Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (117)

Search Parameters:
Keywords = snake bite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3817 KB  
Article
Unraveling the Strange Case of the First Canarian Land Fauna (Lower Pliocene)
by Antonio Sánchez-Marco, Romain Amiot, Delphine Angst, Salvador Bailon, Juan Francisco Betancort, Eric Buffetaut, Emma García-Castellano, Lourdes Guillén-Vargas, Nicolas Lazzerini, Christophe Lécuyer, Alejandro Lomoschitz, Luis Felipe López-Jurado, Àngel H. Luján, María Antonia Perera-Betancort, Manuel J. Salesa, Albert G. Sellés and Gema Siliceo
Foss. Stud. 2025, 3(3), 13; https://doi.org/10.3390/fossils3030013 - 27 Aug 2025
Viewed by 2350
Abstract
Geological data of the region indicate that the Canary Islands have not been connected to the mainland before. However, fossil evidence suggests some kind of faunal exchange with Africa during the late Neogene. After extensive field work during past years, a re-evaluation of [...] Read more.
Geological data of the region indicate that the Canary Islands have not been connected to the mainland before. However, fossil evidence suggests some kind of faunal exchange with Africa during the late Neogene. After extensive field work during past years, a re-evaluation of the fossil remains of the first terrestrial vertebrates that settled and thrived on the Canary Islands is presented, with special attention to the long-debated identity of birds that laid large-sized eggs, reported some decades ago on Lanzarote Island. The age of the eggshell-bearing deposits has been recently updated as Early Pliocene (ca. 4 Ma). The dispersal mode of these terrestrial birds to reach the island was an unsolvable challenge in previous studies because the regional geography of the sea bottom was neglected, as well as the chronological succession of events in the formation of the Canary Eastern Ridge, which increased attention to a unique case of arrival of ratites on an island never before united with the mainland. The few animals found in northern Lanzarote (ratites, snakes, turtles, terrestrial snails and bite marks on eggshells pointing to a jagged and unknown large predator) probably made the sea crossing from the mainland in different ways. Two scenarios are contemplated. In both, the circumstances facilitating the faunal transit from Africa to the Canaries ceased after the early Pliocene, around 4 Ma, since these animals have never managed to cross the Canary Channel again. Full article
Show Figures

Figure 1

21 pages, 1637 KB  
Article
Comparative Label-Based Proteomics of Venoms from Echis ocellatus, Naja nigricollis, and Bitis arietans
by Abdulbaki Alfa-Ibrahim Adio, Samuel Odo Uko, Jiddah Muhammad Lawal, Ibrahim Malami, Nafiu Lawal, Amina Jega Yusuf Jega, Bilyaminu Abubakar, Muhammad Bashir Bello, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Abdussamad Muhammad Abdussamad, Mujtaba Sulaiman Abubakar and Mustapha Umar Imam
Proteomes 2025, 13(3), 31; https://doi.org/10.3390/proteomes13030031 - 2 Jul 2025
Viewed by 1693
Abstract
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes [...] Read more.
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes of these snakes using iTRAQ-based proteomics, focusing on key toxin families and their relative abundances. Methods: Venom samples were ethically collected from adult snakes, pooled by species, lyophilized, and stored for proteomic analysis. Proteins were extracted, digested with trypsin, and labeled with iTRAQ. Peptides were analyzed via mass spectrometry, and data were processed using Mascot and IQuant for protein identification and quantification. Results: E. ocellatus and B. arietans venoms had similar profiles, rich in C-type lectins, serine proteases, and phospholipase A2s. These comprised 17%, 11%, and 5% in E. ocellatus and 47%, 10%, and 7% in B. arietans, with metalloproteinases dominating both (53% and 47%). In N. nigricollis, three-finger toxins (9%) were most abundant, followed by metalloproteinases (3%). All species shared four core protein families, with N. nigricollis also containing four uncharacterized proteins. Conclusions: This study highlights venom compositional differences, advancing snake venom biology and informing targeted antivenom development. Full article
Show Figures

