Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (892)

Search Parameters:
Keywords = soft actuator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5061 KiB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 (registering DOI) - 24 Aug 2025
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

15 pages, 3090 KiB  
Article
Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning
by Tao Duan, Yi Lv, Liyuan Wang, Haifan Li, Teng Yi, Yigang He and Zhongming Lv
Machines 2025, 13(8), 749; https://doi.org/10.3390/machines13080749 - 21 Aug 2025
Viewed by 91
Abstract
Soft robots demonstrate significant advantages in applications within complex environments due to their unique material properties and structural designs. However, they also face challenges in fault diagnosis, such as nonlinearity, time variability, and the difficulty of precise modeling. To address these issues, this [...] Read more.
Soft robots demonstrate significant advantages in applications within complex environments due to their unique material properties and structural designs. However, they also face challenges in fault diagnosis, such as nonlinearity, time variability, and the difficulty of precise modeling. To address these issues, this paper proposes a fault diagnosis method based on multimodal spatiotemporal features and ensemble learning. First, a sliding-window Kalman filter is utilized to eliminate noise interference from multi-source signals, constructing separate temporal and spatial representation spaces. Subsequently, an adaptive weight strategy for feature fusion is applied to train a heterogeneous decision tree model, followed by a dynamic weighted voting mechanism based on confidence levels to obtain diagnostic results. This method optimizes the feature extraction and fusion process in stages, combined with a dynamic ensemble strategy. Experimental results indicate a significant improvement in diagnostic accuracy and model robustness, achieving precise identification of faults in soft robots. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

19 pages, 5949 KiB  
Article
Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters
by Yang Zhang and Zhongkui Wang
Foods 2025, 14(16), 2875; https://doi.org/10.3390/foods14162875 - 19 Aug 2025
Viewed by 208
Abstract
Pick-and-place handling of aquatic products (e.g., raw oyster) in packing processing remains manual, despite advances in soft robotic grippers as well as robotic systems that offer a path to automation in food production lines. In this study, we focused on the automation of [...] Read more.
Pick-and-place handling of aquatic products (e.g., raw oyster) in packing processing remains manual, despite advances in soft robotic grippers as well as robotic systems that offer a path to automation in food production lines. In this study, we focused on the automation of raw-oyster handling which can be achieved by a robotic system equipped with a soft robotic gripper. However, raw oysters are fragile and prone to large damage during robotic handling, while high-speed handling generates inertial effects. Minimizing the grasping force is thus essential to protect raw oysters, while preserving the grasping stability is required. To address, this study introduces and validates a robotic system equipped with a soft pneumatic gripper for raw-oyster handling task in food production lines. Finite element analysis (FEA) was employed to discuss the effect of gripper actuation pressure on finger deflection and gripper grasping force, revealing a trade-off: increasing actuation pressure improves stability but raises grasping force, whereas reducing actuation pressure causes excessive swing and tossing problems. An optimal actuation pressure of the soft gripper was identified as grasping stability and oyster integrity, minimizing swing while preventing excessive grasping force. Handling performance of the robotic system was experimentally evaluated with raw oysters under different actuation pressures and oyster orientations. Under the optimal actuation pressure confirmed in FEA, the robotic system achieved a handling success rate of 100% (15/15) without obvious misalignment and large damage of raw oysters, which confirmed its adaptability for high-speed, stable handling. This study offers a reference of robotic systems for handling fragile aquatic products and indicates that optimal actuation pressure can protect such products during robotic handling, thereby facilitating the automation of aquatic product processing. Full article
(This article belongs to the Section Food Systems)
Show Figures

