Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = solar sail

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5239 KB  
Article
Hybrid Reflection/Transmission Diffraction Grating Solar Sail
by Ryan M. Crum, Prateek R. Srivastava, Qing X. Wang, Tasso R. M. Sales and Grover A. Swartzlander
Photonics 2025, 12(10), 972; https://doi.org/10.3390/photonics12100972 - 30 Sep 2025
Viewed by 257
Abstract
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side [...] Read more.
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side facets. Predictions of radiation pressure are compared for analytical geometrical optics and numerical finite difference time domain approaches. Our calculations across a spectral irradiance band from 0.5 to 3 μm suggest the transverse force in a sun facing configuration reaches 48% when the refractive index of the sail material is 1.5. Diffraction measurements at a representative optical wavelength of 633 nm support our predictions. Full article
(This article belongs to the Special Issue Diffractive Optics and Its Emerging Applications)
Show Figures

Figure 1

22 pages, 3010 KB  
Article
A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail
by Yu Hu, Hao Liu, Enze Qiao and Wujun Chen
Aerospace 2025, 12(9), 836; https://doi.org/10.3390/aerospace12090836 - 17 Sep 2025
Viewed by 293
Abstract
Large-area membrane spacecraft, such as solar sails, must be tightly stowed before launch. However, excessive folding readily induces plastic creases that impede full on-orbit deployment and degrade membrane surface accuracy. To overcome this challenge, this study aims to quantify the mechanical response of [...] Read more.
Large-area membrane spacecraft, such as solar sails, must be tightly stowed before launch. However, excessive folding readily induces plastic creases that impede full on-orbit deployment and degrade membrane surface accuracy. To overcome this challenge, this study aims to quantify the mechanical response of Kapton films during folding and to establish a reliable welding process for post-fold sail membranes. Based on the theory of linear elastic engineering, an S-shaped folding model was theoretically simplified to obtain the relationship between the rebound force P of adjacent contact thin films and the thin-film spacing h. Then, the Kapton film folding process was numerically simulated based on the implicit static method by using ABAQUS. The stress–strain curves and mechanical parameters of the thin films measured through uniaxial tensile tests are applied to theoretical and numerical results. It is found that the P-h curves obtained by the theoretical, numerical, and experimental method have good consistency. Step-loaded creep tests show that, after 6 h, the mean spacing reductions Δh are 0.43 mm for 50 µm thin films and 1.05 mm for 125 µm thin films, matching simulation results within 3%. Finally, uniaxial tensile tests are conducted on the welded thin films to measure the strength of the thin-film welds under different welding temperatures and pressures. The tensile force and elongation required to eliminate weld wrinkles are also measured to explore the welding connection of Kapton film. Further, for 50 µm thin films with a 10 mm weld width, eliminating welding-induced wrinkles requires a tensile force of 9.61 N and an elongation of 0.43%. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 6099 KB  
Article
Preliminary Structural System Design for Planetary Sunshade
by Joel Town, Nishanth Pushparaj and Chantal Cappelletti
Aerospace 2025, 12(9), 785; https://doi.org/10.3390/aerospace12090785 - 29 Aug 2025
Viewed by 707
Abstract
As global temperatures continue to rise despite international mitigation efforts, geoengineering has emerged as a potential avenue for climate intervention. One of the most promising and ambitious concepts is the Planetary sunshade—a large-scale structure located at Lagrange Point L1, designed to reduce [...] Read more.
As global temperatures continue to rise despite international mitigation efforts, geoengineering has emerged as a potential avenue for climate intervention. One of the most promising and ambitious concepts is the Planetary sunshade—a large-scale structure located at Lagrange Point L1, designed to reduce solar irradiance by physically blocking or redirecting incoming photons. This paper presents a structural design solution for this ambitious system, focusing on deployable mechanisms, frame architecture, and sail configurations that enable rapid mass production and deployment of solar sails components. The design process follows the European Cooperation for Space Standardization (ECSS) methodology through its early-phase stages, utilizing weighted decision matrices for concept selection and material evaluation. Finite element analysis (FEA) was used to validate structural integrity under Atlas V launch and operational conditions. The final design features a 1297 m2 sail composed of four triangular segments, deployed via booms and stowed using a vertical folding pattern around a central spool. The booms incorporate arch-shaped cross-sections to enhance stiffness. This configuration achieves a radius expansion ratio of 25 and a sail efficiency factor of 0.5, ensuring survivability under Atlas V launch loads. Full article
(This article belongs to the Special Issue Space System Design)
Show Figures

