Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,029)

Search Parameters:
Keywords = siRNA knockdown

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1984 KB  
Article
PGRMC1 Promotes the Development of Cervical Intraepithelial Neoplasia in HPV-Positive Patients
by Wen Lai, Shuyu Liu, Tianming Wang, Min Gong, Qiaoling Liu, Ling Ling and Jianquan Chen
Biomedicines 2025, 13(10), 2454; https://doi.org/10.3390/biomedicines13102454 - 9 Oct 2025
Abstract
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has [...] Read more.
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has remained uncertain. This study aimed to elucidate the function of PGRMC1 in the progression of CIN. Methods: Bioinformatics techniques were employed to assess the expression levels of PGRMC1 in cervical cancer tissues and to investigate its correlation with patient prognosis. To explore the functional role of PGRMC1, we manipulated its expression in the cervical cancer cell line HeLa using siRNA. Subsequently, we evaluated cell migration via the scratch assay, and invasion through the Transwell assay. We employed mass spectrometry to identify proteins interacting with PGRMC1 and confirmed these interactions using co-immunoprecipitation (co-IP). Further co-IP experiments were conducted to pinpoint the specific binding sites of these protein interactions, and immunofluorescence staining was utilized to observe the spatial distribution of interacting proteins within the cells. The phosphorylation status of VIM was further confirmed by WB. At the clinical level, we collected cervical biopsy specimens from HPV-positive patients and verified the expression patterns of PGRMC1 and VIM using immunohistochemical staining in cervical squamous cell carcinoma (CSCC) tissues. Results: We discovered a correlation between progressively increasing PGRMC1 expression and the severity of CIN as well as a poor prognosis. Knockdown of PGRMC1 resulted in the inhibition of migration and invasion capabilities in cervical cancer cells. Furthermore, PGRMC1 was found to physically interact and colocalize with Vimentin (VIM). Notably, PGRMC1 knockdown specifically increased phosphorylation at the Ser-39 residue of VIM. Conclusions: Our findings suggest that PGRMC1 facilitates CIN progression by binding to VIM and suppressing Ser-39 phosphorylation, thereby promoting the migration and invasion of cervical carcinoma cells. This study enhances our understanding of PGRMC1’s role in CIN progression and lays an experimental foundation for targeted therapeutic approaches to cervical squamous carcinoma. Full article
(This article belongs to the Special Issue Current Perspectives on Human Papillomavirus (HPV)—Second Edition)
Show Figures