Graphical abstract

20 pages, 3412 KB  
Article
Snake Venom Metalloproteinases from Puff Adder and Saw-Scaled Viper Venoms Cause Cytotoxic Effects in Human Keratinocytes
by Keirah E. Bartlett, Adam Westhorpe, Mark C. Wilkinson and Nicholas R. Casewell
Toxins 2025, 17(7), 328; https://doi.org/10.3390/toxins17070328 - 28 Jun 2025
Viewed by 1438
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the [...] Read more.
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the cytotoxic toxins within these venoms will allow for the development of targeted treatments to prevent snakebite morbidity. In this study, venoms from both species were fractionated using gel filtration chromatography, and a combination of cytotoxicity approaches, SDS-PAGE gel electrophoresis, and enzymatic assays were applied to identify the venom cytotoxins in the resulting fractions. Our results indicate that snake venom metalloproteinase (SVMP) toxins are responsible for causing cytotoxic effects across both venoms. The PI subclass of SVMPs is likely the main driver of cytotoxicity following envenoming by B. arietans, while the structurally distinct PIII subclass of SVMPs is mostly responsible for conveying this effect in E. romani venom. Identifying distinct SVMPs as cytotoxicity-causing toxins in these two African viper venoms will facilitate the future design and development of novel therapeutics targeting these medically important venoms, which in turn could help to mitigate the severe life- and limb-threatening consequences of tropical snakebites. Full article
Show Figures

Figure 1

18 pages, 4121 KB  
Article
Defence Against Desiccation and Predation in Lophyohylini Casque-Headed Tree Frogs
by César Alexandre, Pedro L. Mailho-Fontana, Bianca C. L. F. Távora, Marta M. Antoniazzi and Carlos Jared
Toxins 2025, 17(6), 303; https://doi.org/10.3390/toxins17060303 - 16 Jun 2025
Cited by 1 | Viewed by 3605
Abstract
Casque-headed tree frogs (Lophyohylini) can have a very large and distinctive head characterised by hyperossification of their cranial skin. This type of skull was primarily associated with phragmosis, a behaviour in which the frog enters holes backwards and seals them with its head [...] Read more.
Casque-headed tree frogs (Lophyohylini) can have a very large and distinctive head characterised by hyperossification of their cranial skin. This type of skull was primarily associated with phragmosis, a behaviour in which the frog enters holes backwards and seals them with its head to prevent water loss in challenging environments. Further investigations revealed that hyperossification also gives rise to bony spines interspersed with skin poison glands. These peculiar anatomical features of the head make it challenging for predators to prey on the frogs in phragmosis. When bitten on the head, the bite pressure causes the spines to cross the poison glands, allowing the injection of toxins into the predator’s mouth. We studied the head morphology of different Lophyohylini species along with some characteristics of their cutaneous poison, both in the field and in the laboratory. These frogs exemplify distinct chemical defence strategies, highlighting the differences between venom and poison. Notably, some species can cause self-poisoning in predators by injecting poison (in this case, venom) through their head spines, similar to the use of fangs by snakes. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Figure 1

