1 benzylaminopurine (BAP), producing the greatest number and length of shoots and roots. Direct organogenesis was stimulated by bio-elicitors Activane®, Micobiol®, and Stemicol® in (MS) basal medium at mid-level concentrations (0.5 g or mL L−1), improving shoot number, elongation, and root development. Activane®, Micobiol®, and Stemicol® are commercial elicitors that stimulate plant defense pathways and morphogenesis through salicylic acid, microbial, and jasmonic acid signaling mechanisms, respectively. Indirect organogenesis showed significantly higher callus proliferation in Stemicol® and Micobiol® treatments compared to the control medium, resulting in the highest fresh weight, diameter, and friability of callus. The results demonstrate the potential of biotic elicitors as alternatives or enhancers to traditional plant growth regulators in potato tissue culture, supporting more efficient and cost-effective micropropagation strategies. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

21 pages, 3902 KB  
Article
Identification of Trichoderma spp., Their Biomanagement Against Fusarium proliferatum, and Growth Promotion of Zea mays
by Eman G. A. M. El-Dawy, Youssuf A. Gherbawy, Pet Ioan and Mohamed A. Hussein
J. Fungi 2025, 11(9), 683; https://doi.org/10.3390/jof11090683 - 19 Sep 2025
Viewed by 782
Abstract
Species of Trichoderma are currently in high demand as eco-friendly and commercial biocontrol agents due to the proliferation of organic farming methods. This study focused on the potential biocontrol agents of Trichoderma against plant-pathogenic fungi. Trichoderma strains were isolated from different sources (soil, [...] Read more.
Species of Trichoderma are currently in high demand as eco-friendly and commercial biocontrol agents due to the proliferation of organic farming methods. This study focused on the potential biocontrol agents of Trichoderma against plant-pathogenic fungi. Trichoderma strains were isolated from different sources (soil, grapevine tissues, lemon fruit, and maize seeds), and were characterized morphologically on two culture media, i.e., Potato Dextrose Agar and Malt Extract Agar, and molecularly using two gene regions: translation elongation factor 1 (TEF) and nuclear ribosomal internal transcribed spacer (ITS). Phylogenetic trees were constructed. As a result, two Trichoderma species were identified, i.e., T. afroharzianum and T. longibrachiatum. The biocontrol effects of all isolated strains of Trichoderma on Fusarium plant damping-off and the promotion of plant growth were evaluated. Additionally, the antagonistic efficiency of Trichoderma spp. against F. proliferatum using the dual-culture method was evaluated. Under greenhouse conditions, T. afroharzianum strains AEMCTa3 and AEMCTa6 were used to treat maize plants infected with Fusarium. The application of Trichoderma significantly reduced the disease index to 15.6% and 0%, respectively. Additionally, maize seedlings showed significant improvements in shoot and root lengths and fresh and dry weights and increased photosynthetic pigment contents compared to Fusarium-infected plants and the untreated control. The gas chromatography–mass spectrometry (GC-MS) analysis of T. afroharzianum extracts identified a variety of bioactive compounds. These compounds included antifungal substances like N-ethyl-1,3-dithioisoindoline, as well as plant growth-promoting hormones like 6-pentyl-α-pyrone and gibberellic acid. Interestingly, the analysis also revealed new phenylacetic acid derivatives that may play important roles in both plant health and disease resistance. From a practical perspective, developing diverse application methods for Trichoderma is essential to optimize its role as a biocontrol agent and a plant growth promoter, thereby supporting sustainable agriculture through improved adaptability and effectiveness across different farming systems. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

