Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (120)

Search Parameters:
Keywords = soil detachment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1027 KB  
Review
Understanding the Flows of Microplastic Fibres in the Textile Lifecycle: A System Perspective
by Beatrice Dal Pio Luogo and Gaetano Cascini
Sustainability 2025, 17(19), 8726; https://doi.org/10.3390/su17198726 - 28 Sep 2025
Viewed by 451
Abstract
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The [...] Read more.
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The detachment of fibre fragments and their fate in the environment has received attention in the recent literature but lacks a harmonised research methodology and a holistic approach to the topic. This work presents a model to estimate the flows of microplastic fibres and synthetic garments in geographical Europe, expressed in tonnes per year. It was developed through a search of the literature to provide an estimate of synthetic fibres entering the environment and to identify the connections between the stakeholders involved. A first-level multicriteria decision analysis was conducted to recognise relevant pollution flows: the study revealed significant but poorly understood pathways, such as the flow of microplastics in the indoor and outdoor air during garment wear. Also, the flow of microplastics from the combined sewer overflow of untreated water during heavy precipitation and the flow to the agricultural land from the application of sewage sludge result in relevant pathways to water and soil, respectively. By fostering collaboration across multiple actors, the transition toward sustainable textile practices can significantly reduce fibre pollution. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

29 pages, 23339 KB  
Article
Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing
by Xiaofei Yang, Qinglin Li, Shuailong Yu, Pengrui Feng, Meixue Zhang, Wenjuan Chen and Guang Yang
Plants 2025, 14(18), 2876; https://doi.org/10.3390/plants14182876 - 16 Sep 2025
Viewed by 470
Abstract
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial [...] Read more.
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial soil water content (4–12%), and naturally varying root diameter (4.50–5.05 mm) on root pullout behaviour, and integrates endoscopic macro-observation, environmental scanning electron microscopy (ESEM), soil water migration tests, and nuclear magnetic resonance (NMR) techniques to reveal the dominant influencing mechanisms. Key findings reveal the following: (1) An increase in soil water content from 4% to 12%, and a temperature rise from −10 °C to 25 °C led to a maximum reduction in the average peak pullout force (FT) of roots exceeding 95%. (2) There is a non-monotonic relationship between root diameter and pull-out force, which can be attributed to two distinct failure modes: a newly observed failure mode known as root bark peeling, occurring under high soil moisture conditions (≥8%), and a commonly observed failure mode referred to as partial soil detachment, occurring under low soil moisture conditions (≤6%). (3) The coupling effects of temperature and water content reveal that the increase in temperature predominantly contributes to strength loss (>63%) during the ice–water phase transition (−10 °C to 0 °C), while soil water content primarily influences root pullout behaviour in the liquid water stage (5 °C to 25 °C). (4) As the temperature rises, in soils with low water content (4–6%), the reinforcing effect of roots appears to stabilize at −1 °C, whereas in soils with high water content (8–12%), stabilization occurs only beyond 5 °C. These findings enhance the understanding of root–soil interactions in thawing environments and provide a theoretical basis for soil bioengineering techniques aimed at slope stabilization in cold and arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 1409 KB  
Article
Phytophthora plurivora: A Serious Challenge for English Walnut (Juglans regia) Cultivation in Europe
by Alessandra Benigno, Viola Papini, Federico La Spada, Domenico Rizzo, Santa Olga Cacciola and Salvatore Moricca
Microorganisms 2025, 13(9), 2094; https://doi.org/10.3390/microorganisms13092094 - 8 Sep 2025
Viewed by 470
Abstract
English walnut (Juglans regia) is a species that is highly valued for the quality of its wood and the nutritional and nutraceutical properties of its fruit. A severe dieback of J. regia trees was observed recently in orchards located in three [...] Read more.
English walnut (Juglans regia) is a species that is highly valued for the quality of its wood and the nutritional and nutraceutical properties of its fruit. A severe dieback of J. regia trees was observed recently in orchards located in three geographically distinct areas of Tuscany, central Italy. Symptoms included root and collar rot, necrosis of the under-bark tissue, bleeding cankers, stunted growth, and crown dieback. Four Phytophthora species were obtained from 239 isolates found on symptomatic J. regia individuals. They were identified, on the basis of macro-morphological (colony shape and texture), micro-morphometric (shape and size of oogonia, antheridia, oospores, sporangia, and chlamydospores) and molecular (ITS sequencing) characters, as P. gonapodyides, P. cactorum, P. citricola, and P. plurivora. Among these species, P. plurivora was the species isolated with overwhelming frequency from symptomatic tissue and rhizosphere soil, suggesting it to be the putative etiological agent. Pathogenicity assays were conducted on 20 cm long detached J. regia branches for a definitive establishment of disease causation. Severe symptoms (extended necroses) were exhibited by branches infected with P. plurivora, proving its pathogenicity and high virulence on this host. The other Phytophtora species produced negligible necroses around the inoculation site. P. plurivora was recovered from all the investigated orchards, providing evidence that it is quite widespread. This study highlights the growing threat posed by the polyphagous P. plurivora to walnut cultivation and the sustainable business it fuels in Europe, underscoring the need for integrated management strategies to mitigate its economic and ecological impacts. Full article
(This article belongs to the Special Issue Phytopathogens: Detection and Control)
Show Figures