18 pages, 2634 KB  
Article
Micrurus nigrocinctus in Colombia: Integrating Venomics Research, Citizen Science, and Community Empowerment
by Paola Rey-Suárez, Lina Preciado Rojo, Jeisson Gómez-Robles, Sanin Parra-Moreno, Erica Pachon-Camelo, Yirlys Fuentes-Florez, Bruno Lomonte, Julián Fernández, Mahmood Sasa, Vitelbina Núñez and Mónica Saldarriaga-Cordoba
Toxins 2025, 17(6), 268; https://doi.org/10.3390/toxins17060268 - 27 May 2025
Viewed by 1202
Abstract
Snakebite is a high-priority neglected tropical disease, and a strategic goal based on four pillars has been recommended to reduce mortality and morbidity. One is empowering rural communities through citizen science, education, and engagement. In this study, an integrative approach was used to [...] Read more.
Snakebite is a high-priority neglected tropical disease, and a strategic goal based on four pillars has been recommended to reduce mortality and morbidity. One is empowering rural communities through citizen science, education, and engagement. In this study, an integrative approach was used to expand our knowledge of Micrurus nigrocinctus status and characterize its venom. Using citizen science data and field visits to local communities, 99 records of M. nigrocinctus distributed in Antioquia, Chocó, and Córdoba were obtained. Children, young people, and adults recognized M. nigrocinctus as the most common coral snake species in their region, and two specimens were recovered for venomic and Phylogenetic analyses. The M. nigrocinctus venom from Colombia exhibited similar chromatographic and electrophoretic profiles and biological activities and shared nearly identical protein families with Costa Rica. Commercial coral snake antivenoms also recognized and neutralized the whole venom from both countries. However, phylogenetic relationships showed greater divergence with specimens from Costa Rica. Involving communities helps prevent coral snake bites and facilitates access to rare specimens such as M. nigrocinctus, thereby enabling venom analyses, improving antivenom evaluation, and advancing toxinology research for medically significant species. Full article
(This article belongs to the Special Issue Collaborative Approaches to Mitigation of Snakebite Envenoming)
Show Figures

Graphical abstract

33 pages, 2900 KB  
Review
Scorzonera undulata: Traditional Applications, Phytochemical Analysis, and Biological and Pharmacological Attributes
by Mohammed Ajebli, Ayoub Amssayef, Maryame Sabiri, Fatima Zahrae Radi, Eimad Dine Tariq Bouhlali and Mohamed Eddouks
Plants 2025, 14(11), 1606; https://doi.org/10.3390/plants14111606 - 24 May 2025
Viewed by 889
Abstract
Scorzonera undulata (S. undulata) is a medicinal plant that is traditionally used to treat various health conditions, including diabetes, constipation, diarrhea, and other digestive issues. However, comprehensive analysis of its traditional uses, phytochemistry, and pharmacological applications is still lacking. This review [...] Read more.
Scorzonera undulata (S. undulata) is a medicinal plant that is traditionally used to treat various health conditions, including diabetes, constipation, diarrhea, and other digestive issues. However, comprehensive analysis of its traditional uses, phytochemistry, and pharmacological applications is still lacking. This review aims to systematically consolidate available information on the ethnopharmacological relevance, chemical profiles, and pharmacological activities of S. undulata. A comprehensive literature review of S. undulata was conducted across multiple scientific databases. Based on predefined inclusion criteria (full-text English publications providing relevant data on S. undulata) and exclusion criteria (abstracts only, studies on other species), 29 relevant studies were selected. This review systematically integrated traditional ethnobotanical knowledge with modern scientific insights, analyzing phytochemical compositions, biological activities, and pharmacological potential through a methodology designed to ensure unbiased selection from diverse sources. Traditional uses of S. undulata include treatments for diabetes, gastrointestinal disorders, snake bites, dehydration, and burns. Phytochemical studies revealed a wealth of polyphenols, flavonoids, tannins, glycosides, terpenoids, and sesquiterpenoids. In vitro and in vivo assays showed antibacterial, antifungal, anti-inflammatory, antidiabetic, antihypertensive, cytotoxic, and antioxidant properties. There are insufficient toxicity studies to assess the safety of this species. However, pharmacological research on this species remains limited. This review is the first to synthesize the traditional uses, phytochemistry, and biological activities of S. undulata, highlighting its pharmacological potential. However, further comprehensive research, including clinical trials, toxicological evaluations, and mechanistic studies, is necessary to fully identify active compounds and confirm their therapeutic applications, thus warranting additional investigation into this medicinal herb’s complete benefits. Full article
Show Figures