Figure 1

18 pages, 2540 KB  
Article
Using Solar Sails to Rendezvous with Asteroid 2024 YR4
by Alessandro A. Quarta
Technologies 2025, 13(8), 373; https://doi.org/10.3390/technologies13080373 - 20 Aug 2025
Viewed by 540
Abstract
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino [...] Read more.
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino Scale 3 for three weeks in early 2025, before being downgraded to zero at the end of February. In this study, rapid Earth-to-asteroid transfers are analyzed by solving a typical optimal control problem, in which the thrust vector generated by the solar sail is modeled using the optical force approach. Numerical simulations are carried out assuming a low-to-medium performance solar sail, considering both a simplified orbit-to-orbit transfer and a more accurate scenario that incorporates the actual ephemerides of the celestial bodies. The numerical results indicate that a medium-performance solar sail can reach asteroid 2024 YR4, achieving the global minimum flight time and arriving before its perihelion passage in late December 2032. Full article
Show Figures

Figure 1

23 pages, 4240 KB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 - 7 Aug 2025
Cited by 1 | Viewed by 475
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

19 pages, 4585 KB  
Article
E-Sail Three-Dimensional Interplanetary Transfer with Fixed Pitch Angle
by Alessandro A. Quarta
Appl. Sci. 2025, 15(9), 4661; https://doi.org/10.3390/app15094661 - 23 Apr 2025
Cited by 1 | Viewed by 461
Abstract
The electric solar wind sail (E-sail) is a propellantless propulsion system concept based on the use of a system of very long and thin conducting tethers, which create an artificial electric field that is able to deflect the solar-wind-charged particles in order to [...] Read more.
The electric solar wind sail (E-sail) is a propellantless propulsion system concept based on the use of a system of very long and thin conducting tethers, which create an artificial electric field that is able to deflect the solar-wind-charged particles in order to generate a net propulsive acceleration outside the planetary magnetospheres. The radial rig of conducting tethers is deployed and stretched by rotating the spacecraft about an axis perpendicular to the nominal plane of the sail. This rapid rotation complicates the thrust vectoring of the E-sail-based spacecraft, which is achieved by changing the orientation of the sail nominal plane with respect to an orbital reference frame. For this reason, some interesting steering techniques have recently been proposed which are based, for example, on maintaining the inertial direction of the spacecraft spin axis or on limiting the excursion of the so-called pitch angle, which is defined as the angle formed by the unit vector perpendicular to the sail nominal plane with the (radial) direction of propagation of the solar wind. In this paper, a different control strategy based on maintaining the pitch angle value constant during a typical interplanetary flight is investigated. In this highly constrained configuration, the spacecraft spin axis can rotate freely around the radial direction, performing a sort of conical motion around the Sun-vehicle line. Considering an interplanetary Earth–Venus or Earth–Mars mission scenario, the flight performance is here compared with a typical unconstrained optimal transfer, aiming to quantify the flight time variation due to the pitch angle value constraint. In this regard, simulation results indicate that the proposed control law provides a rather limited (percentage) performance variation in the case where the reference propulsive acceleration of the E-sail-based spacecraft is compatible with a medium- or low-performance propellantless propulsion system. Full article
(This article belongs to the Special Issue Novel Approaches and Trends in Aerospace Control Systems)
Show Figures

