Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,765)

Search Parameters:
Keywords = signal sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2825 KiB  
Review
Quorum Signaling Molecules: Interactions Between Plants and Associated Pathogens
by Xi Zheng, Junjie Liu and Xin Wang
Int. J. Mol. Sci. 2025, 26(11), 5235; https://doi.org/10.3390/ijms26115235 (registering DOI) - 29 May 2025
Abstract
The morphogenesis and defense evolution of plants are intricately linked to soil microbial community dynamics, where beneficial and pathogenic bacteria regulate ecosystem stability through chemical signaling. A microbial communication mechanism known as quorum sensing (QS), which affects population density, virulence, and biofilm formation, [...] Read more.
The morphogenesis and defense evolution of plants are intricately linked to soil microbial community dynamics, where beneficial and pathogenic bacteria regulate ecosystem stability through chemical signaling. A microbial communication mechanism known as quorum sensing (QS), which affects population density, virulence, and biofilm formation, substantially impacts plant development and immune responses. However, plants have developed strategies to detect and manipulate QS signals, enabling bidirectional interactions that influence both plant physiology and the balance of the microbiome. In this review, QS signals from bacteria, fungi, and nematodes are systematically examined, emphasizing their recognition by plant receptors, downstream signaling pathways, and the activation of defense responses. Most significantly, attention is given to the role of fungal and nematode QS molecules in modulating plant microbe interactions. By elucidating these communication networks, we highlight their potential applications in sustainable agriculture, offering novel insights into crop health management and ecosystem resilience. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
28 pages, 5097 KiB  
Review
Machine-Learning-Assisted Nanozyme-Based Sensor Arrays: Construction, Empowerment, and Applications
by Jinjin Liu, Xinyu Chen, Qiaoqiao Diao, Zheng Tang and Xiangheng Niu
Biosensors 2025, 15(6), 344; https://doi.org/10.3390/bios15060344 - 29 May 2025
Abstract
In the past decade, nanozymes have been attracting increasing interest in academia due to their stable performance, low cost, and easy modification. With the catalytic signal amplification feature, nanozymes not only find wide use in traditional “lock-and-key” single-target detection but hold great potential [...] Read more.
In the past decade, nanozymes have been attracting increasing interest in academia due to their stable performance, low cost, and easy modification. With the catalytic signal amplification feature, nanozymes not only find wide use in traditional “lock-and-key” single-target detection but hold great potential in high-throughput multiobjective analysis via fabricating sensor arrays. In particular, the rise of machine learning in recent years has greatly advanced the design, construction, signal processing, and utilization of sensor arrays. The constructive collaboration of nanozymes, sensor arrays, and machine learning is accelerating the development of biochemical sensors. To highlight the emerging field, in this minireview, we created a concise summary of machine-learning-assisted nanozyme-based sensor arrays. First, the construction of nanozyme-involved sensor arrays is introduced from several aspects, including nanozyme materials and activities, sensing variables, and signal outputs. Then, the roles of machine learning in signal treatment, information extraction, and outcome feedback are emphasized. Afterwards, typical applications of machine-learning-assisted nanozyme-involved sensor arrays in environmental detection, food analysis, and biomedical sensing are discussed. Finally, the promise of machine-learning-assisted nanozyme-based sensor arrays in biochemical sensing is highlighted, and some future trends are also pointed out to attract more interest and effort to promote the emerging field for better practical use. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2025)
Show Figures