Figure 1

42 pages, 3179 KB  
Review
Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights
by Isack Ibrahim Mrisho, Elshan Musazade, Haobo Chen, Huixuan Zhao, Junjia Xing, Xue Li, Jiahong Han and Enbo Cai
Plants 2025, 14(7), 1034; https://doi.org/10.3390/plants14071034 - 26 Mar 2025
Cited by 4 | Viewed by 2534
Abstract
Plant-based products play an increasingly vital role in the pharmaceutical industry, including Pogostemon cablin (Blanco) Benth. (patchouli), which is notable for its rich history and extensive use in traditional medicine. Patchouli has a longstanding historical use as a remedy for a wide range [...] Read more.
Plant-based products play an increasingly vital role in the pharmaceutical industry, including Pogostemon cablin (Blanco) Benth. (patchouli), which is notable for its rich history and extensive use in traditional medicine. Patchouli has a longstanding historical use as a remedy for a wide range of health conditions, including colds, fevers, headaches, inflammation, digestive disorders, and insect and snake bites. Comprehensive phytochemical studies have revealed that patchouli leaves contain diverse valuable bioactive compounds, notably patchouli alcohol, β-patchoulene, pogostone, α-bulnesene, and β-caryophyllene. Recent studies have demonstrated that patchouli leaves exhibit various pharmacological properties, including anti-oxidant, anti-inflammatory, antimicrobial, antidepressant, and anticancer effects. Despite robust traditional knowledge, specific therapeutic applications of patchouli leaves require scientific validation and standardization of their bioactive compounds. This review provides a comprehensive overview of the existing literature on the phytochemical composition, pharmacological properties, and underlying mechanisms of action of patchouli essential oil (PEO) and plant extracts obtained from patchouli leaves. It offers detailed insights into potential therapeutic applications, aiming to inform and guide future research across multiple medical disciplines. Ultimately, this review underscores the need for further research to validate and develop the medicinal applications of patchouli leaves, providing a foundation for future healthcare advancements. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

13 pages, 519 KB  
Review
Vipera Snakebite in Children: A Focus on Europe
by Greta Orlandi, Nadia Rossi, Francesco Chiarelli and Paola Di Filippo
Children 2025, 12(3), 393; https://doi.org/10.3390/children12030393 - 20 Mar 2025
Viewed by 1758
Abstract
Although there are over 5 million cases of snakebites each year, up-to-date data on epidemiology and management in European children are lacking in literature. Snakebite envenoming is a rare but potentially life-threatening event, and children are more susceptible due to their lower weight-to-venom [...] Read more.
Although there are over 5 million cases of snakebites each year, up-to-date data on epidemiology and management in European children are lacking in literature. Snakebite envenoming is a rare but potentially life-threatening event, and children are more susceptible due to their lower weight-to-venom ratio. Symptoms of viper envenomation in children are mainly local, but the lymphatic and blood diffusion of the venom may cause systemic symptoms, mainly hemotoxic and cytotoxic symptoms. Immunotherapy with anti-viper serums is the cornerstone of treatment for viper bites, while the use of antibiotics, steroids and analgesics is still unclear and unstandardized. Recently, efforts have been made to improve the pediatric approach to viper envenomation in European children. Several pediatric case reports in children were reported in literature, and a pediatric grading severity score and electronic clinical tool (VipGrade®) were created to better manage this issue. However, larger studies are needed to validate these pediatric tools. This narrative review focuses on the clinical characteristics and management of European snake envenomation in children. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