Figure 1

22 pages, 3396 KB  
Article
Augmented Hohmann Transfer for Spacecraft with Continuous-Thrust Propulsion System
by Alessandro A. Quarta
Aerospace 2025, 12(4), 307; https://doi.org/10.3390/aerospace12040307 - 3 Apr 2025
Viewed by 658
Abstract
Hohmann transfer is the classical approach used in astrodynamics to analyze the optimal bi-impulsive transfer, from the point of view of the total velocity change, between two circular, coplanar orbits of assigned radius. The Hohmann transfer is characterized by an elliptical trajectory tangent [...] Read more.
Hohmann transfer is the classical approach used in astrodynamics to analyze the optimal bi-impulsive transfer, from the point of view of the total velocity change, between two circular, coplanar orbits of assigned radius. The Hohmann transfer is characterized by an elliptical trajectory tangent to both circular orbits at the points where the transfer begins or ends and can be used to simply model, in a Kepler problem, a possible optimal transfer of a spacecraft equipped with a high-thrust propulsion system. Recent literature has proposed a sort of extension of the Hohmann transfer to a heliocentric mission scenario, where the total velocity change is reduced compared to the classical result by employing a photonic solar sail operating along the deep-space transfer trajectory. The study of this so-called augmented Hohmann transfer, where the spacecraft uses both two tangential impulses (one at the beginning and one at the end of the flight) provided by a high-thrust propulsion system and the propulsive acceleration (during the flight) provided by a low-thrust propulsion system, is extended in this paper by considering a more general case where the spacecraft moves around a generic primary body and uses, along the transfer, a freely orientable propulsive acceleration vector with constant and assigned magnitude. This scenario is consistent, for example, with the use of a typical electric thruster instead of the photonic solar sail considered in recent literature. In particular, the paper studies the impact of the continuous-thrust propulsion system on the transfer performance between the two circular orbits, analyzing the variation of the total velocity change as a function of the propulsive acceleration magnitude. The procedure, which uses an optimal approach to performance estimation, can be used both in a heliocentric and planetocentric mission scenario and can also be employed to analyze the performance of a spacecraft equipped with a multimode propulsion system. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

25 pages, 5912 KB  
Article
Exploration of Earth’s Magnetosphere Using CubeSats with Electric Propulsion
by Alessandro A. Quarta
Aerospace 2025, 12(3), 211; https://doi.org/10.3390/aerospace12030211 - 6 Mar 2025
Cited by 1 | Viewed by 915
Abstract
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a [...] Read more.
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a challenging mission scenario due to the alignment of the magnetotail direction with the Sun–Earth line, which requires a continuous rotation of the apse line of the spacecraft’s geocentric orbit. This aspect makes the mission scenario particularly suitable for space vehicles equipped with propellantless propulsion systems, such as the classic solar sails which convert the solar radiation pressure into propulsive acceleration without propellant expenditure. However, a continuous rotation of the apse line of the osculating orbit can be achieved using a more conventional solar electric thruster, which introduces an additional constraint on the duration of the scientific mission due to the finite mass of the propellant stored on board the spacecraft. This paper analyzes the potential of a typical CubeSat equipped with a commercial miniaturized electric thruster in performing the rotation of the apse line of a geocentric orbit suitable for the in situ observation of the Earth’s magnetotail. The paper also analyzes the impact of the size of a thruster array on the flight performance for an assigned value of the payload mass and the science orbit’s characteristics. In particular, this work illustrates the optimal guidance laws that allow us to maximize the duration of the scientific mission for an assigned CubeSat’s configuration. In this sense, this paper expands the literature regarding the study of this interesting mission scenario by extending the study to conventional propulsion systems that use a propellant to provide a continuous and steerable thrust vector. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 3069 KB  
Article
An Initial Trajectory Design for the Multi-Target Exploration of the Electric Sail
by Zichen Fan, Fei Cheng, Wenlong Li, Guiqi Pan, Mingying Huo and Naiming Qi
Aerospace 2025, 12(3), 196; https://doi.org/10.3390/aerospace12030196 - 28 Feb 2025
Viewed by 661
Abstract
The electric sail (E-sail), as an emerging propulsion system with an infinite specific impulse, is particularly suitable for ultra-long-distance multi-target deep-space exploration missions. If multiple gravity assists are considered during the exploration process, it can effectively improve the exploration efficiency of the E-sail. [...] Read more.
The electric sail (E-sail), as an emerging propulsion system with an infinite specific impulse, is particularly suitable for ultra-long-distance multi-target deep-space exploration missions. If multiple gravity assists are considered during the exploration process, it can effectively improve the exploration efficiency of the E-sail. This paper proposes a fast optimization algorithm for deep-space multi-target exploration trajectories for the E-sail, which achieves the exploration of multiple celestial bodies and solar-system boundaries in one flight, and introduces a gravity assist to improve the flight speed of the E-sail during the exploration process. By comparing simulation examples under different conditions, the effectiveness of the algorithm proposed in this paper has been demonstrated. This is of great significance for the initial rapid design of complex deep-space exploration missions such as the E-sail multi-target exploration. Full article
Show Figures