18 pages, 3207 KB  
Article
Development of an Efficient Micropropagation Protocol for Philodendron erubescens ‘Pink Princess’ Using a Temporary Immersion System and Assessment of Genetic Fidelity
by Bui Khanh Vy, Preekamol Klanrit, Sudarat Thanonkeo and Pornthap Thanonkeo
Horticulturae 2025, 11(9), 1085; https://doi.org/10.3390/horticulturae11091085 - 9 Sep 2025
Viewed by 706
Abstract
Conventional propagation of the highly sought-after ornamental Philodendron erubescens ‘Pink Princess’ is constrained by slow multiplication rates, the risk of unstable variegation, and the limited availability of elite mother stock, making advanced in vitro techniques essential for large-scale production. This research aimed to [...] Read more.
Conventional propagation of the highly sought-after ornamental Philodendron erubescens ‘Pink Princess’ is constrained by slow multiplication rates, the risk of unstable variegation, and the limited availability of elite mother stock, making advanced in vitro techniques essential for large-scale production. This research aimed to establish an efficient micropropagation protocol by optimizing the shoot multiplication phase in a twin-flask Temporary Immersion Bioreactor (TIB) system (RITA-type) and subsequently assessing the genetic fidelity of the regenerated plants. Shoot induction was evaluated in a TIB system with an immersion frequency of 4 min every 8 h. Among the tested cytokinins, liquid Murashige and Skoog (MS) medium containing 1.0 mg/L 6-benzylaminopurine (BAP) provided the optimal conditions for shoot proliferation, accounting for approximately 21 shoots/explant. While the TIB system was highly effective for shoot multiplication, it proved suboptimal for root induction. Therefore, rooting was optimized on a semi-solid medium, where MS medium supplemented with 0.5 mg/L indole-3-acetic acid (IAA) was identified as the most effective treatment, yielding an average of 3.0 well-developed roots per explant (1.1 cm in length) within 30 days. For acclimatization, a substrate mix of peat moss, perlite, and vermiculite (2:1:1, v/v/v) ensured a 100% survival rate. Critically, genetic fidelity analysis using RAPD markers revealed monomorphic banding patterns between the micropropagated plantlets and the mother plant (100% similarity), confirming their genetic uniformity and true-to-type nature. The established protocol provides a robust and reliable method for the in vitro propagation of P. erubescens ‘Pink Princess’. This work offers a foundation for developing large-scale commercial production strategies and effectively overcomes many limitations of classical propagation techniques. Full article
Show Figures

Figure 1

18 pages, 1967 KB  
Article
Optimizing Growth Regulator Concentrations for Cannabis sativa L. Micropropagation
by Gabrielle A. Johnson, Carissa L. Jackson, Antonio Timoteo, Papaiah Sardaru, Michael H. Foland, Purushothaman Natarajan and Sadanand A. Dhekney
Plants 2025, 14(16), 2586; https://doi.org/10.3390/plants14162586 - 20 Aug 2025
Viewed by 933
Abstract
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and [...] Read more.
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and transferred to Driver and Kuniyuki Walnut (DKW) culture medium containing either 0.0, 0.5, 1.0, 2.0, or 5.0 μM meta-Topolin to study their shoot proliferation response. Resulting shoot cultures were transferred to medium containing varying levels of Indole Acetic Acid (IAA), Indole Butyric Acid (IBA), or Naphthalene Acetic Acid (NAA), solely or in combination, and were subjected to a 10-day dark incubation followed by a 16 h/8 h light/dark period to identify the best treatment for root production. Among the different shoot proliferation treatments studied, the maximum number of shoots was produced on the control medium that was devoid of any meta-Topolin. Cultures grown on medium containing 5.0 μM meta-Topolin exhibited hyperhydricity, where shoots appeared translucent and pale green in color; were characterized by water-soaked lesions; and leaves appeared curled and brittle in contrast to healthy looking cultures. Among the various rooting treatments studied, shoots grown in the dark for 10 days exhibited the highest frequency of rooting on medium containing 4.0 μM NAA or 6.0 μM IBA + 1.0 μM NAA. Full developed plants with a robust shoot and root system were transferred to soil, acclimatized under conditions for high humidity, and then transferred to ambient conditions in 4 weeks. The micropropagation protocol developed here allows for rapid multiplication of disease-free plants in C. sativa cultivars. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration—2nd Edition)
Show Figures