Figure 1

29 pages, 4560 KiB  
Article
GNSS-RTK-Based Navigation with Real-Time Obstacle Avoidance for Low-Speed Micro Electric Vehicles
by Nuksit Noomwongs, Kanin Kiataramgul, Sunhapos Chantranuwathana and Gridsada Phanomchoeng
Machines 2025, 13(6), 471; https://doi.org/10.3390/machines13060471 - 29 May 2025
Abstract
Autonomous navigation for micro electric vehicles (micro EVs) operating in semi-structured environments—such as university campuses and industrial parks—requires solutions that are cost-effective, low in complexity, and robust. Traditional autonomous systems often rely on high-definition maps, multi-sensor fusion, or vision-based SLAM, which demand expensive [...] Read more.
Autonomous navigation for micro electric vehicles (micro EVs) operating in semi-structured environments—such as university campuses and industrial parks—requires solutions that are cost-effective, low in complexity, and robust. Traditional autonomous systems often rely on high-definition maps, multi-sensor fusion, or vision-based SLAM, which demand expensive sensors and high computational power. These approaches are often impractical for micro EVs with limited onboard resources. To address this gap, a real-world autonomous navigation system is presented, combining RTK-GNSS and 2D LiDAR with a real-time trajectory scoring algorithm. This configuration enables accurate path following and obstacle avoidance without relying on complex mapping or multi-sensor fusion. This study presents the development and experimental validation of a low-speed autonomous navigation system for a micro electric vehicle based on GNSS-RTK localization and real-time obstacle avoidance. The research achieved the following three primary objectives: (1) the development of a low-level control system for steering, acceleration, and braking; (2) the design of a high-level navigation controller for autonomous path following using GNSS data; and (3) the implementation of real-time obstacle avoidance capabilities. The system employs a scored predicted trajectory algorithm that simultaneously optimizes path-following accuracy and obstacle evasion. A Toyota COMS micro EV was modified for autonomous operation and tested on a closed-loop campus track. Experimental results demonstrated an average lateral deviation of 0.07 m at 10 km/h and 0.12 m at 15 km/h, with heading deviations of approximately 3° and 4°, respectively. Obstacle avoidance tests showed safe maneuvering with a minimum clearance of 1.2 m from obstacles, as configured. The system proved robust against minor GNSS signal degradation, maintaining precise navigation without reliance on complex map building or inertial sensing. The results confirm that GNSS-RTK-based navigation combined with minimal sensing provides an effective and practical solution for autonomous driving in semi-structured environments. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

17 pages, 5469 KiB  
Article
An Experiment on Multi-Angle Sun Glitter Remote Sensing of Water Surface Using Multi-UAV
by Chen Wang, Huaguo Zhang, Guanghong Liao, Wenting Cao, Juan Wang, Dongling Li and Xiulin Lou
Drones 2025, 9(6), 400; https://doi.org/10.3390/drones9060400 - 28 May 2025
Abstract
Unmanned aerial vehicle (UAV) remote sensing has become an important tool for modern remote sensing technology with its low cost and high flexibility. Sun glitter (SG) remote sensing based on satellite platforms shows great potential in the fields of marine dynamic environment and [...] Read more.
Unmanned aerial vehicle (UAV) remote sensing has become an important tool for modern remote sensing technology with its low cost and high flexibility. Sun glitter (SG) remote sensing based on satellite platforms shows great potential in the fields of marine dynamic environment and marine oil spill, but the analysis and application of SG images based on UAV need to be further studied. In this study, we conduct a multi-angle water surface SG remote sensing experiment using multi-UAV and collect images under different observation parameters. Then, we analyze and discuss the SG signal in the multi-angle images, especially the distribution and intensity of SG. In addition, a model for extracting SG signals from images based on region-based dark pixel retrieval is proposed in this study. Since the current Cox-Munk model is only applicable to statistical SG, the extracted SG images are reduced in resolution by mean filtering. Based on the multi-angle SG remote sensing model, the water surface roughness and equivalent refractive index are estimated. The estimated results are compared with measured and literature data. Additionally, the influence of different observation angle combinations on the inversion results is also discussed. The results of the study show that multi-angle SG remote sensing of water surface based on UAVs provides a new idea for the analysis and application of image signals, which has an important role to play. Full article
Show Figures

