Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = single-well closed-loop heat exchanger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3296 KB  
Article
Numerical Analysis of Low-Enthalpy Deep Geothermal Energy Extraction Using a Novel Gravity Heat Pipe Design
by Urban Gselman, Vid Peršak and Darko Goričanec
Sustainability 2024, 16(15), 6660; https://doi.org/10.3390/su16156660 - 3 Aug 2024
Viewed by 1915
Abstract
Geothermal energy, derived from the Earth’s internal heat, can be harnessed due to the geothermal gradient between the Earth’s interior and its surface. This heat, sustained by radiogenic decay, varies across regions, and is highest near volcanic areas. In 2020, 108 countries utilised [...] Read more.
Geothermal energy, derived from the Earth’s internal heat, can be harnessed due to the geothermal gradient between the Earth’s interior and its surface. This heat, sustained by radiogenic decay, varies across regions, and is highest near volcanic areas. In 2020, 108 countries utilised geothermal energy, with an installed capacity of 15,950 MWe for electricity and 107,727 MWt for direct use in 2019. Low-enthalpy sources require binary systems for power production. Open-loop systems face issues like scaling, difficult water treatment, and potential seismicity, while closed-loop systems, using abandoned petroleum or gas wells, reduce costs and environmental impacts greatly. The novel geothermal gravity heat pipe (GGHP) design eliminates parasitic power consumption by using hydrostatic pressure for fluid circulation. Implemented in an abandoned well in north-east (NE) Slovenia, the GGHP uses a numerical finite difference method to model heat flow. The system vaporises the working fluid in the borehole, condenses it at the surface, and uses gravitational flow for circulation, maintaining efficient heat extraction. The model predicts that continuous maximum capacity extraction depletes usable heat rapidly. Future work will explore sustainable heat extraction and potential discontinuous operation for improved efficiency. Full article
(This article belongs to the Topic Environmental Geology and Engineering)
Show Figures

Figure 1

17 pages, 3206 KB  
Article
Numerical Simulation of Geothermal Energy Development at Mount Meager and Its Impact on In Situ Thermal Stress
by Yutong Chai, Zhuoheng Chen and Shunde Yin
Energies 2024, 17(14), 3466; https://doi.org/10.3390/en17143466 - 14 Jul 2024
Cited by 1 | Viewed by 1281
Abstract
The Meager Mountain Geothermal Project stands as one of the pioneering geothermal energy initiatives in its early stages of resource development. Despite its abundant geothermal heat resources, no prior studies have systematically evaluated the potential of implementing coaxial borehole heat exchangers on site. [...] Read more.
The Meager Mountain Geothermal Project stands as one of the pioneering geothermal energy initiatives in its early stages of resource development. Despite its abundant geothermal heat resources, no prior studies have systematically evaluated the potential of implementing coaxial borehole heat exchangers on site. This study addresses this research gap by presenting a comprehensive heat transfer model for an underground closed-loop geothermal system utilizing a single coaxial well. Finite element analysis incorporated fluid and solid heat transfer, as well as solid mechanics. The results obtained facilitated the construction of the temperature and thermal stress profiles induced by the cooling effects resulting from years of heat extraction. After 25 years of operation, the outlet temperature has reached approximately 74 °C, and the maximum radial tensile thermal stress amounts to ~47 MPa. Furthermore, the analysis demonstrates that higher fluid velocities contribute to more perturbed temperature and stress distributions. The study attained maximum thermal and electric power outputs of 208 kW and 17 kW, respectively. This research also underscores the significant impact of geothermal gradient and well length on BHE design, with longer wells yielding more power, especially at higher injection velocities. Full article
(This article belongs to the Special Issue Energy Geomechanics)
Show Figures

Figure 1

23 pages, 6741 KB  
Article
Thermodynamic Analysis of an Increasing-Pressure Endothermic Power Cycle Integrated with Closed-Loop Geothermal Energy Extraction
by Hao Yu, Xinli Lu, Wei Zhang and Jiali Liu
Energies 2024, 17(7), 1756; https://doi.org/10.3390/en17071756 - 6 Apr 2024
Cited by 2 | Viewed by 1769
Abstract
The thermodynamic analysis of an increasing-pressure endothermic power cycle (IPEPC) integrated with closed-loop geothermal energy extraction (CLGEE) in a geothermal well at a depth from 2 km to 5 km has been carried out in this study. Using CLGEE can avoid some typical [...] Read more.
The thermodynamic analysis of an increasing-pressure endothermic power cycle (IPEPC) integrated with closed-loop geothermal energy extraction (CLGEE) in a geothermal well at a depth from 2 km to 5 km has been carried out in this study. Using CLGEE can avoid some typical problems associated with traditional EGS technology, such as water contamination and seismic-induced risk. Simultaneous optimization has been conducted for the structural parameters of the downhole heat exchanger (DHE), the CO2 mixture working fluid type, and the IPEPC operating parameters. The CO2-R32 mixture has been selected as the optimal working fluid for the IPEPC based on the highest net power output obtained. It has been found that, when the DHE length is 4 km, the thermosiphon effect is capable of compensating for 53.8% of the pump power consumption. As long as the DHE inlet pressure is higher than the critical pressure, a lower DHE inlet pressure results in more power production. The power generation performance of the IPEPC has been compared with that of the organic Rankine cycle (ORC), trans-critical carbon dioxide cycle (t-CO2), and single-flash (SF) systems. The comparison shows that the IPEPC has more net power output than other systems in the case that the DHE length is less than 3 km, along with a DHE outer diameter of 0.155 m. When the DHE outer diameter is increased to 0.22 m, the IPEPC has the highest net power output for the DHE length ranging from 2 km to 5 km. The application scopes obtained in this study for different power generation systems are of engineering-guiding significance for geothermal industries. Full article
(This article belongs to the Special Issue Development and Utilization in Geothermal Energy)
Show Figures

Figure 1

Back to TopTop