14 pages, 888 KB  
Article
Snake Venom Makeover: Age-Dependent Variations in Procoagulant Biochemistry of Egyptian Saw-Scaled Viper (Echis pyramidum pyramidum) Venom
by Alex Barker, Lee Jones, Lachlan A. Bourke, Lorenzo Seneci, Abhinandan Chowdhury, Aude Violette, Rudy Fourmy, Raul Soria, Matt Aldridge and Bryan G. Fry
Toxins 2025, 17(3), 149; https://doi.org/10.3390/toxins17030149 - 19 Mar 2025
Cited by 2 | Viewed by 3087
Abstract
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes [...] Read more.
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes in the venom biochemistry has not been investigated. This study investigated the ontogenetic changes in Echis pyramidum pyramidum venom and its impact on therapeutic efficacy. The efficacy of various antivenoms (Echitab, Echitab+ ICP, Inosan MENA, Inosan Pan African, and SAVP-Echis) was tested against both venom phenotypes. While both neonate and adult venoms were procoagulant, there were differences in the underlying biochemistry. Neonate venom was found to potently pathophysiologically activate Factor VII and Factor X, and to a lesser degree Factor XII. In contrast, adult venom was a slower clotter, less potent in activating FVII, equipotent with neonate venom on FXII, and inactive on FX. This is the first documentation of FVII and FXII activation for any Echis venom. The significant ontogenetic toxicological variations in Echis species were shown to impact antivenom efficacy. Among the tested antivenoms, SAVP-Echis was the most effective against both venom phenotypes, with adult venom being better neutralized. These findings suggest the need for a reconsideration of venom mixture selection in antivenom production through the inclusion of neonate venom. Additionally, the results indicate differential ontogenetic predatory ecology, providing a foundation for future natural history investigations. Full article
(This article belongs to the Special Issue Snake Bite and Related Injury)
Show Figures

Figure 1

22 pages, 6749 KB  
Article
Neurocellular Stress Response to Mojave Type A Rattlesnake Venom: Study of Molecular Mechanisms Using Human iPSC-Derived Neural Stem Cell Model
by Satish Kumar, Miriam Aceves, Jose Granados, Lorena Guerra, Felicia Juarez, Earl Novilla, Ana C. Leandro, Marcelo Leandro, Juan Peralta, Sarah Williams-Blangero, Elda E. Sanchez, Jacob A. Galan, John Blangero and Joanne E. Curran
Biomolecules 2025, 15(3), 381; https://doi.org/10.3390/biom15030381 - 6 Mar 2025
Cited by 1 | Viewed by 1357
Abstract
The Mojave rattlesnake venom shows significant geographical variability. The venom of Type A animals primarily contains β-neurotoxin referred to as Mojave Toxin (MTX), which makes bites from this snake particularly feared. We performed a genome-wide transcriptomic analysis of the neurocellular response to Mojave [...] Read more.
The Mojave rattlesnake venom shows significant geographical variability. The venom of Type A animals primarily contains β-neurotoxin referred to as Mojave Toxin (MTX), which makes bites from this snake particularly feared. We performed a genome-wide transcriptomic analysis of the neurocellular response to Mojave Type A rattlesnake venom using induced pluripotent stem cell-derived neural stem cells to unveil the molecular mechanisms underlying the damage caused by this snake’s envenomation. Our results suggest that snake venom metalloproteases, although having a limited repertoire in Type A venom, facilitate venom spread by digesting the tissue’s extracellular matrix. The MTX, which is composed of heterodimers of basic and acidic phospholipase-A2, co-opts the host arachidonic acid and Ca2+ second messenger mechanisms and triggers multiple signaling cascades, such as the activation of MAPKs and NF-κB-regulated proinflammatory genes; the neurotransmitter overload in excitatory synapses leading to a presynaptic blockade of nerve signals; and the upregulation of unfolded protein response (UPR) due to the depletion of Ca2+ from the endoplasmic reticulum. The upregulated UPR and the oxidative stress caused by reactive oxygen species generated in cytochromeP4501A1-mediated hydroxylation of arachidonic acid contribute to mitochondrial toxicity. The activation of UPR, mitochondrial toxicity, and oxidative stress synergistically contributed to apoptotic and ferroptotic cell death. Full article
(This article belongs to the Special Issue Pluripotent Stem Cell Models of Human Disease)
Show Figures