Figure 1

20 pages, 964 KiB  
Article
Simulation and Optimization of the Antenna Designs for Glucose Biosensing FRET Mechanisms in Endoscopic Capsules
by Rajaa B. Naeem and Doğu Çağdaş Atilla
Micromachines 2025, 16(6), 641; https://doi.org/10.3390/mi16060641 - 28 May 2025
Abstract
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to [...] Read more.
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to conform to the spatial constraints of endoscopic capsules, such as mechanical bending features. The antenna is embedded in a multimode medium artificial tissue simulating a glucose environment with several layers, providing efficient coupling to the FRET emission signal for glucose sensing. Stable S11 parameters and a maximum gain of 9 dBi are realized by statelier mesh settings, bend adaptation, and cautious SAR constraint handlers. Results of the Specific Absorption Rate (SAR) confirm the limited energy absorption within permissible bounds, confirming its application for biomedical purposes. These results affirm the feasibility of non-invasive glucose measurement in interstitial fluid in this configuration that can be operable through an endoscope with improved sensitivity and functionality. Full article
(This article belongs to the Special Issue Advanced Photonic Biosensors: From Materials Research to Applications)
16 pages, 618 KiB  
Review
Host-Associated Biofilms: Vibrio fischeri and Other Symbiotic Bacteria Within the Vibrionaceae
by Joaquin Lucero and Michele K. Nishiguchi
Microorganisms 2025, 13(6), 1223; https://doi.org/10.3390/microorganisms13061223 - 27 May 2025
Abstract
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation [...] Read more.
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation in Vibrio species, focusing on quorum sensing, cyclic-di-GMP signaling, and host-specific adaptations that influence biofilm structure and function. We discuss how biofilms differ between mutualistic and pathogenic species based on environmental and host signals. Recent advances in omics technologies such as transcriptomics and metabolomics have enhanced research in biofilm regulation under different conditions. Horizontal gene transfer and phase variation promote the greater fitness of bacterial biofilms due to the diversity of environmental isolates that utilize biofilms to colonize host species. Despite progress, questions remain regarding the long-term effects of biofilm formation and persistence on host physiology and biofilm community dynamics. Research integrating multidisciplinary approaches will help advance our understanding of biofilms and their implications for influencing microbial adaptation, symbiosis, and disease. These findings have applications in biotechnology and medicine, where the genetic manipulation of biofilm regulation can enhance or disrupt microbiome stability and pathogen resistance, eventually leading to targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

15 pages, 1908 KiB  
Article
The Modeling of a Single-Electron Bipolar Avalanche Transistor in 150 nm CMOS
by Abderrezak Boughedda, Lucio Pancheri, Luca Parmesan, Leonardo Gasparini, Gabriele Quarta, Daniele Perenzoni and Matteo Perenzoni
Sensors 2025, 25(11), 3354; https://doi.org/10.3390/s25113354 - 26 May 2025
Viewed by 131
Abstract
This paper addresses the complex behavior of Single-Electron Bipolar Avalanche Transistors (SEBATs) through a comprehensive modeling approach. TCAD simulations were used to analyze the behavior of the device during avalanche pulses triggered by electron injection. The simulations consider the avalanche process and charge [...] Read more.
This paper addresses the complex behavior of Single-Electron Bipolar Avalanche Transistors (SEBATs) through a comprehensive modeling approach. TCAD simulations were used to analyze the behavior of the device during avalanche pulses triggered by electron injection. The simulations consider the avalanche process and charge flow and include the parasitic capacitances and resistances. A SPICE model is proposed using parameters extracted from the TCAD simulations. Both TCAD and SPICE simulations are validated against experimental results obtained on 150 nm CMOS devices and are employed to provide a clear understanding of the phenomena observed experimentally during SEBAT operation. The impact of parasitic elements on device operation is studied using simulations. This work enables the optimization of SEBAT devices and their integration in circuits for better signal-to-noise ratios, efficiency, and potential applications in sensing and digitizing low-level signals. Full article
(This article belongs to the Special Issue Sensors in 2025)
Show Figures