Figure 1

19 pages, 1740 KB  
Article
miR-10c Targets dgat2 and Affects the Expression of Genes Involved in Fatty Acid and Triglyceride Metabolism in Oreochromis niloticus Under Heat Stress
by Wen Wang, Wenjing Tao, Jixiang Hua, Siqi Lu, Yalun Dong, Jun Qiang and Yifan Tao
Int. J. Mol. Sci. 2025, 26(19), 9717; https://doi.org/10.3390/ijms26199717 - 6 Oct 2025
Viewed by 100
Abstract
Heat stress induces metabolic adaptations in fish, including the regulation of triglyceride (TG) synthesis/degradation to preserve cellular lipid balance and energy homeostasis. Diacylglycerol acyltransferase (DGAT) catalyzes the final step in TG synthesis. However, the molecular mechanisms by which DGAT regulates TG metabolism in [...] Read more.
Heat stress induces metabolic adaptations in fish, including the regulation of triglyceride (TG) synthesis/degradation to preserve cellular lipid balance and energy homeostasis. Diacylglycerol acyltransferase (DGAT) catalyzes the final step in TG synthesis. However, the molecular mechanisms by which DGAT regulates TG metabolism in heat-stressed fish remain unexplored. Our previous study suggested that miR-10c regulates dgat2 expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) under heat stress. Here, we characterized the GIFT miR-10c precursor as a 65-nucleotide transcript yielding a 22 nt mature miRNA (oni-miR-10c). A phylogenetic analysis revealed a high level of miR-10c sequence conservation across species. A dual-luciferase reporter assay confirmed dgat2 as a direct target of miR-10c. Overexpression of miR-10c in vivo down-regulated dgat2 transcripts and DGAT2 protein. SiRNA-knockdown of dgat2 resulted in upregulation of cpt1α, fas, and lpl and downregulation of hsl, thereby reprogramming lipid metabolism in GIFT hepatocytes. Thus, the miR-10c-dgat2 regulatory axis facilitates TG hydrolysis and promotes fatty acid metabolism under heat stress. Our findings highlight miR-10c’s potential as a dgat2 inhibitor and its function in regulating lipid metabolism in heat-stressed GIFT. Our study reveals a key molecular pathway mediating thermal adaptation of energy metabolism in fish, providing novel targets for preventing heat-induced metabolic disorders. Full article
(This article belongs to the Special Issue Latest Advances in Aquatic Genetic Improvement)
20 pages, 3137 KB  
Article
Mistletoe Extracts Inhibit Progressive Growth of Prostate Cancer Cells
by Sascha D. Markowitsch, Larissa Albrecht, Moritz Meiborg, Jochen Rutz, Anita Thomas, Felix K. -H. Chun, Axel Haferkamp, Eva Juengel and Roman A. Blaheta
Cells 2025, 14(19), 1535; https://doi.org/10.3390/cells14191535 - 30 Sep 2025
Viewed by 208
Abstract
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa [...] Read more.
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa patients remain to be explored. The present study was designed to evaluate the effect of mistletoe extracts from four different host trees (Tiliae, Populi, Salicis, and Crataegi) on the growth and proliferation of PCa cell lines in vitro. PC3, DU145, and LNCaP cells were used to evaluate tumor cell growth (MTT assay) and proliferation (BrdU incorporation assay). Clonogenicity, apoptosis, cell cycle, and cell-cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins) were investigated, as was CD44 standard and splice variant expression and integrin α and β receptors. SiRNA knockdown studies were employed to investigate the functional relevance of integrins. All mistletoe extracts significantly inhibited cell growth in a dose-dependent manner and cell proliferation and clonogenicity were suppressed. Populi and Salicis induced cell-cycle arrest in the G2/M phase and increased apoptosis. Both extracts down-regulated CDK1 and cyclin A and altered CD44 expression. Integrins α5 in all cell lines and α6 in DU145 and LNCaP were particularly diminished. Knocking down α5 and α6 induced cell growth inhibition in DU145. Mistletoe extracts block the growth and proliferation of PCa cells in vitro and therefore qualify for use in future animal studies to evaluate mistletoe as an adjunct to standard PCa treatment. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
16 pages, 7745 KB  
Article
Transient Knockdown of RORB with Cell-Penetrating siRNA Improves Visual Function in a Proteotoxic Mouse Model of Retinitis Pigmentosa
by Chanok Son, Hyo Kyung Lee, Hyoik Jang, Chul-Woo Park, Yu-sang Lee, Daehan Lim, Dong Ki Lee, Semin Lee and Hyewon Chung
Biomedicines 2025, 13(10), 2392; https://doi.org/10.3390/biomedicines13102392 - 29 Sep 2025
Viewed by 304
Abstract
Objectives: Retinitis pigmentosa (RP) is commonly initiated by rod photoreceptor degeneration due to genetic mutations, followed by secondary cone loss and progressive blindness. Preserving rod function during the earlier stages of RP is a key therapeutic goal, as rod survival supports cone maintenance [...] Read more.
Objectives: Retinitis pigmentosa (RP) is commonly initiated by rod photoreceptor degeneration due to genetic mutations, followed by secondary cone loss and progressive blindness. Preserving rod function during the earlier stages of RP is a key therapeutic goal, as rod survival supports cone maintenance and delays vision loss. In this study, we investigated the therapeutic potential of transient knockdown of retinoid-related orphan receptor beta (RORB) using a cell-penetrating asymmetric small interfering RNA (cp-asiRORB) in RhoP23H mice, a model of autosomal dominant RP. While the role of RORB in the adult retina remains unclear, prior studies of related nuclear receptors suggest potential involvement in proteostasis. Based on this, we hypothesized that persistent RORB expression may influence photoreceptor homeostasis under degenerative stress. Methods: We first optimized the cp-asiRORB design to enhance gene silencing and cellular uptake. In vitro studies were conducted under proteotoxic stress. In vivo studies involved intravitreal administration of cp-asiRORB in RhoP23H mice. Furthermore, single-cell RNA sequencing of rod photoreceptors was performed. Results: In vitro studies demonstrated that RORB knockdown improved cell viability, reduced apoptosis, and diminished aggresome formation under proteotoxic stress. Intravitreal administration of cp-asiRORB in RhoP23H mice effectively reduced RORB expression in the retina, leading to improved photoreceptor survival and preserved visual function. Single-cell RNA sequencing revealed upregulation of proteasomal subunit genes in cp-asiRORB-treated eyes, indicating enhanced proteostasis. Conclusions: Together, these results demonstrate that transient suppression of RORB mitigates proteotoxic stress and slows RP progression, highlighting a novel RNAi-based therapeutic strategy for retinal degeneration. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

