Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = silver sorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5918 KB  
Article
Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver
by Laura Agibayeva, Yevgeniy Melnikov, Dilnaz Kubiyeva and Ruslan Kondaurov
Polymers 2025, 17(15), 2055; https://doi.org/10.3390/polym17152055 - 28 Jul 2025
Viewed by 354
Abstract
Molecularly imprinted polymers (MIPs) for silver sorption were synthesized using diethylene glycol dimethacrylate (DEGDMA) and divinylbenzene (DVB) as crosslinking agents. Synthesis was carried out using a ratio template: monomer: monomer: cross-linker = 1:2:2:8. The yield of obtained imprinting structures was 63.2% and 67.8% [...] Read more.
Molecularly imprinted polymers (MIPs) for silver sorption were synthesized using diethylene glycol dimethacrylate (DEGDMA) and divinylbenzene (DVB) as crosslinking agents. Synthesis was carried out using a ratio template: monomer: monomer: cross-linker = 1:2:2:8. The yield of obtained imprinting structures was 63.2% and 67.8% for MIP(DEGDMA) and MIP(DVB), respectively. The MIPs were analyzed by FTIR analysis, which showed the presence of characteristic peaks indicating the presence of monomers and crosslinkers in the MIP structure. According to the results of SEM analysis, the average cavity size for MIP(DEGDMA) is 0.81 ± 0.20 μm and for MIP(DVB) is 0.68 ± 0.23 μm in diameter. MIP(DEGDMA)’s sorption degree is 66.08%, and its sorption capacity is 3.31 g/g; MIP(DVB)’s sorption degree is 78.35%, and its sorption capacity is 3.92 g/g. The desorption degree is 69.85% for MIP(DEGDMA) and 69.52% for MIP(DVB). For analysis of sorption kinetics, the Radushkevich and Elovich kinetic models were applied. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 2146 KB  
Article
Synthesis and Antiviral Activity of Nanowire Polymers Activated with Ag, Zn, and Cu Nanoclusters
by Thomas Thomberg, Hanna Bulgarin, Andres Lust, Jaak Nerut, Tavo Romann and Enn Lust
Pharmaceutics 2025, 17(7), 887; https://doi.org/10.3390/pharmaceutics17070887 - 6 Jul 2025
Viewed by 586
Abstract
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) [...] Read more.
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) dissolved in N,N-dimethylacetamide and functionalized with copper, silver, and zinc nanoclusters were fabricated via electrospinning. This study aims to evaluate and compare the virucidal effects of nanofibers functionalized with metal nanoclusters against the human influenza A virus A/WSN/1933 (H1N1) and SARS-CoV-2. Methods: A comprehensive characterization of materials, including X-ray diffraction, scanning electron microscopy, microwave plasma atomic emission spectroscopy, thermogravimetric analysis, contact angle measurements, nitrogen sorption analysis, mercury intrusion porosimetry, filtration efficiency, and virucidal tests, was used to understand the interdependence of the materials’ physical characteristics and biological effects, as well as to determine their suitability for application as antiviral materials in air filtration systems. Results: All the filter materials tested demonstrated very high particle filtration efficiency (≥98.0%). The material embedded with copper nanoclusters showed strong virucidal efficacy against the SARS-CoV-2 alpha variant, achieving an approximately 1000-fold reduction in infectious virions within 12 h. The fibrous nanowire polymer functionalized with zinc nanoclusters was the most effective material against the human influenza A virus strain A/WSN/1933 (H1N1). Conclusions: The materials with Cu nanoclusters can be used with high efficiency to passivate and kill the SARS-CoV-2 alpha variant virions, and Zn nanoclusters modified activated porous membranes for killing human influenza A virus A7WSN/1933 (H1N1) virions. Full article
Show Figures