Figure 1

15 pages, 5288 KiB  
Article
Seasonal Variations in the Relationship Between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production in a Temperate Evergreen Needleleaf Forest
by Kaijie Yang, Yifei Cai, Xiaoya Li, Weiwei Cong, Yiming Feng and Feng Wang
Forests 2025, 16(6), 893; https://doi.org/10.3390/f16060893 - 26 May 2025
Viewed by 116
Abstract
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced [...] Read more.
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced chlorophyll fluorescence (SIF) has emerged as a revolutionary remote sensing signal for quantifying photosynthetic activity and gross primary production (GPP) at the ecosystem scale. Meanwhile, eddy covariance (EC) technology has been widely employed to obtain in situ GPP estimates. Although a linear relationship between SIF and GPP has been reported in various ecosystems, it is mainly derived from satellite SIF products and flux-tower GPP observations, which are often difficult to align due to mismatches in spatial and temporal resolution. In this study, we analyzed synchronous high-frequency SIF and EC-derived GPP measurements from a Mongolian Scots pine plantation during the seasonal transition (August–December). The results revealed the following. (1) The ENF acted as a net carbon sink during the observation period, with a total carbon uptake of 100.875 gC·m−2. The diurnal dynamics of net ecosystem exchange (NEE) exhibited a “U”-shaped pattern, with peak carbon uptake occurring around midday. As the growing season progressed toward dormancy, the timing of CO2 uptake and release gradually shifted. (2) Both GPP and SIF peaked in September and declined thereafter. A strong linear relationship between SIF and GPP (R2 = 0.678) was observed, consistent across both diurnal and sub-daily scales. SIF demonstrated higher sensitivity to light and environmental changes, particularly during the autumn–winter transition. Cloudy and rainy conditions significantly affect the relationship between SIF and GPP. These findings highlight the potential of canopy SIF observations to capture seasonal photosynthesis dynamics accurately and provide a methodological foundation for regional GPP estimation using remote sensing. This work also contributes scientific insights toward achieving China’s carbon neutrality goals. Full article
Show Figures

Figure 1

15 pages, 1629 KiB  
Article
Analysis of Photoelectric Detection Phase Polarity of Fiber-Optic Hydrophones Based on 3 × 3 Coupler Demodulation Technique
by Yatao Li, Jianfei Wang, Mo Chen, Rui Liang, Yuren Chen, Zhou Meng, Xiaoyang Hu and Yang Lu
Photonics 2025, 12(6), 535; https://doi.org/10.3390/photonics12060535 - 25 May 2025
Viewed by 113
Abstract
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 [...] Read more.
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 × 3 coupler demodulation algorithm with coupled-mode theory to analyze acoustic signal responses. Our model reveals that phase shifts from coupler-to-photodetector and coupler-to-sensing-arm connections arise from different mechanisms, and both are capable of causing π rad phase inversions in demodulated signals. We demonstrate that distinct connection configurations can be classified into groups yielding identical polarity outcomes, and that the input port selection for incident light does not affect output signal phase polarity. Experimental results validate these theoretical predictions. This work establishes critical hardware-level prerequisites for phase polarity consistency in FOH arrays, complementing existing calibration techniques and enhancing array performance in underwater target detection and localization. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 2069 KiB  
Article
Adipose Tissue Dysfunction Induced by High-Fat Diet Consumption Is Associated with Higher Otoacoustic Emissions Threshold in Mice C57BL/6
by Gonzalo Terreros, Felipe Munoz, Matías Magdalena, Manuel Soto-Donoso, Nairo Torres and Amanda D’Espessailles
Nutrients 2025, 17(11), 1786; https://doi.org/10.3390/nu17111786 - 24 May 2025
Viewed by 214
Abstract
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality [...] Read more.
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality and integrity of the outer hair cells, a key component of the organ of Corti, inside the cochlea. Furthermore, we hypothesized that adipose tissue (AT) status is associated with impaired outer hair cell auditory amplification in young C57BL/6 mice, contributing to increased vulnerability to hearing damage. Methods: Weaning male C57BL/6J mice (7 weeks old) weighing 22–23 g were divided into two diet groups: (i) a control diet or (ii) a high-fat diet (HFD) for 12 or 16 weeks. Metabolic parameters (body and AT weight, glucose tolerance test), AT dysfunction markers (AT remodeling, adipocyte size, crown-like structures), and outer hair cell function (distortion products otoacoustic emissions (DPOAEs) threshold and amplitudes) and integrity (hair cells cell count) were evaluated. Results: We observed that mice fed an HFD for 16 weeks showed a higher DPOAE threshold against stimuli at 16 KHz and a lower count of outer hair cells in the medial section of the cochlea. These results demonstrate a correlation between body and AT weight specifically at 16 weeks of treatment, the time point at which we observed a marked AT dysfunction. Conclusions: Taken together, our results suggest that obese mice with AT dysfunction have an altered auditory efferent system, characterized by a higher DPOAE threshold and a lower outer hair cell count in the medial section, which may impact signal transduction. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