18 pages, 3381 KB  
Article
EPDR1 Links Fibroblast Dysfunction to Disease Severity in Idiopathic Pulmonary Fibrosis
by Jong-Uk Lee, Seung-Lee Park, Min Kyung Kim, Eunjeong Seo, Hun-Gyu Hwang, Jung Hyun Kim, Hun Soo Chang and Choon-Sik Park
Cells 2025, 14(19), 1515; https://doi.org/10.3390/cells14191515 - 28 Sep 2025
Viewed by 322
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by aberrant fibroblast activation, lysosomal dysfunction, and cellular senescence. Transcriptomic analyses have identified ependymin-related 1 (EPDR1) as a fibroblast-enriched gene in IPF, but its biological function remains unclear. EPDR1 expression was assessed in [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by aberrant fibroblast activation, lysosomal dysfunction, and cellular senescence. Transcriptomic analyses have identified ependymin-related 1 (EPDR1) as a fibroblast-enriched gene in IPF, but its biological function remains unclear. EPDR1 expression was assessed in lung fibroblasts, lung tissues, bronchoalveolar lavage fluid (BALF), and serum from IPF patients and controls using qPCR, Western blotting, ELISA, and immunohistochemistry. Lysosomal function, autophagic flux, and senescence markers were analyzed in primary fibroblasts following siRNA-mediated EPDR1 knockdown. EPDR1 was significantly upregulated in IPF-derived fibroblasts and localized to fibrotic regions enriched with α-SMA+, COL1A1+, and FN1+ myofibroblasts of IPF-derived lung tissues. EPDR1 levels were markedly elevated in the BALF and serum of IPF patients and correlated with increased mortality. IPF fibroblasts exhibited reduced lysosomal acidification and impaired autophagic flux, indicated by p62 and LC3B accumulation. EPDR1 knockdown restored lysosomal function; enhanced autophagic degradation; and reduced senescence markers, including p21, p16, and SA-β-gal activity. EPDR1 drives lysosomal dysfunction and fibroblast senescence in IPF. Its elevated expression in lung tissue and biological fluids, together with its association with prognosis, highlights EPDR1 as a potential biomarker and therapeutic target in IPF. Full article
(This article belongs to the Special Issue Advances in Pulmonary Fibrosis)
Show Figures

Figure 1

19 pages, 3507 KB  
Article
Investigating How Thbs4 Regulates Degeneration and Regeneration of the Peripheral Nerve
by Yi Yao, Yiyue Zhou, Zixu Zhang, Yuxiao Huang, Taoran Jiang, Yiming Xia, Dandan Gu, Xi Gu, Huiyuan Bai, Maorong Jiang and Chunmei Yu
Biomedicines 2025, 13(10), 2375; https://doi.org/10.3390/biomedicines13102375 - 28 Sep 2025
Viewed by 259
Abstract
Objective: Molecular biology techniques were employed to investigate the effects of thrombospondin-4 (Thbs4) expression in dorsal root ganglion (DRG) on peripheral nerve injury repair and regeneration, as well as to elucidate the underlying molecular mechanisms. Methods: A sciatic nerve transection model in rat [...] Read more.
Objective: Molecular biology techniques were employed to investigate the effects of thrombospondin-4 (Thbs4) expression in dorsal root ganglion (DRG) on peripheral nerve injury repair and regeneration, as well as to elucidate the underlying molecular mechanisms. Methods: A sciatic nerve transection model in rat was established to analyze Thbs4 expression and localization in DRG tissues after injury. Both siRNA and adeno-associated virus (AAV) were used to knockdown or overexpress Thbs4. The effects of knockdown and overexpression of Thbs4 on axon growth were assessed using immunofluorescence staining. The roles of Thbs4 in peripheral nerve injury repair and regeneration were determined using behavioral assays, electrophysiological recordings, and transmission electron microscopy. Results: Thbs4 was primarily localized in the cell membrane and cytoplasm of DRG neurons but was also found in the intercellular spaces. In vitro experiments demonstrated that Thbs4 overexpression promoted axonal regeneration and reduced neuronal apoptosis. They also showed that Thbs4 overexpression accelerated sciatic nerve regeneration and enhanced the recovery of motor and sensory functions. Conversely, Thbs4 knockdown had the opposite effects. This study also showed that the knockdown or overexpression of Thbs4 significantly altered the expression of NF-κB and ERK signaling pathways, suggesting their involvement in peripheral nerve repair and regeneration. Conclusions: Thbs4 expression in DRG tissues is significantly altered following sciatic nerve injury. The NF-κB and ERK may be involved in regulating the repair and regeneration of the peripheral nerve by Thbs4. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