Figure 1

21 pages, 5155 KB  
Article
Dynamic Degradation of Seed Ropes: Influence of Material Type and Adhesion to Different Soils
by Jiaoyang Duan, Xiang Liu and Baolong Wang
Agronomy 2025, 15(9), 2065; https://doi.org/10.3390/agronomy15092065 - 27 Aug 2025
Viewed by 589
Abstract
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed [...] Read more.
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed encapsulation material in seed rope direct seeding, this study employed a multi-faceted approach to investigate the dynamic degradation of nonwoven fabric and paper material seed ropes under diverse environmental conditions as well as their adhesion properties with Ultisols, Oxisols, and the Substrate in this seeding technique. Firstly, the degradation dynamics were systematically analyzed using image-based surface area detection, breaking force measurement, and organic carbon content analysis. Secondly, the process of seed rope laying was simulated by modeling the sliding friction and adhesion forces during the detachment of soil slurry. The laying motion was simulated considering both sliding friction (during the uniform-speed interaction between the seed rope and soil slurry) and adhesion (during upward detachment), providing crucial reference values for optimizing the rope-breaking mechanism in field applications. The study yielded several significant findings: In natural environments, Wood pulp paper seed rope degrades significantly faster than nonwoven fabric, with a degradation cycle of only 5.68 days in winter (approximately 34% of the degradation cycle of nonwoven fabric) and 4.70 days in summer (approximately 78% of the degradation cycle of nonwoven fabric). The main effect of seed viability on the degradation rate of seed tapes was not statistically significant. The degradation of Wood pulp paper seed rope was relatively predictable in indoor settings but exhibited notable fluctuations outdoors. The peak friction occurred at 35% soil moisture content, with values of 1.22 N for Wood pulp paper seed rope and 2.08 N for nonwoven fabric when interacting with Oxisols; nonwoven ropes demonstrated stronger adhesion than Wood pulp paper seed rope in the Substrate (at moisture contents of 25–30% and 40–45%) and Oxisols (at 35–45% moisture). In Ultisols, nonwoven fabric only showed superior adhesion compared to Wood pulp paper seed rope at 35–45% moisture, while Wood pulp paper seed rope exhibited better adhesion in other moisture ranges. Full article
Show Figures