16 pages, 809 KiB  
Review
The Dynamic Remodeling of Plant Cell Wall in Response to Heat Stress
by Chengchen Lu, Wenfei Li, Xiaomeng Feng, Jiarui Chen, Shijie Hu, Yirui Tan and Leiming Wu
Genes 2025, 16(6), 628; https://doi.org/10.3390/genes16060628 - 24 May 2025
Viewed by 117
Abstract
Heat stress has a significant negative impact on plant growth, development, and yield. The cell wall, a key structural feature that sets plants apart from animals, not only acts as the first physical barrier against heat stress but also plays an active role [...] Read more.
Heat stress has a significant negative impact on plant growth, development, and yield. The cell wall, a key structural feature that sets plants apart from animals, not only acts as the first physical barrier against heat stress but also plays an active role in the heat stress (HS) response through signaling pathways. The plant cell wall has a complex structural composition, including cellulose, hemicellulose, lignin, and pectin. These components not only provide mechanical support for cell growth but also constitute the material basis for plant response to environmental changes. This review summarizes recent research on how the cell wall’s structural composition affects its mechanical properties in response to stresses. It examines changes in plant cell walls under HS and the adaptive mechanisms leading to cell wall thickening. Additionally, it explores the role of cell wall integrity in sensing and transmitting HS, along with the molecular mechanisms that maintain this integrity. Finally, it addresses unresolved scientific questions regarding plant cell wall responses to HS. This review aims to provide a theoretical foundation and research direction for enhancing plant thermotolerance through genetic improvement of the cell wall. Full article
(This article belongs to the Special Issue Genetic Modification of Plant Cell Wall and Bioenergy Crop Breeding)
Show Figures

Figure 1

32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 221
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