19 pages, 1906 KB  
Article
Bitter Taste Receptors TAS2R8 and TAS2R10 Reduce Proton Secretion and Differentially Modulate Cadmium Uptake in Immortalized Human Gastric Cells
by H. Noreen Orth, Philip Pirkwieser, Maya Giridhar, Valerie Boger, Mark M. Somoza, Andreas Dunkel and Veronika Somoza
Int. J. Mol. Sci. 2025, 26(18), 9166; https://doi.org/10.3390/ijms26189166 - 19 Sep 2025
Viewed by 318
Abstract
Beyond sensing bitter-tasting compounds, bitter taste receptors (TAS2Rs) have been demonstrated to play a functional role in proton secretion as a key mechanism of gastric acid secretion (GAS) and the cellular uptake of the zinc metal ion. Given its chemical similarity and comparable [...] Read more.
Beyond sensing bitter-tasting compounds, bitter taste receptors (TAS2Rs) have been demonstrated to play a functional role in proton secretion as a key mechanism of gastric acid secretion (GAS) and the cellular uptake of the zinc metal ion. Given its chemical similarity and comparable effects in GAS, we focused this work on cadmium and hypothesized that gastric TAS2Rs are involved in (i) cadmium-induced inhibition of proton secretion and (ii) in its cellular uptake. To test this hypothesis, immortalized human parietal HGT-1 cells were exposed to 62.5–1000 µM CdCl2 for 30 min to elucidate TAS2R-mediated proton secretory activity (PSA) using a fluorescence-based pH cell assay and to quantitate cellular cadmium uptake by ICP-MS. HGT-1 cells exposed to CdCl2 exhibited a dose-dependent decrease in PSA, accompanied by a corresponding increase in intracellular cadmium concentrations. Following a TAS2R RT-qPCR screening, the functional roles of TAS2R8 and TAS2R10 were clarified using a siRNA knockdown approach, demonstrating that TAS2R8 promotes and TAS2R10 mediates protection against excessive cellular cadmium accumulation. An additional cDNA microarray screening revealed, via gene ontology analysis, a distinct gene association of TAS2R8 and TAS2R10 with several metal ion transporters. These results provide the first evidence for a specific role of individual TAS2Rs beyond taste perception, particularly in metal ion homeostasis and gastric physiology. Full article
(This article belongs to the Special Issue Trace Elements, Metal Ions, Channels and Transporters in Metabolism)
Show Figures