Graphical abstract

12 pages, 4129 KiB  
Article
Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators
by Xiushang Du, Zhenjie Zhao, Xuhang Zhang, Jingyi Zhu and Yingdan Liu
Polymers 2025, 17(16), 2228; https://doi.org/10.3390/polym17162228 - 15 Aug 2025
Viewed by 357
Abstract
Magnetorheological elastomers (MREs) are a type of smart materials formed by dispersing magneto-responsive micron particles in an elastic polymer matrix. They hold significant potential for various applications due to their tunable stiffness, capability to carry out non-contact actuation, and rapid responsiveness to magnetic [...] Read more.
Magnetorheological elastomers (MREs) are a type of smart materials formed by dispersing magneto-responsive micron particles in an elastic polymer matrix. They hold significant potential for various applications due to their tunable stiffness, capability to carry out non-contact actuation, and rapid responsiveness to magnetic fields. However, weak interfacial interactions and poor dispersion of magnetic particles within the polymer matrix often lead to diminished magnetorheological (MR) performance. In this study, carbonyl iron powder (CIP) was chemically modified via polydopamine (PDA) deposition followed by grafting with isobutyl (trimethoxy)silane (IBTMO) to enhance its compatibility with a silicone-based matrix. The resulting anisotropic MREs fabricated using the dual-modified CIP exhibited a reduced elastic modulus, enhanced elongation, a large magnetically induced bending angle of 38°, and a notably improved MR effect of 246.8%. Furthermore, a magnetic soft actuator was designed based on the anisotropic dual-modified CIP-based MRE. When used as flippers for a duck model, the actuator successfully propelled a load approximately 76.8 times its own weight at a speed of 3.48 mm/s, thereby demonstrating promising potential for applications requiring load-bearing actuation. Full article
Show Figures

Graphical abstract

15 pages, 2952 KiB  
Article
Electrochemical Properties and Electromechanical Analysis of a Stacked Polyvinyl Chloride (PVC) Gel Actuator
by Kinji Asaka, Zicai Zhu and Minoru Hashimoto
Actuators 2025, 14(8), 404; https://doi.org/10.3390/act14080404 - 13 Aug 2025
Viewed by 184
Abstract
We investigated the electrochemical properties of and conducted an electromechanical analysis on a stacked polyvinyl chloride (PVC) gel actuator, comprising a PVC gel plasticized with dibutyl adipate (DBA) sandwiched between a metal mesh and a metal disk electrode. In this study, we examined [...] Read more.
We investigated the electrochemical properties of and conducted an electromechanical analysis on a stacked polyvinyl chloride (PVC) gel actuator, comprising a PVC gel plasticized with dibutyl adipate (DBA) sandwiched between a metal mesh and a metal disk electrode. In this study, we examined the electrochemical impedance, displacement, and electric current responses to square-wave voltage inputs. The linear motion of PVC gel actuators with and without ionic liquid (IL) additives was analyzed in relation to the mesh size and metal composition of the mesh electrode. The displacement increased with decreasing mesh numbers, indicating that displacement increases with increasing wire diameter and space length. The linear motion of the stacked PVC gel actuators with and without IL additives depended on the metal species of the mesh electrodes. The electrochemical impedance of the stacked PVC gel actuators under DC voltage application was analyzed with and without the IL. Based on the electromechanical and electrochemical results, a deformation model was developed to describe the linear motion of stacked PVC gel actuators in response to the applied voltage. The model attributed this motion to the deformation induced by Maxwell stress in the solvent-rich layer, successfully accounting for the experimental observations. Full article
(This article belongs to the Special Issue Actuators in 2025)
Show Figures