Figure 1

23 pages, 4253 KB  
Review
Emerging Trends in Snake Venom-Loaded Nanobiosystems for Advanced Medical Applications: A Comprehensive Overview
by Álisson E. F. Alves, Anne B. C. Barros, Lindomara C. F. Silva, Lucas M. M. Carvalho, Graziela M. A. Pereira, Ana F. C. Uchôa, José M. Barbosa-Filho, Marcelo S. Silva, Karla P. O. Luna, Karla S. R. Soares and Francisco H. Xavier-Júnior
Pharmaceutics 2025, 17(2), 204; https://doi.org/10.3390/pharmaceutics17020204 - 6 Feb 2025
Cited by 3 | Viewed by 2349
Abstract
Advances in medical nanobiotechnology have notably enhanced the application of snake venom toxins, facilitating the development of new therapies with animal-derived toxins. The vast diversity of snake species and their venom complexities underline the need for ongoing research. This review is dedicated to [...] Read more.
Advances in medical nanobiotechnology have notably enhanced the application of snake venom toxins, facilitating the development of new therapies with animal-derived toxins. The vast diversity of snake species and their venom complexities underline the need for ongoing research. This review is dedicated to exploring the integration of snake venom with nanoparticles to enable their use in human therapies aiming to develop treatments. The complex mixture of snake venom not only inflicts significant pathological effects but also offers valuable insights for the creation of innovative therapies, particularly in the realm of nanobiotechnology. Nanoscale encapsulation not only mitigates the inherent toxicity of snake venom but also amplifies their antitumoral, antimicrobial, and immunomodulatory properties. The synergy between venom-derived macromolecules and nanotechnology offers a novel pathway for augmenting the efficacy and safety of conventional antivenom therapies, extending their applicability beyond treating bites to potentially addressing a myriad of health issues. In conclusion, nanotechnology presents a compelling therapeutic frontier that promises to improve current treatment modalities and ameliorate the adverse effects associated with venomous snakebites. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Graphical abstract

53 pages, 6648 KB  
Article
Quantitative Ethnobotany of Medicinal Plants from Darjeeling District of West Bengal, India, along with Phytochemistry and Toxicity Study of Betula alnoides Buch.-Ham. ex D.Don bark
by Yasodha Subba, Samik Hazra and Chowdhury Habibur Rahaman
Plants 2024, 13(24), 3505; https://doi.org/10.3390/plants13243505 - 16 Dec 2024
Cited by 1 | Viewed by 2434
Abstract
This study offers considerable information on plant wealth of therapeutic importance used traditionally by the residents of 11 villages under three subdivisions of Kurseong, Darjeeling Sadar, and Mirik in the Darjeeling District, West Bengal. For the acquisition of ethnomedicinal information, semi-structured interviews were [...] Read more.
This study offers considerable information on plant wealth of therapeutic importance used traditionally by the residents of 11 villages under three subdivisions of Kurseong, Darjeeling Sadar, and Mirik in the Darjeeling District, West Bengal. For the acquisition of ethnomedicinal information, semi-structured interviews were conducted with 47 informants, of whom 11 persons were herbalists and 36 were knowledgeable persons. Free prior informed consent was obtained from each participant prior to the collection of field data. A total of 115 species were documented, which spread over 65 families and 104 genera. From the informants, a total of 101 monoherbal and 21 polyherbal formulations were recorded for treating 50 types of health conditions. The collected ethnobotanical data have been evaluated to measure the utilitarian significance of remedies using three quantitative tools, informant consensus factor (Fic), use value (UV), and fidelity level (FL%). A statistical analysis revealed that among 11 disease categories, the highest Fic value was estimated for the category of digestive diseases. The plant Hellenia speciosa (J.Koenig) S.R.Dutta scored the highest use value among all the recorded plant species. In the case of the FL% analysis, the highest score (97%) was observed in Betula alnoides Buch-Ham. ex D.Don, which is used for snake bites, among the recorded 115 plant species. In addition, the present study embodies the quantitative estimation of phenolics and flavonoids, along with an HPLC analysis of the B. alnoides bark to endorse this most important and underexplored plant as a potential source of therapeutically important chemical compounds. The bark extract contains significant amounts of phenolics (87.8 mg GAE/g dry tissue) and flavonoids (30.1 mg CE/g dry tissue). An HPLC analysis unveiled a captivating ensemble of six phenolic compounds, namely, chlorogenic acid, sinapic acid, caffeic acid, coumarin, p-coumaric acid, and gallic acid. Among the identified phenolics, chlorogenic acid scored the highest amount of 117.5 mg/g of dry tissue. The present study also explored the moderate cytotoxic nature of the bark extract through an in vitro cytotoxicity assay on the L929 mouse fibroblast cell line. Our study not only documents the statistically analyzed information about ethnomedicinal practices that prevailed in the rural communities of the Darjeeling District but also highlights the profound therapeutic capabilities and non-toxic nature of B. alnoides bark. Full article
Show Figures