Figure 1

22 pages, 2736 KB  
Article
Proteomic Screening for Cellular Targets of the Duck Enteritis Virus Protein VP26 Reveals That the Host Actin–Myosin II Network Regulates the Proliferation of the Virus
by Liu Chen, Yin-Chu Zhu, Tao Yun, Wei-Cheng Ye, Zheng Ni, Jiong-Gang Hua and Cun Zhang
Int. J. Mol. Sci. 2025, 26(18), 9108; https://doi.org/10.3390/ijms26189108 - 18 Sep 2025
Viewed by 274
Abstract
Duck enteritis virus (DEV) is responsible for duck viral enteritis, a contagious and lethal disease in waterfowls. The host proteins targeted by DEV are unknown. In this study, we developed a recombinant DEV rVP26-Flag and identified 17 host proteins that interact with VP26 [...] Read more.
Duck enteritis virus (DEV) is responsible for duck viral enteritis, a contagious and lethal disease in waterfowls. The host proteins targeted by DEV are unknown. In this study, we developed a recombinant DEV rVP26-Flag and identified 17 host proteins that interact with VP26 in infected chicken embryo fibroblast cells using co-immunoprecipitation in conjunction with liquid chromatography–tandem mass spectrometry (Co-IP-MS/MS). The 17 potential targets of VP26 proteins include Xirp1, TMOD3, DCN, ATP5PD, AP3M1, MYO5A, MYH10, MYH9 (non-muscle myosin IIA heavy chain), and GSN. Most of these proteins are microfilament or cytoskeletal proteins with functions such as cytoskeletal protein binding, actin filament interaction, microfilament motor activity, and myosin II interaction. Using the Search Tool for the Retrieval of Interacting Genes analysis, we predicted a functional network of microfilament cytoskeletal proteins interacting with VP26. Interaction between DEV VP26 and the carboxyl-terminus domain of MYH9 (1651–1960 aa) was verified via co-localization and Co-IP assays. We also demonstrated that the inhibition of actin polymerization with cytochalasin D and latrunculin A reduced the DEV titer. Furthermore, siRNA-mediated knockdown of MYH9, which has intrinsic ATPase activity, also resulted in a reduced viral titer. A targeted inhibitor of myosin II ATPase, (-)-Blebbistatin, significantly suppressed DEV infection both in vitro and in vivo. These results suggest that the actin–myosin II network plays a crucial role in DEV proliferation, with MYH9 being an important host factor influencing DEV infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 1299 KB  
Article
Impaired PTEN Expression in T Cells Drives Resistance to Treg-Mediated Immune Regulation in Multiple Sclerosis
by Janine Schlöder, Bettina Trinschek, Felix Luessi and Helmut Jonuleit
Cells 2025, 14(18), 1445; https://doi.org/10.3390/cells14181445 - 16 Sep 2025
Viewed by 408
Abstract
The regulation of T cell-mediated immune responses is essential for maintaining immune homeostasis and preventing autoimmune diseases. In multiple sclerosis (MS), impaired immunoregulatory control allows autoreactive T cells to persist, as effector T cells (Teff) display reduced susceptibility to regulatory T cells (Treg). [...] Read more.
The regulation of T cell-mediated immune responses is essential for maintaining immune homeostasis and preventing autoimmune diseases. In multiple sclerosis (MS), impaired immunoregulatory control allows autoreactive T cells to persist, as effector T cells (Teff) display reduced susceptibility to regulatory T cells (Treg). This resistance to Treg-mediated tolerance is linked to altered IL-6 signaling and hyperactivation of protein kinase B (PKB/c-Akt). However, the mechanisms leading to increased PKB phosphorylation remain poorly understood. Here, we examined the expression of phosphatase and tensin homolog PTEN, a key phosphatase that negatively regulates PKB/c-Akt activation. We found that PTEN protein expression rapidly declines in activated Teff from MS patients. To clarify whether PTEN downregulation contributes to Treg resistance, we used PTEN-specific siRNA to modulate PTEN expression in Teff from healthy donors. PTEN knockdown resulted in accelerated IL-6 production, enhanced PKB phosphorylation, and reduced responsiveness to Treg-mediated suppression, similar to Treg resistance observed in MS. This study reports disrupted PTEN expression in activated Teff from MS patients. Our findings highlight that PTEN is critical for effective immune regulation of T cells, and suggest its dysregulation contributes to impaired immune tolerance in MS. Full article
Show Figures

Graphical abstract

20 pages, 2748 KB  
Article
CYR61 Expression Is Induced by IGF1 and Promotes the Proliferation of Prostate Cancer Cells Through the PI3/AKT Signaling Pathway
by Greisha L. Ortiz-Hernández, Carmina Patrick, Stefan Hinz, Mark A. LaBarge, Yun R. Li and Susan L. Neuhausen
Int. J. Mol. Sci. 2025, 26(18), 8991; https://doi.org/10.3390/ijms26188991 - 15 Sep 2025
Viewed by 417
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between [...] Read more.
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between CYR61 and IGF1. CYR61 was silenced using small interfering RNA (siRNA) in prostate carcinoma 3 (PC3), lymph node carcinoma of the prostate (LNCaP), and androgen receptor (AR)-positive 22Rv1 cells, followed by assessments of their proliferation, viability, colony formation, migration, and signaling pathway activation. CYR61 knockdown significantly reduced cell growth, viability, prostasphere formation, and migration across all three cell lines. Mechanistically, CYR61 silencing inhibited PI3K/AKT signaling but had no effect on MAPK activation. In addition, treatment with recombinant IGF1 induced CYR61 expression in a time-dependent manner, and the inhibition of PI3K/AKT signaling suppressed both CYR61 expression and cell proliferation. These findings suggest that IGF1 promotes PCa progression through CYR61 and that CYR61 may serve as a potential therapeutic target for limiting tumor growth and metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