Figure 1

14 pages, 3029 KB  
Article
Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide
by Subrata Chandra Roy, Carrie L. Donley and Saiful M. Islam
Inorganics 2025, 13(2), 50; https://doi.org/10.3390/inorganics13020050 - 10 Feb 2025
Viewed by 968
Abstract
Heavy metal cations such as Ag+, Pb2+, and Hg2+ can accumulate in living organisms, posing severe risks to biological systems, including humans. Therefore, removing heavy metal cations from wastewater is crucial before discharging them to the environment. However, [...] Read more.
Heavy metal cations such as Ag+, Pb2+, and Hg2+ can accumulate in living organisms, posing severe risks to biological systems, including humans. Therefore, removing heavy metal cations from wastewater is crucial before discharging them to the environment. However, trace levels and high-capacity removal of the heavy metals remain a critical challenge. This work demonstrates the synthesis and characterization of [Mo2S12]2− intercalated cobalt aluminum-layered double hydroxide, CoAl―Mo2S12―LDH (CoAl―Mo2S12), and its remarkable sorption properties for heavy metals. This material shows high efficiency for removing over 99.9% of Ag+, Cu2+, Hg2+, and Pb2+ from 10 ppm aqueous solutions with a distribution constant, Kd, as high as 107 mL/g. The selectivity order for removing these ions, determined from the mixed ion state experiment, was Pb2+ < Cu2+ ≪ Hg2+ < Ag+. This study also suggests that CoAl―Mo2S12 is not selective for Ni2+, Cd2+, and Zn2+ cations. CoAl―Mo2S12 is an efficient sorbent for Ag+, Cu2+, Hg2+, and Pb2+ ions at pH~12, with the removal performance of both Ag+ and Hg2+ cations retaining > 99.7% across the pH range of ~2 to 12. Our study also shows that the CoAl―Mo2S12 is a highly competent silver cation adsorbent exhibiting removal capacity (qm) as high as ~918 mg/g compared with the reported data. A detailed mechanistic analysis of the post-treated solid samples with Ag+, Hg2+, and Pb2+ reveals the formation of Ag2S, HgS, and PbMoO4, respectively, suggesting the precipitation reaction mechanism. Full article
(This article belongs to the Special Issue Crystalline Porous Materials for Environment and Sensing)
Show Figures

Graphical abstract

14 pages, 5714 KB  
Article
Mg/Si- and Ag-Doped Carbon-Based Media Rainwater Filtration System for Multiple Pollutants Removal
by So Yeon Yoon, Hyeseong Kim, Reneesha Valiyaveettil Basheer, Nurhaslina Abd Rahman, Seok Byum Jang, Kien Tiek Wong, Deok Hyun Moon, Choe Earn Choong and Min Jang
Materials 2024, 17(22), 5638; https://doi.org/10.3390/ma17225638 - 18 Nov 2024
Cited by 1 | Viewed by 981
Abstract
In this study, the removal performances of a multi-pollutant elimination cartridge system (MPECS) composed of palm shell waste-based activated carbon (PSAC), magnesium (Mg)/silicon (Si)-doped PSAC (Mg/Si-PSAC), and silver (Ag)-doped PSAC (Ag-PSAC) for heavy metals, organic pollutants, and Escherichia coli were investigated. Mg/Si impregnation [...] Read more.
In this study, the removal performances of a multi-pollutant elimination cartridge system (MPECS) composed of palm shell waste-based activated carbon (PSAC), magnesium (Mg)/silicon (Si)-doped PSAC (Mg/Si-PSAC), and silver (Ag)-doped PSAC (Ag-PSAC) for heavy metals, organic pollutants, and Escherichia coli were investigated. Mg/Si impregnation significantly improved heavy metal removal using PSAC by increasing the surface area and adding more sorption sites to the magnesium silicate nanolayer. Fixed-bed column experiments showed that the MPECS column outperformed PSAC and commercial activated carbon (DJAC), with a 1.5 to 2.0 times higher E. coli removal and a higher removal of organic pollutants and heavy metals. The MPECS column, with its disinfection ability and adsorption of heavy metals and organic matter, is a promising system for removing multiple pollutants from rainwater. Full article
Show Figures