Figure 1

18 pages, 4182 KiB  
Article
Structural Design of a Multi-Stage Variable Stiffness Manipulator Based on Low-Melting-Point Alloys
by Moufa Ye, Lin Guo, An Wang, Wei Dong, Yongzhuo Gao and Hui Dong
Technologies 2025, 13(8), 338; https://doi.org/10.3390/technologies13080338 - 5 Aug 2025
Viewed by 374
Abstract
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes [...] Read more.
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes a novel design concept: leveraging the phase-change characteristics of low-melting-point alloys (LMPAs) with distinct melting points to fulfill the variable stiffness requirements of soft manipulators. The pneumatic structure of the manipulator is fabricated via 3D-printed molds and silicone casting. The manipulator integrates a pneumatic working chamber, variable stiffness chambers, heating devices, sensors, and a central channel, achieving multi-stage variable stiffness through controlled heating of the LMPAs. A steady-state temperature field distribution model is established based on the integral form of Fourier’s law, complemented by finite element analysis (FEA). Subsequently, the operational temperatures at which the variable stiffness mechanism activates, and the bending performance are experimentally validated. Finally, stiffness characterization and kinematic performance experiments are conducted to evaluate the manipulator’s variable stiffness capabilities and flexibility. This design enables the manipulator to switch among low, medium, and high stiffness levels, balancing flexibility and stability, and provides a new paradigm for the design of soft manipulators. Full article
Show Figures

Figure 1

25 pages, 15257 KiB  
Article
A Novel Enhanced Methodology for Position and Orientation Control of the I-SUPPORT Robot
by Carlos Relaño, Zhiqiang Tang, Cecilia Laschi and Concepción A. Monje
Biomimetics 2025, 10(8), 502; https://doi.org/10.3390/biomimetics10080502 - 1 Aug 2025
Viewed by 405
Abstract
This study presents a novel method for controlling the position and orientation of the bioinspired I-SUPPORT soft robot, which represents a relevant advancement in the field of soft robotics. The approach is based on module actuation decoupling and fractional-order control, offering a more [...] Read more.
This study presents a novel method for controlling the position and orientation of the bioinspired I-SUPPORT soft robot, which represents a relevant advancement in the field of soft robotics. The approach is based on module actuation decoupling and fractional-order control, offering a more advanced and robust control solution. This innovation enhances the versatility of the robot and illustrates the efficacy of fractional-order controllers, which are comparable to current meta-learning-based controllers. The research involves experiments in both vertical and horizontal configurations, addressing tasks ranging from simple orientation to complex interactions, such as gentle rubbing during bathing activities with the robot. These experimental results exemplify the efficacy of the proposed control strategy and provide a foundation for future research in soft robotics control, underscoring its potential for broader applications and further technological advancement. Full article
(This article belongs to the Special Issue Design, Actuation, and Fabrication of Bio-Inspired Soft Robotics)
Show Figures

Figure 1

18 pages, 2280 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 359
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
A Soft Reconfigurable Inverted Climbing Robot Based on Magneto-Elastica-Reinforced Elastomer
by Fuwen Hu, Bingyu Zhao and Wenyu Jiang
Micromachines 2025, 16(8), 855; https://doi.org/10.3390/mi16080855 - 25 Jul 2025
Viewed by 419
Abstract
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable [...] Read more.
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable deformations. Furthermore, the 3D-printed magneto-elastica-reinforced elastomer actuators are assembled into several typical robotic patterns: linear configuration, parallel configuration, and triangular configuration. As a proof of concept, a few of the basic locomotive modes are demonstrated including squirming-type crawling at a speed of 1.11 mm/s, crawling with turning functions at a speed of 1.11 mm/s, and omnidirectional crawling at a speed of 1.25 mm/s. Notably, the embedded magnetic balls produce magnetic adhesion on the ferromagnetic surfaces, which enables the soft mobile robot to climb upside-down on ferromagnetic curved surfaces. In the experiment, the inverted ceiling-based inverted crawling speed is 2.17 mm/s, and the inverted freeform surface-based inverted crawling speed is 3.40 mm/s. As indicated by the experimental results, the proposed robot has the advantages of a simple structure, low cost, reconfigurable multimodal motion ability, and so on, and has potential application in the inspection of high-value assets and operations in confined environments. Full article
(This article belongs to the Special Issue Development and Applications of Small-Scale Soft Robotics)
Show Figures