Figure 1

13 pages, 890 KB  
Article
Analysis of Seepage Failure and Fluidization Mechanisms in Gas-Containing Tectonic Coal Outbursts
by Yan Xie, Feng Bi and Deyi Gao
Appl. Sci. 2025, 15(16), 9117; https://doi.org/10.3390/app15169117 - 19 Aug 2025
Viewed by 328
Abstract
This study investigates the mechanisms of gas-containing tectonic coal outbursts by modeling tectonic coal and gas as analogous to soil and pore water. Analytical methods from soil mechanics, specifically those related to quicksand and seismic liquefaction, are employed to classify these outbursts into [...] Read more.
This study investigates the mechanisms of gas-containing tectonic coal outbursts by modeling tectonic coal and gas as analogous to soil and pore water. Analytical methods from soil mechanics, specifically those related to quicksand and seismic liquefaction, are employed to classify these outbursts into two types: “quicksand type” and “fluidization type.” Their formation mechanisms are elucidated based on a fracture network model and a one-dimensional seepage failure criterion developed for tectonic coal. The findings indicate that “quicksand type” outbursts result from the continuous detachment of tectonic coal slices within the pressure relief zone under gas seepage pressure. The thickness-to-radius ratio of these coal slices increases with rising gas pressure but decreases with increasing coal strength and normal geostress. A larger thickness-to-radius ratio signifies a more pronounced granular characteristic and accelerates the development of coal and gas outbursts. “Fluidization type” outbursts occur when the effective stress drops to zero, resulting in a complete loss of coal strength. These outbursts represent a specific case of “quicksand type” outbursts and can be triggered by vibrations. The susceptibility of tectonic coal to outbursts is attributed to its low mechanical strength and the presence of dense fractures, which increase the acting area of seepage pressure and, consequently, raise the overall seepage force. According to this analysis, the depth of outburst cavities is generally less than the width of the pressure relief zone, which can result in delayed outbursts. This study enhances the understanding of quicksand and seismic liquefaction theories in soil mechanics and provides valuable guidance for predicting and mitigating coal and gas outbursts. Full article
Show Figures

Figure 1

16 pages, 1873 KB  
Article
Peak Soil Erosion Risk in Mixed Forests: A Critical Transition Phase Driven by Moso Bamboo Expansion
by Jie Wang, Xin Wang, Youjin Yan, Liangjie Wang, Haibo Hu, Bing Ma, Hongwei Zhou, Jiacai Liu, Fengling Gan and Yuchuan Fan
Agriculture 2025, 15(16), 1772; https://doi.org/10.3390/agriculture15161772 - 18 Aug 2025
Viewed by 501
Abstract
Driven by climate change and human activities, the expansion of highly invasive moso bamboo (Phyllostachys edulis) into coniferous forests induces a serious ecological imbalance. Its rapidly spreading underground roots significantly alter soil structure, yet the mechanisms by which this expansion affects [...] Read more.
Driven by climate change and human activities, the expansion of highly invasive moso bamboo (Phyllostachys edulis) into coniferous forests induces a serious ecological imbalance. Its rapidly spreading underground roots significantly alter soil structure, yet the mechanisms by which this expansion affects soil detachment capacity (Dc), a key soil erosion parameter, remain unclear. While bamboo expansion modifies soil physicochemical properties and root characteristics, influencing Dc and, consequently, soil erosion resistance, the underlying mechanisms, particularly stage-specific variations, are not thoroughly understood. In this study, we examined Japanese white pine (Pinus parviflora Siebold & Zucc.) forest (CF), moso bamboo–Japanese white pine mixed forest (MF), and moso bamboo forest (BF) as representative stages of bamboo expansion. By integrating laboratory-controlled measurements of soil physicochemical properties and root traits with field-based flume experiments, we comprehensively investigate the effects of moso bamboo expansion into CF on soil detachment capacity. The results of the study can be summarized as follows: (1) Expansion of moso bamboo significantly changed soil physicochemical properties and root characteristics. Soil bulk density was the highest in the MF (1.13 g·cm−3), followed by the CF (1.08 g·cm−3) and BF (1.03 g·cm−3); non-capillary porosity increased significantly with expansion (CF 0.03% to MF 0.10%); and although the stability of aggregates (MWD) increased by 24.5% from the CF to MF, root mass density (RMD) in the MF (0.0048 g·cm−3) was much higher than that in the CF (0.0009 g·cm−3). This intense root competition between forest types, combined with increased macroporosity development, compromised overall soil structural integrity. This weakening may lead to a looser soil structure during the transition phase, thereby increasing erosion risk. (2) There were significant stage differences in Dc: it was significantly higher in the MF (0.034 kg·m−2·s−1) than in the CF (0.023 kg·m−2·s−1) and BF (0.018 kg·m−2·s−1), which revealed that the MF was an erosion-sensitive stage. (3) Our Partial Least Squares Structural Equation Modeling (PLS-SEM) results revealed that soil physicochemical properties (soil moisture content and soil total nitrogen) dominated Dc changes through direct effects (total effect −0.547); in comparison, root properties indirectly affected Dc by modulating soil structure (indirect effect: −0.339). The results of this study reveal the dynamics and mechanisms of Dc changes during bamboo expansion, and for the first time, we identify a distinct Dc peak during the mixed forest transition phase. These findings provide a scientific basis for moso bamboo forest management, soil erosion risk assessment, and optimization of soil and water conservation strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