Graphical abstract

18 pages, 5322 KB  
Article
Smart Hydrogel Based on Derivatives of Natural α-Amino Acids for Efficient Removal of Metal Ions from Wastewater
by Monika Adamowska, Klaudia Kaniewska, Magdalena Muszyńska, Jan Romański, Wojciech Hyk and Marcin Karbarz
Gels 2024, 10(9), 560; https://doi.org/10.3390/gels10090560 - 29 Aug 2024
Cited by 1 | Viewed by 1815
Abstract
A novel class of hydrogels, rich in a variety of functional groups capable of interacting/complexing with metal ions was successfully synthesized. This was achieved by using acryloyl derivatives of natural α-amino acids, specifically ornithine and cystine. The δ-amino group of ornithine was modified [...] Read more.
A novel class of hydrogels, rich in a variety of functional groups capable of interacting/complexing with metal ions was successfully synthesized. This was achieved by using acryloyl derivatives of natural α-amino acids, specifically ornithine and cystine. The δ-amino group of ornithine was modified with an acryloyl group to facilitate its attachment to the polymer chain. Additionally, N,N’-bisacryloylcystine, derived from cystine, was employed as the cross-linker. The hydrogel was obtained through a process of free radical polymerization. This hydrogel, composed only from derivatives of natural amino acids, has proven to be a competitive sorbent and has been effectively used to remove heavy metal pollutants, mainly lead, copper, and silver ions, from aqueous media. The maximum sorption capacities were ca. 155 mg·g−1, 90 mg·g−1, and 215 mg·g−1, respectively for Pb(II), Cu(II), and Ag(I). The material was characterized by effective regeneration, maintaining the sorption capacity at around 80%, 85%, and 90% for Cu(II), Ag(I), and Pb(II), respectively, even after five cycles. The properties of sorption materials, such as sorption kinetics and the effect of pH on sorption, as well as the influence of the concentration of the examined metal ions on the swelling ratio and morphology of the gel, were investigated. The EDS technique was employed to investigate the composition and element distribution in the dry gel samples. Additionally, IR spectroscopy was used to identify the functional groups responsible for binding the studied metal ions, providing insights into their specific interactions with the hydrogel. Full article
(This article belongs to the Special Issue Recent Advances in Smart Gels)
Show Figures

Figure 1

11 pages, 4123 KB  
Article
Effect of Ion-Exchanger Monoporosity in the Kinetics of Oxygen Sorption by Silver-Containing Nanocomposites
by Vyacheslav Krysanov, Maria Gadebskaya, Tatyana Krysanova, Tamara Kravchenko and Oleg Kozaderov
J. Compos. Sci. 2024, 8(7), 249; https://doi.org/10.3390/jcs8070249 - 1 Jul 2024
Viewed by 923
Abstract
The results of a study of the kinetics of oxygen sorption from water by silver-containing nanocomposites synthesized on the base of macroporous ion exchangers with different pore sizes are presented. In the case of the Lewatit K 2620 ion exchanger, the pore size [...] Read more.
The results of a study of the kinetics of oxygen sorption from water by silver-containing nanocomposites synthesized on the base of macroporous ion exchangers with different pore sizes are presented. In the case of the Lewatit K 2620 ion exchanger, the pore size was fixed (41 nm), and for KU-23, it varied in the range from 10 to 100 nm. The nanocomposite materials Ag0⸱KU-23 and Ag0⸱Lewatit K 2620 were prepared by chemical precipitation. Using the different physicochemical methods, it was found that due to the monoporosity of the ion exchanger, the average size of the silver particles in the Ag0⸱Lewatit K 2620 nanocomposite is smaller than for KU-23. This effect contributes to the intensification of oxygen absorption and is proved by the results of studying the rate and degree of oxygen sorption by nanocomposites in the entire studied range of their capacity on metal. On the other hand, the polyporosity of the KU-23 ion exchanger, due to its better diffusion permeability, contributes to the more uniform distribution of silver over the volume of nanocomposite grains and ensures the steady state of the sorption process. Based on the presented experimental results, the synthesized silver-containing nanocomposites can be recommended as multifunctional materials with bactericidal action and catalytic effect for different industrial applications, including the deep removal of dissolved oxygen in the production of ultrapure water for energetics and microelectronics. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