16 pages, 3357 KB  
Article
Cabozantinib Sensitizes NSCLC Cells to Radiation by Inducing Ferroptosis via STAT3/MCL1/BECN1/SLC7A11 Axis Suppression
by Cheng-Yi Wang, Chao-Yuan Huang, Li-Ju Chen, Grace Chen and Shiao-Ya Hong
Cancers 2025, 17(18), 2950; https://doi.org/10.3390/cancers17182950 - 9 Sep 2025
Viewed by 508
Abstract
Background/Objectives: Intrinsic radioresistance in non-small-cell lung cancer (NSCLC) is partially driven by adaptive redox mechanisms that prevent oxidative cell death. Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a potential therapeutic vulnerability in tumors with elevated [...] Read more.
Background/Objectives: Intrinsic radioresistance in non-small-cell lung cancer (NSCLC) is partially driven by adaptive redox mechanisms that prevent oxidative cell death. Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a potential therapeutic vulnerability in tumors with elevated antioxidant capacity. However, its mechanistic integration with radiotherapy remains incompletely understood. Methods: We compared the effects of three clinically approved VEGFR-targeting tyrosine kinase inhibitors (TKIs), cabozantinib, lenvatinib, and ripretinib, on NSCLC cell viability with and without radiation. Subsequent mechanistic studies focused on cabozantinib and included ferroptosis rescue assays (ferrostatin-1, deferoxamine), lipid ROS quantification, glutathione assays, clonogenic survival, co-immunoprecipitation of BECN1–SLC7A11 complexes, and BECN1 knockdown by siRNA and shRNA. Results: All three TKIs were evaluated for cytotoxicity, but only cabozantinib significantly reduced NSCLC cell viability in combination with radiation in a ferroptosis-dependent manner. Cabozantinib inhibited STAT3 phosphorylation and downregulated MCL1, resulting in the release of BECN1. This allowed BECN1 to bind and suppress SLC7A11, disrupting system Xc function, depleting glutathione, and promoting lipid ROS accumulation. Genetic silencing of BECN1 reversed these effects and restored redox balance and clonogenic capacity. Lenvatinib and ripretinib failed to elicit similar responses, indicating that the inhibition of non-VEGFR targets (e.g., MET, AXL) may be essential for ferroptosis induction by cabozantinib. Conclusions: Cabozantinib enhances the radiosensitization of NSCLC cells through ferroptosis induction mediated by the suppression of the STAT3/MCL1/BECN1/SLC7A11 axis. These findings uncover a novel mechanism linking kinase inhibition to redox imbalance and suggest that the pharmacologic modulation of ferroptosis using multi-target TKIs may represent a rational approach to overcome radioresistance in NSCLC. Full article
(This article belongs to the Special Issue Advances in Lung Cancer Treatment Strategies)
Show Figures