Figure 1

19 pages, 6930 KB  
Article
Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers
by Marco Bassetto, Giovanni Mengali and Alessandro A. Quarta
Appl. Sci. 2024, 14(22), 10463; https://doi.org/10.3390/app142210463 - 13 Nov 2024
Cited by 1 | Viewed by 1239
Abstract
A refractive sail is a special type of solar sail concept, whose membrane exposed to the Sun’s rays is covered with an advanced engineered film made of micro-prisms. Unlike the well-known reflective solar sail, an ideally flat refractive sail is able to generate [...] Read more.
A refractive sail is a special type of solar sail concept, whose membrane exposed to the Sun’s rays is covered with an advanced engineered film made of micro-prisms. Unlike the well-known reflective solar sail, an ideally flat refractive sail is able to generate a nonzero thrust component along the sail’s nominal plane even when the Sun’s rays strike that plane perpendicularly, that is, when the solar sail attitude is Sun-facing. This particular property of the refractive sail allows heliocentric orbital transfers between orbits with different values of the semilatus rectum while maintaining a Sun-facing attitude throughout the duration of the flight. In this case, the sail control is achieved by rotating the structure around the Sun–spacecraft line, thus reducing the size of the control vector to a single (scalar) parameter. A gradient-index solar sail (GIS) is a special type of refractive sail, in which the membrane film design is optimized though a transformation optics-based method. In this case, the membrane film is designed to achieve a desired refractive index distribution with the aid of a waveguide array to increase the sail efficiency. This paper analyzes the optimal transfer performance of a GIS with a Sun-facing attitude (SFGIS) in a series of typical heliocentric mission scenarios. In addition, this paper studies the attitude control of the Sun-facing GIS using a simplified mathematical model, in order to investigate the effective ability of the solar sail to follow the (optimal) variation law of the rotation angle around the radial direction. Full article
Show Figures

Figure 1

16 pages, 2589 KB  
Article
Three-Dimensional Rapid Orbit Transfer of Diffractive Sail with a Littrow Transmission Grating-Propelled Spacecraft
by Alessandro A. Quarta
Aerospace 2024, 11(11), 925; https://doi.org/10.3390/aerospace11110925 - 8 Nov 2024
Viewed by 1035
Abstract
A diffractive solar sail is an elegant concept for a propellantless spacecraft propulsion system that uses a large, thin, lightweight surface covered with a metamaterial film to convert solar radiation pressure into a net propulsive acceleration. The latter can be used to perform [...] Read more.
A diffractive solar sail is an elegant concept for a propellantless spacecraft propulsion system that uses a large, thin, lightweight surface covered with a metamaterial film to convert solar radiation pressure into a net propulsive acceleration. The latter can be used to perform a typical orbit transfer both in a heliocentric and in a planetocentric mission scenario. In this sense, the diffractive sail, proposed by Swartzlander a few years ago, can be considered a sort of evolution of the more conventional reflective solar sail, which generally uses a metallized film to reflect the incident photons, studied in the scientific literature starting from the pioneering works of Tsander and Tsiolkovsky in the first decades of the last century. In the context of a diffractive sail, the use of a metamaterial film with a Littrow transmission grating allows for the propulsive acceleration magnitude to be reduced to zero (and then, the spacecraft to be inserted in a coasting arc during the transfer) without resorting to a sail attitude that is almost edgewise to the Sun, as in the case of a classical reflective solar sail. The aim of this work is to study the optimal (i.e., the rapid) transfer performance of a spacecraft propelled by a diffractive sail with a Littrow transmission grating (DSLT) in a three-dimensional heliocentric mission scenario, in which the space vehicle transfers between two assigned Keplerian orbits. Accordingly, this paper extends and generalizes the results recently obtained by the author in the context of a simplified, two-dimensional, heliocentric mission scenario. In particular, this work illustrates an analytical model of the thrust vector that can be used to study the performance of a DSLT-based spacecraft in a three-dimensional optimization context. The simplified thrust model is employed to simulate the rapid transfer in a set of heliocentric mission scenarios as a typical interplanetary transfer toward a terrestrial planet and a rendezvous with a periodic comet. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers (2nd Edition))
Show Figures