22 pages, 4406 KB  
Article
Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions
by Mohammed F. Hamza, Gehan A. El-Habibi, Adel A.-H. Abdel-Rahman, Mahmoud S. Khalafalla, Hamada H. Amer, Amr Fouda, Mahmoud A. Swelim, Waheed M. Salem and Saly R. El Dakkony
Sustainability 2024, 16(13), 5280; https://doi.org/10.3390/su16135280 - 21 Jun 2024
Cited by 3 | Viewed by 1950
Abstract
A functionalized chitosan thiourea composite (CH-TU) was successfully synthesized using formaldehyde as a crosslinking agent for enhancing silver recovery from different aqueous solutions. Comparison sorption studies with a non-functionalized composite (CH-F) as a reference material were conducted. Grafting led to an improvement in [...] Read more.
A functionalized chitosan thiourea composite (CH-TU) was successfully synthesized using formaldehyde as a crosslinking agent for enhancing silver recovery from different aqueous solutions. Comparison sorption studies with a non-functionalized composite (CH-F) as a reference material were conducted. Grafting led to an improvement in the sorption performances, i.e., 0.763 mmol Ag g−1 for CH-F vs. 2.125 mmol Ag g−1 for CH-TU. The pseudo-first-order rate equation (PFORE) was fitted to the sorption kinetics at saturation times of 40 and 30 min for CH-F and CH-TU, respectively, while the sorption isotherms were fitted with Langmuir and Sips equations for both sorbents. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), nitrogen sorption–desorption isotherms (BET-surface area), elemental analysis, thermogravimetric analysis (TGA) and pH of the zero charge (pHpzc) were used to characterize and investigate the sorption mechanism. Sorption was performed three times to check the reproducibility, while the sorption performances were stable over 20 cycles, with a limited decrease in performance (5 and 3% for CH-F and CH-TU, respectively). Nitric acid solution (0.3 M) was efficient for desorbing the adsorbed metal ions. The grafted sorbent with thiourea is considered as a promising tool for recovering Ag(I) from acidic waste leachate derived from waste spent films. Full article
(This article belongs to the Special Issue Impact of Heavy Metals on the Sustainable Environment)
Show Figures

Figure 1

20 pages, 7839 KB  
Article
High Energy Pulsed Laser Beam to Produce a Thin Layer of Crystalline Silver without Heating the Deposition Substrate and Its Catalytic Effects
by Alexandru Cocean, Georgiana Cocean, Cristina Postolachi, Silvia Garofalide, Daniela Angelica Pricop, Bogdanel Silvestru Munteanu, Georgiana Bulai, Nicanor Cimpoesu, Iuliana Motrescu, Vasile Pelin, Razvan Vasile Ababei, Dan-Gheorghe Dimitriu, Iuliana Cocean and Silviu Gurlui
Quantum Beam Sci. 2024, 8(2), 16; https://doi.org/10.3390/qubs8020016 - 19 Jun 2024
Cited by 1 | Viewed by 2313
Abstract
Crystalline silver thin layers were obtained using high-energy pulsed laser ablation without the heating of the deposition substrate. The fluid Plateau–Rayleigh (PRI), Rayleigh–Taylor (RTI), and Richtmyer–Meshkov (RMI) instabilities, as well as the crown splash induced during the pulsed laser deposition (PLD) in the [...] Read more.
Crystalline silver thin layers were obtained using high-energy pulsed laser ablation without the heating of the deposition substrate. The fluid Plateau–Rayleigh (PRI), Rayleigh–Taylor (RTI), and Richtmyer–Meshkov (RMI) instabilities, as well as the crown splash induced during the pulsed laser deposition (PLD) in the high energy regime, resulting in ring and pearl-shaped structures, offer the benefit of an increased sorption surface. These morphological structures obtained for the silver thin layers make them of interest for catalytic applications. This study addresses both fundamental and applied issues on the morphological structures obtained for the silver thin layers and their catalytic function in organic processes. In this sense, the catalytic action of the thin silver layer was highlighted by modifications of the Reactive Blue 21 dye (C.I.) in an aqueous solution with sodium bicarbonate. Specific investigations and analyses were carried out using electron microscopy and elemental analysis (SEM-EDX), atomic force microscopy (AFM) and profilometry, mass spectrometry, ablation plasma diagnosis, diffractograms (XRD), as well as IR spectroscopy (FTIR). In addition to the experimental investigation and analyses, the simulation of the ionization energy threshold was conducted in COMSOL for complementary evaluation on the involved processes and phenomena. Full article
Show Figures