Figure 1

22 pages, 4619 KB  
Article
Curcumin as an Epigenetic Modulator: Suppression of Breast Cancer via the Hsa_circ_0001946/MiR-7-5p/Target Gene Axis
by Asmaa Abuaisha, Murat Kaya, Ilknur Suer, Selman Emiroglu, Aysel Bayram, Mustafa Tukenmez, Neslihan Cabioglu, Mahmut Muslumanoglu, Esra Nazligul, Berrin Papila, Abdulmelik Aytatlı, Omer Faruk Karatas, Kivanc Cefle, Sukru Palanduz and Sukru Ozturk
Medicina 2025, 61(9), 1600; https://doi.org/10.3390/medicina61091600 - 4 Sep 2025
Viewed by 644
Abstract
Background and Objectives: Curcumin is a turmeric-derived polyphenol, and it has shown anticancer potential in various cancers, including breast cancer (BC). Nevertheless, the molecular mechanisms underlying its effects remain incompletely defined. Hsa_circ_0001946 (CDR1as) is a circular RNA (circRNA) that promotes tumor progression [...] Read more.
Background and Objectives: Curcumin is a turmeric-derived polyphenol, and it has shown anticancer potential in various cancers, including breast cancer (BC). Nevertheless, the molecular mechanisms underlying its effects remain incompletely defined. Hsa_circ_0001946 (CDR1as) is a circular RNA (circRNA) that promotes tumor progression by competitively inhibiting microRNA-7-5p (miR-7-5p) in BC. This study investigated whether curcumin regulates the hsa_circ_0001946/miR-7-5p/target gene axis in BC progression. Materials and Methods: BC cell lines (MCF-7 and T47D) and a non-cancerous human mammary epithelial cell line (MCF-10A) were treated with curcumin or transfected with circ_0001946 siRNA or miR-7-5p mimic. Cell proliferation, migration, apoptosis, and protein expression were analyzed by CVDK-8 analysis, a wound healing assay, and flow cytometry, respectively. Also, protein expression levels were quantified via Western blotting. In vitro and in silico findings were further validated by analyzing tumor and adjacent normal tissues from 65 luminal BC patients. Results: Curcumin inhibited the proliferation and migration of MCF-7 and T47D cells in a dose-dependent manner. Knockdown of hsa_circ_0001946 or overexpression of miR-7-5p significantly suppressed proliferation and migration and enhanced apoptosis in BC cells compared to the negative controls. Curcumin treatment led to the knockdown of hsa_circ_0001946, the overexpression of miR-7-5p, and the downregulation of hsa_circ_0001946, CKS2, TOP2A, and PARP1, while it upregulating miR-7-5p. The Western blot confirmed reduced CKS2 protein levels after curcumin treatment. The expression of both hsa_circ_0001946 and CKS2 was significantly upregulated in tumor tissues compared to that of matched adjacent normal tissues, whereas that of miR-7-5p was markedly downregulated. Conclusions: This preliminary study shows that curcumin suppresses BC tumorigenesis by modulating the hsa_circ_0001946/miR-7-5p/target gene axis. While these findings suggest a novel regulatory pathway and potential therapeutic targets, further in vivo validation and clinical trials are required to determine the translational relevance of curcumin in BC therapy. Full article
(This article belongs to the Collection Frontiers in Breast Cancer Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 3377 KB  
Article
Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling
by Yoon-Hee Cheon, Sung Chul Kwak, Chong Hyuk Chung, Chang Hoon Lee, Myeung Su Lee and Ju-Young Kim
Int. J. Mol. Sci. 2025, 26(17), 8613; https://doi.org/10.3390/ijms26178613 - 4 Sep 2025
Viewed by 627
Abstract
Swiprosin-1 (SWS1/EFhd2) is a calcium-binding adaptor protein involved in cytoskeletal regulation, but its physiological role in bone homeostasis remains largely undefined. To elucidate its function in osteoclast biology, we examined SWS1 expression and activity during osteoclastogenesis using primary murine bone marrow-derived macrophages, siRNA-mediated [...] Read more.
Swiprosin-1 (SWS1/EFhd2) is a calcium-binding adaptor protein involved in cytoskeletal regulation, but its physiological role in bone homeostasis remains largely undefined. To elucidate its function in osteoclast biology, we examined SWS1 expression and activity during osteoclastogenesis using primary murine bone marrow-derived macrophages, siRNA-mediated knockdown, and SWS1 knockout (KO) mice. SWS1 was predominantly localized to the nucleus in precursor cells and redistributed to the F-actin ring in mature osteoclasts. Receptor activator of nuclear factor-kappa B ligand stimulation significantly downregulated SWS1 mRNA expression. Loss of SWS1 enhanced osteoclast formation, F-actin ring integrity, and bone resorption, accompanied by elevated expression of osteoclastogenic markers. In vivo, male SWS1 KO mice exhibited deteriorated trabecular bone microarchitecture with increased osteoclast numbers. Mechanistically, SWS1 deficiency intensified αvβ3 integrin-associated cytoskeletal signaling and upregulated Akt, MAPK, NF-κB, and PLCγ2 pathways. These results indicate that SWS1 negatively regulates osteoclast differentiation and function by restraining cytoskeletal reorganization and downstream signaling. Collectively, our findings establish SWS1 as a novel modulator of osteoclast activity and a potential therapeutic target for osteolytic bone disorders. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 1232 KB  