30 pages, 9947 KB  
Article
Structural Improvement of Sugarcane Harvester for Reducing Field Loss When Harvesting Lodged Canes
by Jiaoli Jiang, Xueting Han, Qingting Liu, Hai Xu, Tao Wu, Jiamo Feng, Xiaoping Zou and Yuejin Li
Agriculture 2025, 15(16), 1759; https://doi.org/10.3390/agriculture15161759 - 16 Aug 2025
Viewed by 694
Abstract
Sugarcane, a key sugar crop in China, is predominantly manually harvested. In the main sugarcane-producing areas of China, typhoons cause canes to become lodged, resulting in high field losses and low harvesting efficiency. This study aimed to reduce these losses by analyzing the [...] Read more.
Sugarcane, a key sugar crop in China, is predominantly manually harvested. In the main sugarcane-producing areas of China, typhoons cause canes to become lodged, resulting in high field losses and low harvesting efficiency. This study aimed to reduce these losses by analyzing the causes: ineffective stalk pickup, transfer, and conveyance. The tests showed the stalk–steel static friction coefficient (SFC) was lower than the stalk–soil SFC. Conventional basecutters use raised patterns to enhance friction, but soil adhesion makes them ineffective, hindering lodged stalk pickup. Bent stalks also struggle to enter butt lift rollers or pass through roller trains, increasing losses. The proposed improvements included adding toothed plates on the cutter discs, optimized disc–roller positioning, and using fewer rollers (one butt lift and one feed roller pair). Theoretical analysis confirmed the toothed plates improved pickup via grabbing force, while using fewer rollers stopped the stalks detaching from and blocking the roller train. A prototype was tested via orthogonal experiments, showing a field loss ratio of 1.21%, a feed rate of 13.09 kg/s, and a billet qualification rate of 95.82% with optimal settings (chopper speed: 390 rpm; 10 stalks/group; roller speed: 230 rpm; ground speed: 1.41 m/s). Field tests achieved 2.0% loss, demonstrating effectiveness for severely lodged cane, a significant improvement over the conventional harvesters (15–20% loss). These findings aid low-loss-level harvester development. Full article
Show Figures

Figure 1

21 pages, 2903 KB  
Article
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Viewed by 609
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the [...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

25 pages, 7171 KB  
Article
CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes
by Jun Xu, Fei Wang and Bryce Vaughan
Geosciences 2025, 15(7), 253; https://doi.org/10.3390/geosciences15070253 - 3 Jul 2025
Viewed by 808
Abstract
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the [...] Read more.
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. Full article
Show Figures