Figure 1

24 pages, 32994 KB  
Article
A Temporary Acrylic Soft Denture Lining Material Enriched with Silver-Releasing Filler-Cytotoxicity, Mechanical and Antifungal Properties
by Grzegorz Chladek, Igor Kalamarz, Wojciech Pakieła, Izabela Barszczewska-Rybarek, Zenon Czuba and Anna Mertas
Materials 2024, 17(4), 902; https://doi.org/10.3390/ma17040902 - 15 Feb 2024
Cited by 5 | Viewed by 1791
Abstract
Colonization of temporary denture soft linings and underlying tissues by yeast-like fungi is an important clinical problem due to the negative influence on the process of prosthetic treatment. Typical hygienic procedures are often insufficient to prevent fungal infections, so in this study, an [...] Read more.
Colonization of temporary denture soft linings and underlying tissues by yeast-like fungi is an important clinical problem due to the negative influence on the process of prosthetic treatment. Typical hygienic procedures are often insufficient to prevent fungal infections, so in this study, an antimicrobial filler (silver sodium hydrogen zirconium phosphate) was introduced into acrylic soft liner at concentrations of 1, 2, 4, 6, 8 and 10% (w/w). The effect of this modification on antifungal properties against Candida albicans, cytotoxicity, Shore A hardness, tensile strength and tensile bond strength, sorption and solubility was investigated, considering the recommended 30-day period of temporary soft lining use. The most favorable compilation of properties was obtained at a 1 to 6% filler content, for which nearly a total reduction in Candida albicans was registered even after 30 days of sample storing. The tensile and bond strength of these composites was at the desired and stable level and did not differ from the results for the control material. Hardness increased with the increasing concentration in filler but were within the range typical for soft lining materials and their changes during the experiment were similar to the control material. The materials were not cytotoxic and sorption and solubility levels were stable. Full article
Show Figures

Graphical abstract

22 pages, 18236 KB  
Article
AgNPs Embedded in Porous Polymeric Framework: A Reusable Catalytic System for the Synthesis of α-Alkylidene Cyclic Carbonates and Oxazolidinones via Chemical Fixation of CO2
by Bipasha Banerjee, Pekham Chakrabortty, Najirul Haque, Swarbhanu Ghosh, Mitali Sarkar, Aslam Khan and Sk. Manirul Islam
Catalysts 2023, 13(12), 1467; https://doi.org/10.3390/catal13121467 - 24 Nov 2023
Cited by 9 | Viewed by 2070
Abstract
Porous polymeric frameworks have received great interest over the past few years because of their nonstop growth as crystalline porous polymeric materials connected through covalent bonds and versatile utilities in diverse fields. The production of high-value organic compounds via sustainable and environment-friendly methods [...] Read more.
Porous polymeric frameworks have received great interest over the past few years because of their nonstop growth as crystalline porous polymeric materials connected through covalent bonds and versatile utilities in diverse fields. The production of high-value organic compounds via sustainable and environment-friendly methods is an uphill struggle for researchers. The elegant strategy of using carbon dioxide as a C1 building block is an intriguing platform owing to its non-toxicity, easy accessibility, natural abundance, recyclability, non-flammability, and cheapness. Additionally, CO2 levels are regarded as the main contributor to the greenhouse effect (the most abundant greenhouse gas across the globe) and the aforementioned strategy needs to mitigate CO2 emissions. This present study describes the synthesis of silver nanoparticles (AgNPs) embedded in a porous polymeric framework, a reusable heterogeneous catalyst (recyclable over 5 times), TpMA (MC)@Ag. The synthesized catalyst is characterized by using FT-IR, PXRD, XPS, FE-SEM, TEM, EDAX, TGA DTA, and N2 sorption studies. Additionally, the catalysts can be easily recycled to generate the desired α-alkylidene cyclic carbonates and oxazolidinone compounds under solvent-free conditions. This research demonstrates the potential of nanoporous 2D porous polymeric framework-based materials in the area of catalysis, specially, in CO2 capture and chemical fixation. These findings offer a promising approach for the chemical fixation of CO2 into α-alkylidene cyclic carbonates and oxazolidinones from propargylic alcohols utilizing AgNPs embedded in a 2D catalyst, which functions as a potential heterogeneous catalyst under mild conditions (e.g., solvent-free approach). Full article
(This article belongs to the Special Issue Hollow and Porous Micro-/Nanostructured Materials in Catalysis)
Show Figures