Graphical abstract

22 pages, 5029 KB  
Article
Snakebites in Cameroon by Species Whose Effects Are Poorly Described
by Jean-Philippe Chippaux, Yoann Madec, Pierre Amta, Rodrigue Ntone, Gaëlle Noël, Pedro Clauteaux, Yap Boum, Armand S. Nkwescheu and Fabien Taieb
Trop. Med. Infect. Dis. 2024, 9(12), 300; https://doi.org/10.3390/tropicalmed9120300 - 6 Dec 2024
Cited by 3 | Viewed by 2347
Abstract
Snakes responsible for bites are rarely identified, resulting in a loss of information about snakebites from venomous species whose venom effects are poorly understood. A prospective clinical study including patients bitten by a snake was conducted in Cameroon between 2019 and 2021 to [...] Read more.
Snakes responsible for bites are rarely identified, resulting in a loss of information about snakebites from venomous species whose venom effects are poorly understood. A prospective clinical study including patients bitten by a snake was conducted in Cameroon between 2019 and 2021 to evaluate the efficacy and tolerability of a marketed polyvalent antivenom. Clinical presentation during the first 3 days of hospitalization was recorded following a standardized protocol. This ancillary study aimed to assess the frequency of bites by the different species encountered in Cameroon and to describe the symptoms of bites by formally identified species. Of the 447 patients included in the study, 159 (35.6%) brought the snake that caused the bite that was identified by a specialist. Out of these, 8 specimens could not be identified due to poor condition, 19 were non-venomous species, and 95 belonged to Echis romani—formerly E. ocellatus—species. The remaining 37 specimens included 2 Atheris squamigera, 12 Atractaspis spp., 2 Bitis arietans, 11 Causus maculatus, 1 Dendroaspis jamesoni, 1 Naja haje, 1 N. katiensis, 5 N. melanoleuca complex, and 2 N. nigricollis. Symptoms, severity of envenomation, and post-treatment course are described. Symptoms and severity of bites are consistent with cases described in the literature, but some specific features are highlighted. Full article
(This article belongs to the Special Issue Snake Bite: Prevention, Diagnosis and Treatment)
Show Figures

Figure 1

18 pages, 2041 KB  
Article
The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra (Naja nivea) Venom
by Tim Lüddecke, Ignazio Avella, Maik Damm, Lennart Schulte, Johanna Eichberg, Kornelia Hardes, Susanne Schiffmann, Marina Henke, Thomas Timm, Günter Lochnit and Andreas Vilcinskas
Toxins 2024, 16(10), 438; https://doi.org/10.3390/toxins16100438 - 11 Oct 2024
Cited by 4 | Viewed by 2858
Abstract
“True” cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned [...] Read more.
“True” cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species’ venom. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

23 pages, 4058 KB  
Article
Aligning Post-Column ESI-MS, MALDI-MS, and Coagulation Bioassay Data of Naja spp., Ophiophagus hannah, and Pseudonaja textillis Venoms Chromatographically to Assess MALDI-MS and ESI-MS Complementarity with Correlation of Bioactive Toxins to Mass Spectrometric Data
by Haifeng Xu, Susan El-Asal, Hafsa Zakri, Rama Mutlaq, Natascha T. B. Krikke, Nicholas R. Casewell, Julien Slagboom and Jeroen Kool
Toxins 2024, 16(9), 379; https://doi.org/10.3390/toxins16090379 - 29 Aug 2024
Cited by 1 | Viewed by 1850
Abstract
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and [...] Read more.
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6–8 or 13–14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

Back to TopTop