Figure 1

19 pages, 2012 KB  
Article
Exploring the Variability in Rill Detachment Capacity as Influenced by Different Fire Intensities in a Semi-Arid Environment
by Masoumeh Izadpanah Nashroodcoli, Mahmoud Shabanpour, Sepideh Abrishamkesh and Misagh Parhizkar
Forests 2025, 16(7), 1097; https://doi.org/10.3390/f16071097 - 2 Jul 2025
Viewed by 309
Abstract
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc [...] Read more.
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc under controlled laboratory conditions. The research was conducted in the Darestan Forest, Guilan Province, northern Iran, a region characterized by a Mediterranean semi-arid climate. Soil samples were collected from three fire-affected conditions: unburned (NF), low-intensity fire (LF), and high-intensity fire (HF) zones. A total of 225 soil samples were analyzed using flume experiments at five slope gradients and five flow discharges, simulating rill erosion. Soil physical and chemical characteristics were measured, including hydraulic conductivity, organic carbon, sodium content, bulk density, and water repellency. The results showed that HF soils significantly exhibited higher rill detachment capacity (1.43 and 2.26 times the values compared to the LF and NF soils, respectively) and sodium content and lower organic carbon, hydraulic conductivity, and aggregate stability (p < 0.01). Strong correlations were found between Dc and various soil properties, particularly a negative relationship with organic carbon. The multiple linear equation had good accuracy (R2 > 0.78) in predicting rill detachment capacity. The findings of the current study show the significant impact of fire on soil degradation and rill erosion potential. The study advocates an urgent need for effective post-fire land management, erosion control, and the development of sustainable soil restoration strategies. Full article
(This article belongs to the Special Issue Postfire Runoff and Erosion in Forests: Assessment and Management)
Show Figures

Figure 1

19 pages, 6281 KB  
Article
Effects of Different Excitation Parameters on Mechanized Harvesting Performance and Postharvest Quality of First-Crop Organic Goji Berries in Saline–Alkali Land
by Yuchuang Liu, Jiahui Liu, Jian Zhao, Fanyu Wang, Hongye Zhang, Xiaokang Su, Yichun Sun, Jia Liu and Dong Zhao
Agriculture 2025, 15(13), 1377; https://doi.org/10.3390/agriculture15131377 - 27 Jun 2025
Viewed by 432
Abstract
Efficient and low-loss harvesting methods are crucial for preserving the postharvest quality of the first crop of goji berries grown in saline–alkali soils. However, as a brittle horticultural fruit rich in diverse bioactive compounds, goji berries are highly vulnerable to mechanical damage during [...] Read more.
Efficient and low-loss harvesting methods are crucial for preserving the postharvest quality of the first crop of goji berries grown in saline–alkali soils. However, as a brittle horticultural fruit rich in diverse bioactive compounds, goji berries are highly vulnerable to mechanical damage during harvesting, which adversely affects their storability and subsequent processing. To address this challenge, a multi-degree-of-freedom vibration model was developed based on the growth characteristics of first-crop organic goji berry fruit-bearing branches in the Qinghai region. The dynamic response of the branches under various excitation conditions was simulated, and the effects of excitation position, frequency, force amplitude, and phase angle on the fruit detachment rate, impurity rate, and breakage rate were systematically analyzed. Based on both the simulation and experimental results, a response surface methodology (RSM) was employed to optimize the picking parameters. The results of the field experiment showed that under the optimal conditions of vibration excitation in the ripe fruit area, a frequency of 5.7 Hz, an amplitude of excitation force of 0.27 N, a phase angle of 135°, a fruit picking rate of 97.58%, a miscellaneous content rate of 5.12%, and a breakage rate of 7.66% could be realized. The results of this study help to maintain the postharvest quality of first-crop goji berry fruits in saline–alkali land, and also provide a theoretical basis and practical reference for the optimization of first-crop goji berry harvesting equipment. Full article
(This article belongs to the Special Issue Intelligent Agricultural Equipment in Saline Alkali Land)
Show Figures