Graphical abstract

21 pages, 8770 KB  
Article
Analysis of Surface and Physicochemical Properties of Novel Hydrogel Materials Supported with Magnetic Nanoparticles
by Katarzyna Sala, Krzysztof Cholewa, Magdalena Bańkosz and Bożena Tyliszczak
Coatings 2023, 13(11), 1907; https://doi.org/10.3390/coatings13111907 - 7 Nov 2023
Cited by 1 | Viewed by 1403
Abstract
Nanotechnology is a field of science that has been growing rapidly in recent times. The use of this science in medicine makes it possible to develop new innovative therapies and materials with therapeutic effects. The topic of controlled delivery of therapeutic substances using [...] Read more.
Nanotechnology is a field of science that has been growing rapidly in recent times. The use of this science in medicine makes it possible to develop new innovative therapies and materials with therapeutic effects. The topic of controlled delivery of therapeutic substances using appropriate carriers is extremely important. Such carriers can be, among others, magnetic nanoparticles. In the present study, magnetic nanoparticles coated with nanosilver were obtained. This carrier was then placed in a hydrogel matrix. The study shows that the properties of the obtained materials indicate their high application potential as transdermal systems. In this work, hydrogel materials modified with magnetic nanoparticles with silver were subjected to a physicochemical analysis. The sorption capacity of these materials was determined, and they were subjected to infrared spectroscopy analysis and incubation tests in simulated body fluids. In addition, the surface of these materials was characterized in detail. The results indicated that all the materials exhibit excellent sorption capacities, and their surfaces are characterized with high roughness. Full article
Show Figures

Figure 1

19 pages, 7459 KB  
Article
Loading of Silver (I) Ion in L-Cysteine-Functionalized Silica Gel Material for Aquatic Purification
by Mohammed A. Al-Anber, Malak Al Ja’afreh, Idrees F. Al-Momani, Ahmed K. Hijazi, Dinara Sobola, Suresh Sagadevan and Salsabeel Al Bayaydah
Gels 2023, 9(11), 865; https://doi.org/10.3390/gels9110865 - 30 Oct 2023
Cited by 3 | Viewed by 2040
Abstract
The L-cysteine-functionalized silica (SG-CysNa+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-CysNa+ reached 98% at pHi = 6, 80 rpm, 1 mg L−1 [...] Read more.
The L-cysteine-functionalized silica (SG-CysNa+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-CysNa+ reached 98% at pHi = 6, 80 rpm, 1 mg L−1, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-CysNa+ active sites, forming a homogeneous monolayer (R2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-CysNa+ surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative ΔG values, positive ΔS values, and negative ΔH. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications. Full article
(This article belongs to the Special Issue Gel-Based Materials for Pollution Control and Remediation)
Show Figures

Graphical abstract

15 pages, 4885 KB  
Article
Chlorhexidine–Silver Nanoparticle Conjugation Leading to Antimicrobial Synergism but Enhanced Cytotoxicity
by Nadezhda Ivanova, Neli Ermenlieva, Lora Simeonova, Iliyan Kolev, Iliya Slavov, Daniela Karashanova and Velichka Andonova
Pharmaceutics 2023, 15(9), 2298; https://doi.org/10.3390/pharmaceutics15092298 - 9 Sep 2023
Cited by 10 | Viewed by 2496
Abstract
This study explored the potential synergism within chlorhexidine–silver nanoparticle conjugates against Influenza type A, Staphylococcus aureus, Escherichia coli, and Candida albicans. Silver nanoparticles (SN) were obtained by the reduction of silver ions with green tea total phenolic extract and conjugated [...] Read more.
This study explored the potential synergism within chlorhexidine–silver nanoparticle conjugates against Influenza type A, Staphylococcus aureus, Escherichia coli, and Candida albicans. Silver nanoparticles (SN) were obtained by the reduction of silver ions with green tea total phenolic extract and conjugated with chlorhexidine (Cx). The particles were characterized by UV-Vis and FTIR spectroscopies, dynamic light scattering, X-ray diffraction, and transmission electron microscopy. A stable negatively charged nano-silver colloid (ζ = −50.01) was obtained with an average hydrodynamic diameter of 92.34 nm. In the presence of chlorhexidine, the spectral data and the shift of the zeta potential to positive values (ζ = +44.59) revealed the successful sorption of the drug onto the silver surface. The conjugates (SN-Cx) demonstrated potentiation in their effects against S. aureus and C. albicans and synergism against E. coli with minimal inhibitory concentrations of SN at 5.5 µg/mL + Cx 8.8 µg/mL. The SN showed excellent virucidal properties, increasing with time, and demonstrated low toxicity. However, the coupling of the cationic chlorhexidine with nano-silver did not reduce its intrinsic cytotoxicity on various cell lines (MDCK, BJ, and A549). The newly synthesized antimicrobial agent exhibited an extended and promising therapeutic spectrum and needs to be further evaluated regarding the designated route of administration in three-dimensional cell models (e.g., nasal, bronchial, dermal, ocular, etc.). Full article
(This article belongs to the Special Issue Advances in Nano-Scale Drug Delivery Systems)
Show Figures