Figure 1

19 pages, 3537 KB  
Article
Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata
by Xinyuan Wang, Xuetong Yan, Keyuan Zheng, Hui Shen, Jianguo Cao, Qiang Zhou and Mulan Zhu
Plants 2025, 14(16), 2569; https://doi.org/10.3390/plants14162569 - 18 Aug 2025
Viewed by 552
Abstract
Hypolepis punctata, an aromatic fern with insect-resistant and ornamental potential. Up to date, no studies have reported its micropropagation, particularly using vegetative organs as explants. The optimized stolon sterilization (81.11%) employed 75% ethanol (30 s) and 15% sodium hypochlorite (12 min). The [...] Read more.
Hypolepis punctata, an aromatic fern with insect-resistant and ornamental potential. Up to date, no studies have reported its micropropagation, particularly using vegetative organs as explants. The optimized stolon sterilization (81.11%) employed 75% ethanol (30 s) and 15% sodium hypochlorite (12 min). The optimal conditions for GGB induction (75.56%) and proliferation (8.46 mm) were achieved using Murashige and Skoog (MS) medium + 2.0 mg/L 6-benzylaminopurine (BA) + 0.2 mg/L 1-naphthaleneacetic acid (NAA). The optimal plant growth regulator (PGR) formula for sporophyte regeneration was 0.5 mg/L BA + 0.1 mg/L NAA + 2 g/L activated charcoal (AC), achieving a 98.89% induction rate and 49.19 buds per explant. The 1/4 MS medium had the greatest promoting effect on biomass accumulation and leaf expansion. Optimal shoot elongation (97.78% success, 4.83 cm) was achieved in 1/4 MS + 0.5 mg/L BA + 0.1 mg/L NAA + 2 g/L AC, and optimized rooting (92.22%) was achieved using 1/4 MS + 0.5 mg/L indole-3-butyric acid (IBA) + 0.1 mg/L NAA + 2 g/L AC, producing 25.27 roots per plantlet. Crucially, ISSR analysis confirmed the genetic stability of all regenerants. This optimized protocol establishes a scalable micropropagation system, enhancing both commercial cultivation and genetic improvement potential in Hypolepis punctata. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

14 pages, 1554 KB  
Article
Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn
by Mayada K. Seliem, Neama Abdalla and Mohammed E. El-Mahrouk
Horticulturae 2025, 11(8), 929; https://doi.org/10.3390/horticulturae11080929 - 6 Aug 2025
Cited by 1 | Viewed by 776
Abstract
Agave species are plants with great economic value and multiple possibilities of use as ornamentals, medicinal plants, and fibers, as well as being significant sources of bioethanol. However, their long life cycles hinder their conventional breeding. Therefore, biotechnology tools are the most effective [...] Read more.
Agave species are plants with great economic value and multiple possibilities of use as ornamentals, medicinal plants, and fibers, as well as being significant sources of bioethanol. However, their long life cycles hinder their conventional breeding. Therefore, biotechnology tools are the most effective means for clonal propagation and genetic improvement. In vitro micropropagation of A. sisalana via axillary shoot proliferation from bulbil explants was attained using Murashige and Skoog medium (MS) supplemented with cytokinins (CKs), such as 6-benzyladenine (BA), kinetin (KIN), or thidiazuron (TDZ). The optimum significant shoot proliferation (14.67 shoots/explant) was achieved on 1.0 mg L−1 TDZ. The carry-over effect of CKs on subsequent rooting could be detected. Control and KIN treatments could enhance the rooting of shoots on shoot proliferation media. The regenerated plantlets were acclimatized directly with 100% survival. To mitigate this carry-over effect, that causes hindering further root growth and development, and promote healthy growth of roots, subculturing shoots onto a CK-free medium is a recommended practice. The shoots induced on all BA treatments, and TDZ at 0.5 and 1.0 mg L−1 could be rooted after two subcultures on CK-free medium, then they were acclimatized with 100% survival. However, the higher concentrations of TDZ inhibited in vitro rooting even after two subcultures on CK-free medium, and the acclimatization percentage was reduced by increasing the TDZ concentration recorded from 10 to 0%. Full article
Show Figures

Figure 1

18 pages, 4885 KB  
Article
Multiplication of Axillary Shoots of Adult Quercus robur L. Trees in RITA® Bioreactors
by Paweł Chmielarz, Conchi Sánchez, João Paulo Rodrigues Martins, Juan Manuel Ley-López, Purificación Covelo, María José Cernadas, Anxela Aldrey, Saleta Rico, Jesús María Vielba, Bruce Christie and Nieves Vidal
Forests 2025, 16(8), 1285; https://doi.org/10.3390/f16081285 - 6 Aug 2025
Cited by 1 | Viewed by 473
Abstract
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the [...] Read more.
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the influence of the explant type, the culture medium, shoot support and number of immersions. Variables evaluated included the number of normal and hyperhydric shoots, shoot length, multiplication coefficient and number of rootable shoots per explant. All genotypes could be cultured in temporary immersion. Basal stem sections attached to callus grew better than apical sections and developed less hyperhydricity. For long-term cultivation, Gresshoff and Doy medium was the best of the three media evaluated. All genotypes produced vigorous shoots suitable for rooting and acclimation. This is the first protocol to proliferate adult oak trees in bioreactors, representing significant progress towards large-scale propagation of this and other related species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

15 pages, 6033 KB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Cited by 1 | Viewed by 533 | Correction
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