28 pages, 3773 KiB  
Review
Hostile Environments: Modifying Surfaces to Block Microbial Adhesion and Biofilm Formation
by Derek Wilkinson, Libuše Váchová and Zdena Palková
Biomolecules 2025, 15(6), 754; https://doi.org/10.3390/biom15060754 - 23 May 2025
Viewed by 322
Abstract
Since the first observations of biofilm formation by microorganisms on various surfaces more than 50 years ago, it has been shown that most “unicellular” microorganisms prefer to grow in multicellular communities that often adhere to surfaces. The microbes in these communities adhere to [...] Read more.
Since the first observations of biofilm formation by microorganisms on various surfaces more than 50 years ago, it has been shown that most “unicellular” microorganisms prefer to grow in multicellular communities that often adhere to surfaces. The microbes in these communities adhere to each other, produce an extracellular matrix (ECM) that protects them from drugs, toxins and the host’s immune system, and they coordinate their development and differentiate into different forms via signaling molecules and nutrient gradients. Biofilms are a serious problem in industry, agriculture, the marine environment and human and animal health. Many researchers are therefore investigating ways to disrupt biofilm formation by killing microbes or disrupting adhesion to a surface, quorum sensing or ECM production. This review provides an overview of approaches to altering various surfaces through physical, chemical or biological modifications to reduce/prevent microbial cell adhesion and biofilm development and maintenance. It also discusses the advantages and disadvantages of each approach and the challenges faced by researchers in this field. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Experimental Study on Interface Debonding Defect Detection and Localization in Underwater Grouting Jacket Connections with Surface Wave Measurements
by Qian Liu, Bin Xu, Xinhai Zhu, Ronglin Chen and Hanbin Ge
Sensors 2025, 25(11), 3277; https://doi.org/10.3390/s25113277 - 23 May 2025
Viewed by 189
Abstract
Interface debonding between high-strength grouting materials and the inner surfaces of steel tubes in grouting jacket connections (GJCs), which have been widely employed in offshore wind turbine support structures, negatively affects their mechanical behavior. In this study, an interface debonding defect detection and [...] Read more.
Interface debonding between high-strength grouting materials and the inner surfaces of steel tubes in grouting jacket connections (GJCs), which have been widely employed in offshore wind turbine support structures, negatively affects their mechanical behavior. In this study, an interface debonding defect detection and localization approach for scaled underwater GJC specimens using surface wave measurements with piezoelectric lead zirconate titanate (PZT) actuation and sensing technology was validated experimentally. Firstly, GJC specimens with artificially mimicked interface debonding defects of varying dimensions were designed and fabricated in the lab, and the specimens were immersed in water to replicate the actual underwater working environment of GJCs in offshore wind turbine structures. Secondly, to verify the feasibility of the proposed interface debonding detection approach using surface wave measurements, the influence of the height and circumferential dimension of the debonding defects on the output voltage signal of PZT sensors was systematically studied experimentally using a one pitch and one catch (OPOC) configuration. Thirdly, a one pitch and multiple catch (OPMC) configuration was further employed to localize and visualize the debonding defect regions. An abnormal value analysis was carried out on the amplitude of the output voltage signals from PZT sensors with identical wave traveling paths, and the corresponding abnormal surface wave propagation paths were identified. Finally, based on the influence of interface debonding on the surface wave measurements mentioned above, the mimicked interface debonding defect was detected successfully and the region of debonding was determined with the intersection of the identified abnormal wave travelling paths. The results showed that the mimicked debonding defect can be visualized. The feasibility of this method for interface debonding defect detection in underwater GJCs was confirmed experimentally. The proposed approach provides a novel non-destructive debonding defect detection approach for the GJCs in offshore wind turbine structures. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

21 pages, 1429 KiB  
Review
Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review
by Jin-Long Shang, Yong-Xue Xie, Lu-Yao Shi, Shuo-Ren Diao and Jin-Yan Guan
Plants 2025, 14(11), 1582; https://doi.org/10.3390/plants14111582 - 22 May 2025
Viewed by 245
Abstract
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the [...] Read more.
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the onset of desiccation. This review explores recent advancements in the molecular mechanisms that enable N. flagelliforme to survive under such harsh conditions, with a focus on stress signal sensing, transduction pathways, and photosynthetic adjustments. Key molecular adaptations include the production of extracellular polysaccharide (EPS) sheaths for water retention, the accumulation of compatible solutes like trehalose, and the synthesis of UV-absorbing compounds such as scytonemin and mycosporine-like amino acids (MAAs). Furthermore, N. flagelliforme utilizes a complex signal transduction network, including light-sensing pathways, to regulate responses to rehydration and desiccation cycles. This review emphasizes the integrative nature of N. flagelliforme’s adaptive mechanisms and highlights their potential for biotechnological applications, such as enhancing drought tolerance in crops and advancing ecological restoration in arid regions. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop