Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = siphovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 42914 KB  
Article
Pseudomonas Phage Lydia and the Evolution of the Mesyanzhinovviridae Family
by Konstantin Troshin, Nina Sykilinda, Sofia Shuraleva, Anna Tokmakova, Nikolay Tkachenko, Lidia Kurochkina, Konstantin Miroshnikov, Natalia Suzina, Ekaterina Brzhozovskaya, Kristina Petrova, Stepan Toshchakov and Peter Evseev
Viruses 2025, 17(3), 369; https://doi.org/10.3390/v17030369 - 4 Mar 2025
Cited by 2 | Viewed by 1696
Abstract
Phage Lydia, a newly isolated siphovirus infecting Pseudomonas aeruginosa, was characterized with respect to its basic kinetic properties and subjected to comparative bioinformatic analysis with related phages. The phage exhibited a restricted host range, with lytic activity observed against 7 of 30 [...] Read more.
Phage Lydia, a newly isolated siphovirus infecting Pseudomonas aeruginosa, was characterized with respect to its basic kinetic properties and subjected to comparative bioinformatic analysis with related phages. The phage exhibited a restricted host range, with lytic activity observed against 7 of 30 tested isolates. The genome of phage Lydia consists of a 61,986 bp dsDNA molecule and contains 89 predicted genes. Bioinformatic analysis suggests the presence of a DNA modification system, but no apparent genes associated with lysogeny or antibiotic resistance were identified. Taxonomic classification places Lydia within the Mesyanzhinovviridae family, Rabinowitzvirinae subfamily, and Yuavirus genus, with the closest relation to Pseudomonas virus M6. Comprehensive bioinformatic studies, including structural modelling and analysis of phage proteins, as well as comparative taxonomic, phylogenomic, and pangenomic analyses of the Mesyanzhinovviridae family, revealed relationships between proteins of Mesyanzhinovviridae phages, proteins from other phage groups, encapsulins, and a gene transfer agent (GTA) particle from Rhodobacter capsulatus. These analyses uncovered patterns of evolutionary history within the family, characterized by genetic exchange events alongside the maintenance of a common genomic architecture, leading to the emergence of new groups within the family. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

15 pages, 2497 KB  
Article
Infection and Genomic Properties of Single- and Double-Stranded DNA Cellulophaga Phages
by Cristina Howard-Varona, Natalie E. Solonenko, Marie Burris, Marion Urvoy, Courtney M. Sanderson, Bejamin Bolduc and Matthew B. Sullivan
Viruses 2025, 17(3), 365; https://doi.org/10.3390/v17030365 - 3 Mar 2025
Viewed by 1354
Abstract
Bacterial viruses (phages) are abundant and ecologically impactful, but laboratory-based experimental model systems vastly under-represent known phage diversity, particularly for ssDNA phages. Here, we characterize the genomes and infection properties of two unrelated marine flavophages—ssDNA generalist phage phi18:4 (6.5 Kbp) and dsDNA specialist [...] Read more.
Bacterial viruses (phages) are abundant and ecologically impactful, but laboratory-based experimental model systems vastly under-represent known phage diversity, particularly for ssDNA phages. Here, we characterize the genomes and infection properties of two unrelated marine flavophages—ssDNA generalist phage phi18:4 (6.5 Kbp) and dsDNA specialist phage phi18:1 (39.2 Kbp)—when infecting the same Cellulophaga baltica strain #18 (Cba18), of the class Flavobacteriia. Phage phi18:4 belongs to a new family of ssDNA phages, has an internal lipid membrane, and its genome encodes primarily structural proteins, as well as a DNA replication protein common to ssDNA phages and a unique lysis protein. Phage phi18:1 is a siphovirus that encodes several virulence genes, despite not having a known temperate lifestyle, a CAZy enzyme likely for regulatory purposes, and four DNA methyltransferases dispersed throughout the genome that suggest both host modulation and phage DNA protection against host restriction. Physiologically, ssDNA phage phi18:4 has a shorter latent period and smaller burst size than dsDNA phage phi18:1, and both phages efficiently infect this host. These results help augment the diversity of characterized environmental phage–host model systems by studying infections of genomically diverse phages (ssDNA vs. dsDNA) on the same host. Full article
(This article belongs to the Special Issue Diversity and Evolution of Viruses in Ecosystem 2025)
Show Figures

Figure 1

12 pages, 3144 KB  
Article
Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture
by Vanessa A. Richards, Barbra D. Ferrell, Shawn W. Polson, K. Eric Wommack and Jeffry J. Fuhrmann
Viruses 2024, 16(11), 1750; https://doi.org/10.3390/v16111750 - 7 Nov 2024
Viewed by 1851
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate [...] Read more.
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL−1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL−1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

17 pages, 3606 KB  
Article
Biofilm Prevention and Removal in Non-Target Pseudomonas Strain by Siphovirus-like Coliphage
by Leonardo Martín Pérez, Olesia Havryliuk, Nury Infante, Maite Muniesa, Jordi Morató, Ruslan Mariychuk and Tzanko Tzanov
Biomedicines 2024, 12(10), 2291; https://doi.org/10.3390/biomedicines12102291 - 9 Oct 2024
Viewed by 2289
Abstract
Background/Objectives. Bacteriophages have gained significant interest as a potential solution to combat harmful bacteria, especially in the fight against antimicrobial resistance. With the rise in drug-resistant microorganisms, the medical community is increasingly exploring new alternatives to traditional antibiotics, and bacteriophages offer several advantages [...] Read more.
Background/Objectives. Bacteriophages have gained significant interest as a potential solution to combat harmful bacteria, especially in the fight against antimicrobial resistance. With the rise in drug-resistant microorganisms, the medical community is increasingly exploring new alternatives to traditional antibiotics, and bacteriophages offer several advantages in this regard. However, phage applications still face some challenges, such as host specificity. Methods. In this study, a somatic Siphovirus-like coliphage (SOM7) was tested for inhibiting the biofilm-forming capacity of the non-target strain Pseudomonas aeruginosa (ATTC 10145). The phage-sensitive strain E. coli WG5 was used as a control. The selected microorganisms were first tested for growth in the presence of SOM7 at three different concentrations (105, 107, and 109 PFU/mL). Results. As expected, the phage-sensitive E. coli WG5 was fully inhibited by the coliphage, and no phage-related affection on the growth rate was observed for the SOM7-resistant P. aeruginosa. More notably, increasing concentrations of SOM7 significantly reduced both the biofilm-forming capacity and the amount of pre-established bacterial biofilm of the phage-insensitive P. aeruginosa (24.9% and 38.8% reduction in the biofilm-forming ability, and 18.8% and 28.0% biofilm degradation for 107 PFU/mL and 109 PFU/mL SOM7, respectively; p < 0.05). These results were supported by transmission electron microscopy (TEM) imaging, providing unprecedent evidence for the interaction of the somatic coliphage with the non-host strain. Conclusions. Although more studies in other biofilm models are necessary, our results show for the very first time that bacteriophages could potentially be used as an alternative to achieve desired anti-biofilm and biofilm-degrading activity in non-host bacterial strains. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

15 pages, 5514 KB  
Article
Characterization of a Vibriophage Infecting Pathogenic Vibrio harveyi
by Yingying Li, Huayi Yun, Ruo Chen, Nianzhi Jiao, Qiang Zheng, Yunlan Yang and Rui Zhang
Int. J. Mol. Sci. 2023, 24(22), 16202; https://doi.org/10.3390/ijms242216202 - 11 Nov 2023
Cited by 8 | Viewed by 3079
Abstract
Bacterial diseases caused by Vibrio spp. are prevalent in aquaculture and can lead to high mortality rates among aquatic species and significant economic losses. With the increasing emergence of multidrug-resistant Vibrio strains, phage therapy is being explored as a potential alternative to antibiotics [...] Read more.
Bacterial diseases caused by Vibrio spp. are prevalent in aquaculture and can lead to high mortality rates among aquatic species and significant economic losses. With the increasing emergence of multidrug-resistant Vibrio strains, phage therapy is being explored as a potential alternative to antibiotics for biocontrol of infectious diseases. Here, a new lytic phage named vB_VhaS_R21Y (R21Y) was isolated against Vibrio harveyi BVH1 obtained from seawater from a scallop-farming area in Rongcheng, China. Its morphology, infection cycle, lytic profile, phage stability, and genetic features were characterized. Transmission electronic microscopy indicated that R21Y is siphovirus-like, comprising an icosahedral head (diameter 73.31 ± 2.09 nm) and long noncontractile tail (205.55 ± 0.75 nm). In a one-step growth experiment, R21Y had a 40-min latent period and a burst size of 35 phage particles per infected cell. R21Y was highly species-specific in the host range test and was relatively stable at pH 4–10 and 4–55 °C. Genomic analysis showed that R21Y is a double-stranded DNA virus with a genome size of 82,795 bp and GC content of 47.48%. Its high tolerance and lytic activity indicated that R21Y may be a candidate for phage therapy in controlling vibriosis in aquacultural systems. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology)
Show Figures

Figure 1

22 pages, 17782 KB  
Article
The Isolation and Characterization of Bacteriophages Infecting Avian Pathogenic Escherichia coli O1, O2 and O78 Strains
by Kat R. Smith, Emmanuel W. Bumunang, Jared Schlechte, Matthew Waldner, Hany Anany, Matthew Walker, Kellie MacLean, Kim Stanford, John M. Fairbrother, Trevor W. Alexander, Tim A. McAllister, Mohamed Faizal Abdul-Careem and Yan D. Niu
Viruses 2023, 15(10), 2095; https://doi.org/10.3390/v15102095 - 16 Oct 2023
Cited by 3 | Viewed by 2824
Abstract
Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling [...] Read more.
Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5–9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry. Full article
(This article belongs to the Special Issue Bacteriophage Applications in Animals)
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Characterization of Parageobacillus Bacteriophage vB_PtoS_NIIg3.2—A Representative of a New Genus within Thermophilic Siphoviruses
by Eugenijus Šimoliūnas, Monika Šimoliūnienė, Gintarė Laskevičiūtė, Kotryna Kvederavičiūtė, Martynas Skapas, Algirdas Kaupinis, Mindaugas Valius, Rolandas Meškys and Nomeda Kuisienė
Int. J. Mol. Sci. 2023, 24(18), 13980; https://doi.org/10.3390/ijms241813980 - 12 Sep 2023
Cited by 2 | Viewed by 1853
Abstract
A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 [...] Read more.
A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage–host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 5.0)
Show Figures

Figure 1

16 pages, 16968 KB  
Article
A Genomic Analysis of the Bacillus Bacteriophage Kirovirus kirovense Kirov and Its Ability to Preserve Milk
by Olesya A. Kazantseva, Anna V. Skorynina, Emma G. Piligrimova, Natalya A. Ryabova and Andrey M. Shadrin
Int. J. Mol. Sci. 2023, 24(16), 12584; https://doi.org/10.3390/ijms241612584 - 9 Aug 2023
Cited by 2 | Viewed by 2654
Abstract
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus [...] Read more.
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

17 pages, 4025 KB  
Article
Pheno- and Genotyping of Three Novel Bacteriophage Genera That Target a Wheat Phyllosphere Sphingomonas Genus
by Leise Riber, Alexander Byth Carstens, Peter Erdmann Dougherty, Chayan Roy, Katharina Willenbücher, Frank Hille, Charles M. A. P. Franz and Lars Hestbjerg Hansen
Microorganisms 2023, 11(7), 1831; https://doi.org/10.3390/microorganisms11071831 - 18 Jul 2023
Cited by 2 | Viewed by 2173
Abstract
Bacteriophages are viral agents that infect and replicate within bacterial cells. Despite the increasing importance of phage ecology, environmental phages—particularly those targeting phyllosphere-associated bacteria—remain underexplored, and current genomic databases lack high-quality phage genome sequences linked to specific environmentally important bacteria, such as the [...] Read more.
Bacteriophages are viral agents that infect and replicate within bacterial cells. Despite the increasing importance of phage ecology, environmental phages—particularly those targeting phyllosphere-associated bacteria—remain underexplored, and current genomic databases lack high-quality phage genome sequences linked to specific environmentally important bacteria, such as the ubiquitous sphingomonads. Here, we isolated three novel phages from a Danish wastewater treatment facility. Notably, these phages are among the first discovered to target and regulate a Sphingomonas genus within the wheat phyllosphere microbiome. Two of the phages displayed a non-prolate Siphovirus morphotype and demonstrated a narrow host range when tested against additional Sphingomonas strains. Intergenomic studies revealed limited nucleotide sequence similarity within the isolated phage genomes and to publicly available metagenome data of their closest relatives. Particularly intriguing was the limited homology observed between the DNA polymerase encoding genes of the isolated phages and their closest relatives. Based on these findings, we propose three newly identified genera of viruses: Longusvirus carli, Vexovirus birtae, and Molestusvirus kimi, following the latest ICTV binomial nomenclature for virus species. These results contribute to our current understanding of phage genetic diversity in natural environments and hold promising implications for phage applications in phyllosphere microbiome manipulation strategies. Full article
(This article belongs to the Special Issue Bacteriophage Genomics 2.0)
Show Figures

Figure 1

27 pages, 5307 KB  
Article
Four Novel Caudoviricetes Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of Aurelia aurita
by Melissa Stante, Nancy Weiland-Bräuer, Urska Repnik, Almut Werner, Marc Bramkamp, Cynthia M. Chibani and Ruth A. Schmitz
Viruses 2023, 15(7), 1525; https://doi.org/10.3390/v15071525 - 9 Jul 2023
Cited by 5 | Viewed by 4365 | Correction
Abstract
The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages [...] Read more.
The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Pseudomonas phage BSwM KMM1, Citrobacter phages BSwM KMM2–BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 showed a remarkably broad host range, infecting Gram-negative Pseudomonas as well as Gram-positive Staphylococcus. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

14 pages, 3603 KB  
Article
Genomic Characterization of a Halovirus Representing a Novel Siphoviral Cluster
by Kaixin Diao, Guohui Li, Xueqin Sun, Hao Yi, Shiying Zhang and Wei Xiao
Viruses 2023, 15(6), 1392; https://doi.org/10.3390/v15061392 - 19 Jun 2023
Cited by 4 | Viewed by 2591
Abstract
Salt mines are a special type of hypersaline environment. Current research mainly focuses on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding viruses in hypersaline environments is of great significance for revealing the formation and maintenance of microbial communities, [...] Read more.
Salt mines are a special type of hypersaline environment. Current research mainly focuses on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding viruses in hypersaline environments is of great significance for revealing the formation and maintenance of microbial communities, energy flow and element cycling, and host ecological functions. A phage infecting Halomonas titanicae was isolated from Yipinglang Salt Mine in China, designated Halomonas titanicae phage vB_HtiS_YPHTV-1 (YPHTV-1). Transmission electron microscopy revealed that YPHTV-1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long noncontractile tail with a length of 141.7 ± 0.58 nm (n = 5), indicating that it was a siphovirus. The one-step growth curve showed that the burst size of YPHTV-1 was 69 plaque forming units (PFUs) cell−1. The genome of YPHTV-1 was 37,980 bp with a GC content of 36.2%. The phylogenetic analysis of the six conserved proteins indicated that YPHTV-1 formed a cluster with Bacillus phages and was separated from phages infecting Halomonas. The average nucleotide identity (ANI), phylogenetic, and network analyses indicated that the phage YPHTV-1 represented a new genus under Caudoviricetes. In total, 57 open reading frames (ORFs) were predicted in the YPHTV-1 genome, 30 of which could be annotated in the database. Notably, several auxiliary metabolic genes were encoded by YPHTV-1, such as ImmA/IrrE family metalloendopeptidase, mannose-binding lectin (MBL) folding metallohydrolase, M15 family of metal peptidases, MazG-like family protein, O antigen ligase, and acyltransferase. These genes potentially enabled the host bacterium to resist ionizing radiation, ultraviolet light (UV), mitomycin C, β-lactam antibiotic, high osmotic pressure, and nutritional deficiencies. These findings highlight the role of haloviruses in the life cycle of halobacteria. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2023)
Show Figures

Figure 1

18 pages, 8192 KB  
Article
Identification, Characterization, and Genome Analysis of Two Novel Temperate Pseudomonas protegens Phages PseuP_222 and PseuP_224
by Vera Morozova, Yuliya Kozlova, Artem Tikunov, Igor Babkin, Tatyana Ushakova, Alevtina Bardasheva, Ghadeer Jdeed, Elena Zhirakovskaya, Alina Mogileva, Sergei Netesov and Nina Tikunova
Microorganisms 2023, 11(6), 1456; https://doi.org/10.3390/microorganisms11061456 - 31 May 2023
Cited by 3 | Viewed by 2787
Abstract
Two novel P. protegens bacteriophages PseuP_222 and Pseu_224 and their host P. protegens CEMTC 4060 were isolated from the same sample (Inya river, Siberia). Both phages have siphovirus morphology and belong to lambdoid phages. Comparative genome analysis revealed a low nucleotide and amino [...] Read more.
Two novel P. protegens bacteriophages PseuP_222 and Pseu_224 and their host P. protegens CEMTC 4060 were isolated from the same sample (Inya river, Siberia). Both phages have siphovirus morphology and belong to lambdoid phages. Comparative genome analysis revealed a low nucleotide and amino acid sequence similarity of PseuP_222 and PseuP_224 between themselves, and between them and other lambdoid phages. Bioinformatics analysis indicated that PseuP_222 and PseuP_224 are members of a genetically diverse group of phages of environmental Pseudomonas spp.; this group is distant from a large group of P. aeruginosa phages. In phylogenetic trees, the positioning of the terminase large subunits, major capsid proteins, tail tape measure proteins, and CI-like repressors of PseuP_222 and PseuP_224 were remote and changed relative to those of the Escherichia lambda phage and lambdoid phages of Pseudomonas spp. However, the nucleoid-associated protein NdpA/YejK and P5-like structural protein from both phages showed high similarity and were not found in lambda phage and other lambdoid phages of Pseudomonas spp. Substantial divergences of the PseuP_222 and PseuP_224 genomes and proteomes indicated that the evolutionary history of these phages was mostly independent and they probably began to use one host only recently. Full article
(This article belongs to the Special Issue Bacteriophage Genomics 2.0)
Show Figures

Figure 1

12 pages, 2955 KB  
Article
Characterization of a Bacteriophage GEC_vB_Bfr_UZM3 Active against Bacteroides fragilis
by Nata Bakuradze, Maia Merabishvili, Ia Kusradze, Pieter-Jan Ceyssens, Jolien Onsea, Willem-Jan Metsemakers, Nino Grdzelishvili, Guliko Natroshvili, Tamar Tatrishvili, Davit Lazvliashvili, Nunu Mitskevich, Jean-Paul Pirnay and Nina Chanishvili
Viruses 2023, 15(5), 1042; https://doi.org/10.3390/v15051042 - 25 Apr 2023
Cited by 4 | Viewed by 2941
Abstract
Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not [...] Read more.
Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not susceptible to the common antibiotic regimes established for B. fragilis, have been more frequently reported. Bacteriophages (phages) were found to be a successful antibacterial alternative to antibiotic therapy in many cases of multidrug-resistant (MDR) bacterial infections. We have characterized the bacteriophage GEC_vB_Bfr_UZM3 (UZM3), which was used for the treatment of a patient with a chronic osteomyelitis caused by a B. fragilis mixed infection. Studied biological and morphological properties of UZM3 showed that it seems to represent a strictly lytic phage belonging to a siphovirus morphotype. It is characterized by high stability at body temperature and in pH environments for about 6 h. Whole genome sequencing analysis of the phage UZM3 showed that it does not harbor any known virulence genes and can be considered as a potential therapeutic phage to be used against B. fragilis infections. Full article
(This article belongs to the Special Issue State-of-the-Art Phage Therapy Development in Europe 2022)
Show Figures

Figure 1

20 pages, 6548 KB  
Article
The Lytic Activity of Bacteriophage ZCSE9 against Salmonella enterica and Its Synergistic Effects with Kanamycin
by Abdallah S. Abdelsattar, Mohamed Atef Eita, Zainab K. Hammouda, Shrouk Mohamed Gouda, Toka A. Hakim, Aghapy Yermans Yakoup, Anan Safwat and Ayman El-Shibiny
Viruses 2023, 15(4), 912; https://doi.org/10.3390/v15040912 - 31 Mar 2023
Cited by 17 | Viewed by 5327
Abstract
Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in [...] Read more.
Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in bacterial antibiotic resistance. Thus, this work highlights the combined phage–antibiotic therapy as a promising approach to combating bacterial resistance. In this manner, the phage ZCSE9 was isolated, and the morphology, host infectivity, killing curve, combination with kanamycin, and genome analysis of this phage were all examined. Morphologically, phage ZCSE9 is a siphovirus with a relatively broad host range. In addition, the phage can tolerate high temperatures until 80 °C with one log reduction and a basic environment (pH 11) without a significant decline. Furthermore, the phage prevents bacterial growth in the planktonic state, according to the results of the time-killing curve. Moreover, using the phage at MOI 0.1 with kanamycin against five different Salmonella serotypes reduces the required antibiotics to inhibit the growth of the bacteria. Comparative genomics and phylogenetic analysis suggested that phage ZCSE9, along with its close relatives Salmonella phages vB_SenS_AG11 and wksl3, belongs to the genus Jerseyvirus. In conclusion, phage ZCSE9 and kanamycin form a robust heterologous antibacterial combination that enhances the effectiveness of a phage-only approach for combating Salmonella. Full article
(This article belongs to the Special Issue Phage and Antibiotic Combination Therapy against MDR Bacteria)
Show Figures

Figure 1

26 pages, 21730 KB  
Article
Genome Characterization and Infectivity Potential of Vibriophage-ϕLV6 with Lytic Activity against Luminescent Vibrios of Penaeus vannamei Shrimp Aquaculture
by Manikantha Benala, Murugadas Vaiyapuri, Visnuvinayagam Sivam, Karthika Raveendran, Mukteswar Prasad Mothadaka and Madhusudana Rao Badireddy
Viruses 2023, 15(4), 868; https://doi.org/10.3390/v15040868 - 28 Mar 2023
Cited by 10 | Viewed by 4601
Abstract
Shrimp aquaculture, especially during the hatchery phase, is prone to economic losses due to infections caused by luminescent vibrios. In the wake of antimicrobial resistance (AMR) in bacteria and the food safety requirements of farmed shrimp, aqua culturists are seeking alternatives to antibiotics [...] Read more.
Shrimp aquaculture, especially during the hatchery phase, is prone to economic losses due to infections caused by luminescent vibrios. In the wake of antimicrobial resistance (AMR) in bacteria and the food safety requirements of farmed shrimp, aqua culturists are seeking alternatives to antibiotics for shrimp health management, and bacteriophages are fast emerging as natural and bacteria-specific antimicrobial agents. This study analyzed the whole genome of vibriophage-ϕLV6 that showed lytic activity against six luminescent vibrios isolated from the larval tanks of P. vannamei shrimp hatcheries. The Vibriophage-ϕLV6 genome was 79,862 bp long with 48% G+C content and 107 ORFs that coded for 31 predicted protein functions, 75 hypothetical proteins, and a tRNA. Pertinently, the vibriophage-ϕLV6 genome harbored neither AMR determinants nor virulence genes, indicating its suitability for phage therapy. There is a paucity of whole genome-based information on vibriophages that lyse luminescent vibrios, and this study adds pertinent data to the database of V. harveyi infecting phage genomes and, to our knowledge, is the first vibriophage genome report from India. Transmission electron microscopy (TEM) of vibriophage-ϕLV6 revealed an icosahedral head (~73 nm) and a long, flexible tail (~191 nm) suggesting siphovirus morphology. The vibriophage-ϕLV6 phage at a multiplicity of infection (MOI) of 80 inhibited the growth of luminescent V. harveyi at 0.25%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% salt gradients. In vivo experiments conducted with post-larvae of shrimp showed that vibriophage-ϕLV6 reduced luminescent vibrio counts and post-larval mortalities in the phage-treated tank compared to the bacteria-challenged tank, suggesting the potentiality of vibriophage-ϕLV6 as a promising candidate in treating luminescent vibriosis in shrimp aquaculture. The vibriophage-ϕLV6 survived for 30 days in salt (NaCl) concentrations ranging from 5 ppt to 50 ppt and was stable at 4 °C for 12 months. Full article
Show Figures

Figure 1

Back to TopTop