Figure 1

26 pages, 3234 KB  
Article
Time-Series Deformation and Kinematic Characteristics of a Thaw Slump on the Qinghai-Tibetan Plateau Obtained Using SBAS-InSAR
by Zhenzhen Yang, Wankui Ni, Siyuan Ren, Shuping Zhao, Peng An and Haiman Wang
Remote Sens. 2025, 17(13), 2206; https://doi.org/10.3390/rs17132206 - 26 Jun 2025
Viewed by 658
Abstract
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using [...] Read more.
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using the small baseline subset InSAR (SBAS-InSAR) technique. In addition, a three-dimensional displacement deformation field was constructed with the help of ascending and descending orbit data fusion technology to reveal the transportation characteristics of the thaw slump. The results show that the thaw slump shows an overall trend of “south to north” movement, and that the cumulative surface deformation is mainly characterized by subsidence, with deformation ranging from −199.5 mm to 55.9 mm. The deformation shows significant spatial heterogeneity, with its magnitudes generally decreasing from the headwall area (southern part) towards the depositional toe (northern part). In addition, the multifactorial driving mechanism of the thaw slump was further explored by combining geological investigation and geotechnical tests. The analysis reveals that the thaw slump’s evolution is primarily driven by temperature, with precipitation acting as a conditional co-factor, its influence being modulated by the slump’s developmental stage and local soil properties. The active layer thickness constitutes the basic geological condition of instability, and its spatial heterogeneity contributes to differential settlement patterns. Freeze–thaw cycles affect the shear strength of soils in the permafrost zone through multiple pathways, and thus trigger the occurrence of thaw slumps. Unlike single sudden landslides in non-permafrost zones, thaw slump is a continuous development process that occurs until the ice content is obviously reduced or disappears in the lower part. This study systematically elucidates the spatiotemporal deformation patterns and driving mechanisms of an active-layer detachment thaw slump by integrating multi-temporal InSAR remote sensing with geological and geotechnical data, offering valuable insights for understanding and monitoring thaw-induced hazards in permafrost regions. Full article
Show Figures

Figure 1

17 pages, 4594 KB  
Article
Optimizing Mechanical and Microstructural Properties of Sandy Clayey Silt Stabilized with Lignin Fiber and Cement Synergy
by Shuangfeng Guo, Xiaoyi Jiang, Zhihua Zhang, Qingrui Lu, Zhe Wang and Kai Zhao
Polymers 2025, 17(11), 1584; https://doi.org/10.3390/polym17111584 - 5 Jun 2025
Viewed by 718
Abstract
Soil treatment with natural materials is an effective method to improve the mechanical properties of the original soil for recycling engineering construction. This research aims to evaluate the synergistic effects of lignin fiber and cement on sandy clayey silt stabilization. A factorial experimental [...] Read more.
Soil treatment with natural materials is an effective method to improve the mechanical properties of the original soil for recycling engineering construction. This research aims to evaluate the synergistic effects of lignin fiber and cement on sandy clayey silt stabilization. A factorial experimental design was employed, testing five lignin fiber contents (0%, 2%, 4%, 6%, and 8%) and three cement contents (0%, 2%, and 4%) across four curing periods (1, 7, 14, and 30 days). Unconfined compressive strength (UCS) tests were conducted in triplicate for each combination (total *n* = 180 samples), and failure surfaces were analyzed using Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM-EDX). Results indicate a critical lignin fiber threshold of 4%, beyond which UCS decreased by 15–20% due to increased void ratios. Statistical analysis (ANOVA, *p* < 0.05) confirmed significant interactions between lignin fiber, cement content, and curing time. For instance, 4% lignin fiber and 4% cement yielded a 139% UCS increase after 30-day curing compared to untreated soil. SEM-EDX revealed that lignin fiber networks enhance ductility by bridging soil particles, while cement hydration reduced particle detachment. These findings provide a quantitative framework for optimizing lignin fiber-cement stabilization in sustainable geotechnical applications. Full article
Show Figures