Figure 1

15 pages, 1749 KiB  
Article
Optimization of Soft Actuator Control in a Continuum Robot
by Oleksandr Sokolov, Serhii Sokolov, Angelina Iakovets and Miroslav Malaga
Actuators 2025, 14(7), 352; https://doi.org/10.3390/act14070352 - 17 Jul 2025
Viewed by 297
Abstract
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data [...] Read more.
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data were collected using a high-frequency electromagnetic tracking system under monotonic pressurization to minimize hysteresis effects. Transfer functions were identified for each coordinate–actuator pair using the System Identification Toolbox in MATLAB, and optimal actuator pressures were computed analytically by solving a constrained quadratic program via a manual active-set method. The resulting control strategy achieved sub-millimeter positioning error while minimizing the number of actuators engaged. The approach is computationally efficient, sensor-minimal, and fully implementable in open-loop settings. Despite certain limitations due to sensor nonlinearity and actuator hysteresis, the method provides a robust foundation for feedforward control and the real-time deployment of soft robots in quasi-static tasks. Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators)
Show Figures

Figure 1

18 pages, 20927 KiB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 396
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

27 pages, 4077 KiB  
Review
Biomimetic Robotics and Sensing for Healthcare Applications and Rehabilitation: A Systematic Review
by H. M. K. K. M. B. Herath, Nuwan Madusanka, S. L. P. Yasakethu, Chaminda Hewage and Byeong-Il Lee
Biomimetics 2025, 10(7), 466; https://doi.org/10.3390/biomimetics10070466 - 16 Jul 2025
Viewed by 1028
Abstract
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge [...] Read more.
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge gaps, and establish clear frameworks to guide future developments. This systematic review addresses these needs by analyzing 89 peer-reviewed sources retrieved from the Scopus database, focusing on the application of biomimetic robotics and sensing technologies in healthcare and rehabilitation contexts. The findings indicate a predominant focus on enhancing human mobility and support, with rehabilitative and assistive technologies comprising 61.8% of the reviewed literature. Additionally, 12.36% of the studies incorporate intelligent control systems and Artificial Intelligence (AI), reflecting a growing trend toward adaptive and autonomous solutions. Further technological advancements are demonstrated by research in bioengineering applications (13.48%) and innovations in soft robotics with smart actuation mechanisms (11.24%). The development of medical robots (7.87%) and wearable robotics, including exosuits (10.11%), underscores specific progress in clinical and patient-centered care. Moreover, the emergence of transdisciplinary approaches, present in 6.74% of the studies, highlights the increasing convergence of diverse fields in tackling complex healthcare challenges. By consolidating current research efforts, this review aims to provide a comprehensive overview of the state of the art, serving as a foundation for future investigations aimed at improving healthcare outcomes and enhancing quality of life. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

19 pages, 7661 KiB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Viewed by 382
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 580
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

24 pages, 1185 KiB  
Review
A Comprehensive Review of Elbow Exoskeletons: Classification by Structure, Actuation, and Sensing Technologies
by Callista Shekar Ayu Supriyono, Mihai Dragusanu and Monica Malvezzi
Sensors 2025, 25(14), 4263; https://doi.org/10.3390/s25144263 - 9 Jul 2025
Viewed by 742
Abstract
The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow [...] Read more.
The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow exoskeletons have emerged as a key focus due to the joint’s essential role in upper limb functionality and its frequent impairment following neurological injuries such as stroke. With increasing research activity, there is a strong interest in evaluating these systems not only from a technical perspective but also in terms of user comfort, adaptability, and clinical relevance. This review investigates recent advancements in elbow exoskeleton technology, evaluating their effectiveness and identifying key design challenges and limitations. Devices are categorized based on three main criteria: mechanical structure (rigid, soft, or hybrid), actuation method, and sensing technologies. Additionally, the review classifies systems by their supported range of motion, flexion–extension, supination–pronation, or both. Through a systematic analysis of these features, the paper highlights current design trends, common trade-offs, and research gaps, aiming to guide the development of more practical, effective, and accessible elbow exoskeletons. Full article
(This article belongs to the Special Issue Sensors and Data Analysis for Biomechanics and Physical Activity)
Show Figures

Figure 1

Back to TopTop