Graphical abstract

12 pages, 2890 KB  
Article
Photochemical Metallization: Advancements in Polypropylene Surface Treatment
by Bagdagul Serikbayeva, Malik Satayev, Shaizada Koshkarbayeva, Abdugani Azimov, Kalamkas Amanbayeva, Guzaliya Sagitova, Aliya Suigenbayeva, Myrzabai Narmanov and Artem Kolesnikov
Polymers 2023, 15(18), 3687; https://doi.org/10.3390/polym15183687 - 7 Sep 2023
Cited by 1 | Viewed by 1482
Abstract
The work was devoted to the development of technology for applying metal coatings to the surface of polypropylene products. At the same time, the main stages of the technology were carried out using the influence of electromagnetic waves of light radiation. So, to [...] Read more.
The work was devoted to the development of technology for applying metal coatings to the surface of polypropylene products. At the same time, the main stages of the technology were carried out using the influence of electromagnetic waves of light radiation. So, to obtain an electrically conductive silver layer, after mechanical treatment, etching and activation, the polymer was immersed for several minutes in a solution containing 10–20 g/L of silver nitrate and equivalent amounts of ascorbic acid, and a thin layer of solution was obtained on the surface of the polymer. A sample with such a sorption film was exposed to electromagnetic waves of light radiation at a flux density of 700–1100 W/m2. The small thickness of the sorption film facilitated the penetration of these waves directly onto the polymer surface and ensured the photochemical process of silver reduction with the formation of active centers. At the same time, electromagnetic waves acting on ascorbic acid transferred it to an excited state. As a result, the chemical reduction of silver in the space between the active centers became possible. In this case, the film obtained within 15–20 min had the necessary electrical conductivity. The suitability of these films for galvanic metallization of the polymer surface was shown. Full article
Show Figures

Figure 1

15 pages, 3471 KB  
Article
Polymer Mixtures for Experimental Self-Limited Dental Burs Development—A Preliminary Approach (Part 1)
by Radu Marcel Chisnoiu, Alexandrina Muntean, Ovidiu Păstrav, Andrea Maria Chisnoiu, Stanca Cuc, Laura Silaghi Dumitrescu, Mihaela Păstrav, Doina Prodan and Ada Gabriela Delean
J. Funct. Biomater. 2023, 14(9), 447; https://doi.org/10.3390/jfb14090447 - 29 Aug 2023
Cited by 1 | Viewed by 2077
Abstract
Alternative techniques have been investigated for effectiveness in caries removal because conventional metallic dental burs can lead to an excessive loss of sound tissue. The aim of the present study is to realize a preliminary approach in obtaining effective polymer mixtures for polymeric [...] Read more.
Alternative techniques have been investigated for effectiveness in caries removal because conventional metallic dental burs can lead to an excessive loss of sound tissue. The aim of the present study is to realize a preliminary approach in obtaining effective polymer mixtures for polymeric bur development, capable of removing primary dental caries using combinations of polymers to ensure the requirements for such instruments, but also a greater compatibility with the teeth structure. This study assessed the main mechanical properties, water sorption, solubility and microscopic structure of four new polymer mixture recipes to provide essential features in obtaining experimental self-limited dental burs. Two mixtures have in their composition polymer mixtures of Bis-phenol A diglycidyl ether dimethacrylate/Triethylene glycol dimethacrylate/Urethane dimethacrylates (R1, R2), and two other mixtures have Bis-phenol A diglycidyl ether dimethacrylate/Polymethyl methacrylate/Methyl methacrylates (R3, R4). The incorporation of nanoparticles into the polymer matrix has become essential due to the need of polymer biocompatibility increasing along with teeth surface remineralization, so that the powder charge was added to four recipes, such as 5% glass with BaF2 and 0.5% graphene with silver particles. All data sets were analyzed using the One-Way ANOVA test. R3, R4 showed higher compressive strength and diametrical compression values; these values increased when glass and graphene were added. Moreover, the addition of glass particles lead to an increase in flexural strength. Regarding the sorption, sample R3 had the most significant differences between day 69 and the rest of the investigation days, while the solubility varied at different intervals. From the mechanical evaluation, we could conclude that the Bis-GMA/PMMA/MMA mixtures fit the mechanical characteristics supported by polymer burs, following future studies regarding their use on the affected dentin. Full article
Show Figures

Figure 1

Back to TopTop