Figure 1

14 pages, 11614 KB  
Article
Beneficial Soil Fungi Isolated from Tropical Fruit Crop Systems for Enhancing Yield and Growth in Dragon Fruit in Ecuador
by Yoansy Garcia, Danilo Valdez, Daniel Ponce de Leon, Hypatia Urjilez, Jaime Santos-Pinargote and Daniel Mancero-Castillo
Int. J. Plant Biol. 2025, 16(2), 62; https://doi.org/10.3390/ijpb16020062 - 5 Jun 2025
Viewed by 720
Abstract
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial [...] Read more.
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial communities, and commercial isolates often show limited adaptation to local conditions. This study aimed to identify native beneficial soil fungi associated with dragon fruit cultivation on the Ecuadorian coast and evaluate their effect on commercial production. Fungal isolates from four dragon fruit plantations were identified using microscopy and genetic sequencing (ITS, EF-1α, and beta-tubulin). The selected fungi were isolates closely related to Talaromyces tumuli, Trichoderma asperellum, and Paecilomyces lagunculariae. All isolates were tested for pathogenicity using detached cladode assays at the laboratory, and non-phytopathogenic monomorphic cultures were further evaluated in the field under a randomized complete block design consisting of T. asperellum, Talaromyces tumuli, a combination of both, and a water control. The combination of T. asperellum and Talaromyces spp. showed a favorable trend in terms of the plants’ vegetative development. However, inoculating Talaromyces tumuli into the commercial plants exhibited a slow response during the first 20 days of the field evaluations. Still, it resulted in a significant increase in the fruit’s diameter and weight, with increases of 88.23% and 67.64%, respectively, compared to those in the control. T. asperellum presented a lower number of fruits per plant, although it showed an increase in fruit diameter and weight. In conclusion, using the native beneficial fungi T. asperellum and T. tumuli contributes positively to the dragon fruit production system. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

21 pages, 2274 KB  
Article
Diversity of Binucleate Rhizoctonia spp. and Population Structure of AG-A in Serbia
by Mira Vojvodić, Brankica Pešić, Petar Mitrović, Ana Marjanović Jeromela, Ivana Vico and Aleksandra Bulajić
J. Fungi 2025, 11(6), 410; https://doi.org/10.3390/jof11060410 - 26 May 2025
Cited by 1 | Viewed by 753
Abstract
From 2013 to 2021, 112 binucleate Rhizoctonia spp. (BNR) isolates were obtained from the strawberry, tomato, pepper, bean, apple, cherry, meadow grass, and soil previously cropped with strawberries from 16 locations in Serbia. Morphological and molecular analyses (ITS, LSU rDNA, RPB2, tef-1α, [...] Read more.
From 2013 to 2021, 112 binucleate Rhizoctonia spp. (BNR) isolates were obtained from the strawberry, tomato, pepper, bean, apple, cherry, meadow grass, and soil previously cropped with strawberries from 16 locations in Serbia. Morphological and molecular analyses (ITS, LSU rDNA, RPB2, tef-1α, and atp6) confirmed infections caused by four BNR AGs: AG-G on the cherry (globally new host), bean, and tomato; AG-U on meadow grass (globally new host) and apple, AG-A on the strawberry (the most frequently isolated), and AG-F on pepper. ITS sequence analysis revealed 24 haplotypes within the worldwide population of BNR AG-A, with Serbian isolates belonging to nine. The aggressiveness of AG-A (ten isolates), AG-G (three isolates), AG-F (one isolate), and AG-U (two isolates) was tested on seedlings of 14 hosts from Poaceae, Brassicaceae, Solanaceae, Asteraceae, Fabaceae, Cucurbitaceae, Apiaceae, and Chenopodiaceae, and on detached leaf petioles of the strawberry, tomato, sunflower, and bean, as well as on two pea cultivars. Sunflower and sugar beet were the most susceptible, with AG-G being the most aggressive and AG-A the least aggressive. AG-A could not infect cabbage, while at least one isolate of each remaining AG infected all tested hosts. The consistency between seedling and petiole tests highlights the latter as a rapid method for evaluating the pathogenicity and aggressiveness of BNR isolates. Full article
Show Figures

Figure 1

Back to TopTop