24 pages, 3120 KB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 1161
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

14 pages, 6659 KB  
Article
The Development of a Micropropagation System for a Rare Variety of an Agricultural and Medicinal Elderberry Plant Sambucus nigra ‘Albida’
by Jiří Sedlák, Martin Mészáros, Matěj Semerák and Pavel Pech
Agronomy 2025, 15(7), 1588; https://doi.org/10.3390/agronomy15071588 - 29 Jun 2025
Viewed by 602
Abstract
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this [...] Read more.
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this crop. Our study aimed to find suitable micropropagation techniques for the black elder ‘Albida’ and compare suitable statistical methods for evaluating multiplication and rooting. For micropropagation, we tested the Murashige and Skoog (MS) growth medium with selected auxins and cytokinins. Five proliferation MS media containing 1, 2, and 4 mg/L BAP or 0.5 and 1 mg/L TDZ were tested. To induce root formation, three types of auxins were tested at a concentration of 1 mg/L in a 50% MS medium: IBA, IAA, and NAA. Data analysis was performed using different parametric and nonparametric tests to robustly capture the effects of treatments across varying distributional scenarios in developing explants subjected to the interactions of internal native and externally added plant growth regulators. The average multiplication rate ranged from 1.6 to 2.0 shoots per explant. High multiplication was recorded on the MS medium with 1 mg/L 6-benzylaminopurine. The root number per rooted explant was highly variable, ranging from 3.0 to 12.0 roots per explant. The highest average root number result was observed when 1 mg/L α-naphthalenacetic acid was used. All rooted plants were successfully acclimated to normal growing conditions. This in vitro propagation protocol allows for the production of hundreds to thousands of rooted plants from one initial explant within one year, enabling faster introduction to the agronomic sector. Full article
Show Figures

Figure 1

14 pages, 3143 KB  
Article
Characterization of a Gamma Radiation (60Co) Induced Mutant Population of Prickly Pear Cactus (Opuntia velutina F.A.C. Weber) Plants In Vitro Using ISSR Molecular Markers
by Eréndira Rubio-Ochoa, Eulogio De la Cruz-Torres, Rosa Elena Pérez-Sánchez, Héctor Eduardo Martínez-Flores, Liberato Portillo, Pedro Antonio García-Saucedo and Juan Florencio Gómez-Leyva
Horticulturae 2025, 11(7), 743; https://doi.org/10.3390/horticulturae11070743 - 27 Jun 2025
Viewed by 639
Abstract
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in [...] Read more.
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in vitro O. velutina explants were exposed to 15 different doses of gamma radiation from 60Co gamma, ranging from 5 to 125 Gy. The lethal dose was above 50 Gy, with an LD50 of 22.8 Gy for stimulating in vitro shoot growth. Shoots derived from doses between 5 and 50 Gy were subjected to in vitro shoot proliferation across four consecutive generations to stabilize morphological traits. Cluster analysis categorized the 178 irradiated shoots into 13 distinct morphological groups (CG1–CG13). Twenty-seven shoots exhibiting significant morphological improvements, such as a 50–100% increase in cladode length, up to a six-fold increase in shoot number, and up to a seven-fold increase in root number, were selected for molecular analysis of genetic diversity. Six primers were used with the Inter Simple Sequence Repeat (ISSR) molecular markers to examine genetic uniformity, yielding 54.5% polymorphic bands, indicating a high level of genetic variation. Both a UPGMA dendrogram and STRUCTURE-based Bayesian analysis confirmed the genetic divergence among the selected mutant lines. Overall, gamma irradiation effectively enhanced both phenotypic and genotypic diversity in O. velutina. This study corroborates that in vitro mutagenesis through gamma radiation is a viable strategy for generating novel genotypes with breeding potential within the Opuntia genus. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

18 pages, 2842 KB  
Article
Optimization of In Vitro Shoot Culture Parameters for Enhanced Biomass and Rosmarinic Acid Production in Salvia atropatana
by Wiktoria Ejsmont, Anna K. Kiss and Izabela Grzegorczyk-Karolak
Molecules 2025, 30(12), 2654; https://doi.org/10.3390/molecules30122654 - 19 Jun 2025
Cited by 1 | Viewed by 668
Abstract
Salvia atropatana is a medicinal plant native to Middle Eastern countries. It has been traditionally used in Turkish and Iranian folk medicine to treat infections, wounds, inflammatory diseases, spastic conditions, and diabetes. Its therapeutic potential has been attributed to its essential oil, polyphenolic [...] Read more.
Salvia atropatana is a medicinal plant native to Middle Eastern countries. It has been traditionally used in Turkish and Iranian folk medicine to treat infections, wounds, inflammatory diseases, spastic conditions, and diabetes. Its therapeutic potential has been attributed to its essential oil, polyphenolic acid, flavonoid, and diterpenoid content. The aim of the study was to determine the optimal conditions of in vitro S. atropatana shoot culture to enhance proliferation and secondary metabolite production. It examined the effects of various cytokinins and culture duration on culture growth parameters and phenolic compound accumulation. Exogenous cytokinin supplementation significantly enhanced shoot proliferation, with the highest proliferation ratio (6.3) observed with 1 and 2 mg/L 6-benzylaminopurine (BAP). Biomass accumulation was the highest at 0.5 mg/L BAP, followed by 1 and 2 mg/L meta-toplin (mTOP). Phenolic profiling identified nine compounds, with rosmarinic acid (RA) as the dominant metabolite. The highest RA content (16 mg/g dry weight) was achieved with 1 and 2 mg/L BAP and 0.5 mg/L of its ryboside. The TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method identified 1 mg/L BAP as the optimal treatment, balancing high proliferation, biomass, and polyphenol accumulation. Extending culture duration to 50 days increased biomass and phenolic content reaching 19.25 mg/g dry weight. However, morphological changes, including apical necrosis, were observed, and a significantly longer cultivation period was needed, questioning the value of the procedure. This study provides a basis for scalable in vitro production of bioactive compounds in S. atropatana. Full article
Show Figures

Figure 1

29 pages, 3586 KB  
Article
Influence of Prosulfocarb and Polymer Supplementation on Soil Bacterial Diversity in Triticum aestivum L. Cultivation
by Małgorzata Baćmaga, Jadwiga Wyszkowska and Jan Kucharski
Int. J. Mol. Sci. 2025, 26(12), 5452; https://doi.org/10.3390/ijms26125452 - 6 Jun 2025
Viewed by 548
Abstract
Despite their effectiveness in eliminating weeds, herbicides can indirectly and directly affect organisms, leading to a decline in species abundance as well as disruptions to the structure and functioning of ecosystems. Boxer 800 EC, whose active ingredient is prosulfocarb, is an active herbicide [...] Read more.
Despite their effectiveness in eliminating weeds, herbicides can indirectly and directly affect organisms, leading to a decline in species abundance as well as disruptions to the structure and functioning of ecosystems. Boxer 800 EC, whose active ingredient is prosulfocarb, is an active herbicide commonly used for weed control, but its potential ecological risks are not well understood. With this in mind, a study was conducted to evaluate the effectiveness of sodium alginate and sodium polyacrylate in restoring homeostasis to soil exposed to Boxer 800 EC herbicide. This involved a two-factor pot experiment: factor I—herbicide dose (0.0, 0.8, 4.8, and 48.0 mg kg−1 d.m.); factor II—polymer type (soil with the polymer additives sodium alginate, and sodium polyacrylate). The experiment was carried out on Eutric Cambisols with four replicates and lasted for 50 days. The test plant was Triticum aestivum L., cultivar “KWS Dorium C1”. The contaminant herbicide doses inhibited the proliferation of organotrophic bacteria and actinobacteria and reduced the colony development index (CD) and ecophysiological diversity index (EP) values for these microorganisms. The addition of sodium alginate to the soil increased the proliferation of these microorganisms, whereas sodium polyacrylate inhibited their development. Sodium alginate also increased the colony development index value of organotrophic bacteria and actinobacteria. Across all the analyzed factors, bacteria from the phylum Proteobacteriota dominated. However, the presence of herbicides and polymers changed the abundance of these bacteria. Bacteria of the genus Sphingomonas were the most prevalent genus in the samples. The herbicide Boxer 800 EC exerted a toxic effect on the growth and development of spring wheat, which was reflected in the plant biomass yield (shoot and ear) and the SPAD index. The recommended herbicide dose (0.80 mg kg−1) did not cause significant changes in the growth and development of spring wheat. The hydrogel control additives deepened the negative effect of the herbicide on plant development. While the herbicide significantly reduced the levels of available carbon and total nitrogen in the soil, the polymers increased these parameters. Full article
(This article belongs to the Special Issue Microorganisms in the Environment)
Show Figures

Figure 1

Back to TopTop