Article
Midkine Deficiency Attenuates Lipopolysaccharide-Induced Pulmonary Inflammation
by Yoshinori Tanino, Xintao Wang, Takefumi Nikaido, Yuki Sato, Ryuichi Togawa, Natsumi Watanabe, Mishie Tanino, Kenji Kadomatsu and Yoko Shibata
Int. J. Mol. Sci. 2025, 26(17), 8519; https://doi.org/10.3390/ijms26178519 - 2 Sep 2025
Viewed by 425
Abstract
Midkine (MDK) is a multifunctional heparin-binding growth factor, and has been shown to regulate cell growth, survival, and migration. It also plays important roles in several inflammatory diseases such as sepsis. However, the role of MDK in the lungs has not yet been [...] Read more.
Midkine (MDK) is a multifunctional heparin-binding growth factor, and has been shown to regulate cell growth, survival, and migration. It also plays important roles in several inflammatory diseases such as sepsis. However, the role of MDK in the lungs has not yet been elucidated. In the present study, we investigated the role of MDK in pulmonary inflammation experiments using a mouse lipopolysaccharide (LPS)-induced pulmonary inflammation model and human bronchial cells. Wild-type and MDK-deficient mice were administered intratracheally with LPS, and several inflammatory parameters were analyzed. In the wild-type mice, MDK mRNA and protein in lung tissues were significantly increased after intratracheal LPS administration. The MDK-deficient mice showed significantly lower counts of total cells and neutrophils, as well as lower concentrations of total protein and neutrophil chemokines, KC and MIP-2 in bronchoalveolar lavage fluid, compared to wild-type mice. Moreover, mRNA expressions of TNF-α, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-2 in lung tissues, as well as the histopathological lung inflammation score, were significantly lower in the MDK-deficient mice. Furthermore, in in vitro experiments using bronchial epithelial cells, LPS stimulation increased mRNA expression of MDK, and MDK knockdown by siRNA decreased LPS-induced TNF-α and CXCL8 upregulation. These findings suggest that deficiency of MDK attenuates LPS-induced pulmonary inflammation, at least in part, through inhibiting inflammatory cytokine and chemokine upregulation in the lungs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 3600 KB  
Article
Ago2-Mediated Recruitment of HP1a on Transposable Elements in Drosophila Brain
by Oxana M. Olenkina, Ruslan A. Simonov, Anna Y. Ivannikova, Yuri A. Abramov, Anastasiia L. Sivkina, Sergey V. Ulianov and Yuri Y. Shevelyov
Cells 2025, 14(17), 1361; https://doi.org/10.3390/cells14171361 - 1 Sep 2025
Viewed by 724
Abstract
In Drosophila gonads, transposable elements (TEs) are repressed by the Piwi-interacting RNA (piRNA) pathway operating both co-transcriptionally and post-transcriptionally. In the non-gonadal tissues, TEs are mainly repressed by the short interfering RNA (siRNA) pathway with Argonaute 2 (Ago2) functioning as an effector protein. [...] Read more.
In Drosophila gonads, transposable elements (TEs) are repressed by the Piwi-interacting RNA (piRNA) pathway operating both co-transcriptionally and post-transcriptionally. In the non-gonadal tissues, TEs are mainly repressed by the short interfering RNA (siRNA) pathway with Argonaute 2 (Ago2) functioning as an effector protein. It is generally assumed that this pathway acts at the post-transcriptional level. However, recent data point to its possible involvement in co-transcriptional silencing as well. Here, using DamID, we found a drastic decrease in HP1a on TEs (especially on the LTR-containing retrotransposons) and other heterochromatin regions in Ago2-mutant Drosophila brain. HP1a reduction is accompanied by the increased chromatin accessibility of TEs, indicating their derepression. Accordingly, several LTR-containing retrotransposons were up-regulated in the larval brain of Ago2 mutants. Moreover, upon the knock-down of lamin Dm0 in neurons, HP1a was increased predominantly on the same set of TEs that had reduced HP1a binding in Ago2 mutants. We hypothesize that, since Ago2 was localized to the common complex with lamin Dm0, the depletion of the latter may release Ago2 in the nucleoplasm, thus enhancing the recruitment of HP1a on TEs. Our findings support the hypothesis that TEs in the Drosophila brain are silenced, in part, through Ago2-mediated recruitment of HP1a. Full article
Show Figures

Figure 1

Back to TopTop