Figure 1

25 pages, 3319 KB  
Article
Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail
by Luis Cormier, Tasneem Yousif, Samuel Thompson, Angel Arcia Gil, Nishanth Pushparaj, Paul Blunt and Chantal Cappelletti
Aerospace 2024, 11(11), 901; https://doi.org/10.3390/aerospace11110901 - 31 Oct 2024
Cited by 1 | Viewed by 1802
Abstract
The JamSail mission is an educational CubeSat aiming to design, develop, and demonstrate two new technologies on a small satellite, tentatively scheduled for launch no earlier than 2026. When launched, JamSail will demonstrate the functionality of two new payloads in low Earth orbit. [...] Read more.
The JamSail mission is an educational CubeSat aiming to design, develop, and demonstrate two new technologies on a small satellite, tentatively scheduled for launch no earlier than 2026. When launched, JamSail will demonstrate the functionality of two new payloads in low Earth orbit. First, a flexible, low-cost GNSS interference detection payload capable of characterising and geolocating the sources of radio interference regarding the E1/L1 and E5a/L5 bands will be demonstrated on a global scale. The data produced by this payload can be used to target anti-interference actions in specific regions and aid in the design of future GNSS receivers to better mitigate specific types of interference. If successful, the flexibility of the payload will allow it to be remotely reconfigured in orbit to investigate additional uses of the technology, including a potential demonstration of GNSS reflectometry aboard a CubeSat. Second, a compact refractive solar sail will be deployed that is capable of adjusting the orbit of JamSail in the absence of an on-board propellant. This sail will be used to gradually raise the semi-major axis of JamSail over the span of the mission before being used to perform rapid passive deorbit near the end-of-life juncture. Additionally, self-stabilising optical elements within the sail will be used to demonstrate a novel method of performing attitude control. JamSail is currently in the testing phase, and the payloads will continue to be refined until the end of 2024. This paper discusses the key objectives of the JamSail mission, the design of the payloads, the expected outcomes of the mission, and future opportunities regarding the technologies as a whole. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

22 pages, 12585 KB  
Article
Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine
by Zhenzhong Wang, Xiaolei Wang, Shunqi Yuan, Xi Ren, Changxu Yang, Shujun Han, Yuexin Qi, Duanyi Li and Jingang Liu
Polymers 2024, 16(19), 2845; https://doi.org/10.3390/polym16192845 - 9 Oct 2024
Cited by 3 | Viewed by 1614
Abstract
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite [...] Read more.
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite difficult to achieve both high optical transparency and AO resistance and maintain the intrinsic thermal stability of the PI films at the same time. In the current work, we aimed to achieve the target by using the copolymerization methodology using the fluorinated dianhydride 9,9-bis(trifluoromethyl)xanthene-2,3,6,7-tetracarboxylic dianhydride (6FCDA), the fluorinated diamine 2,2-bis [4-(4-aminophenoxy)phenyl]hexafluoropropane (BDAF) and the polyhedral oligomeric silsesquioxane (POSS)-containing diamine N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS) as the starting materials. The fluoro-containing monomers were used to endow the PI films with good optical and thermal properties, while the silicon-containing monomer was used to improve the AO resistance of the afforded PI films. Thus, the 6FCDA-based PI copolymers, including 6FCPI-1, 6FCPI-2 and 6FCPI-3, were prepared using a two-step chemical imidization procedure, respectively. For comparison, the analogous PIs, including 6FPI-1, 6FPI-2 and 6FPI-3, were correspondingly developed according to the same procedure except that 6FCDA was replaced by 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Two referenced PI homopolymers were prepared from BDAF and 6FDA (PI-ref1) and 6FCDA (PI-ref2), respectively. The experimental results indicated that a good balance among thermal stability, optical transparency, and AO resistance was achieved by the 6FCDA-PI films. For example, the 6FCDA-PI films exhibited good thermal stability with glass transition temperatures (Tg) up to 297.3 °C, good optical transparency with an optical transmittance at a wavelength of 450 nm (T450) higher than 62% and good AO resistance with the erosion yield (Ey) as low as 1.7 × 10−25 cm3/atom at an AO irradiation fluence of 5.0 × 1020 atoms/cm2. The developed 6FCDA-PI films might find various applications in aerospace as solar sails, thermal control blankets, optical components and other functional materials. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

17 pages, 1325 KB  
Article
Thrust Model and Trajectory Design of an Interplanetary CubeSat with a Hybrid Propulsion System
by Alessandro A. Quarta
Actuators 2024, 13(10), 384; https://doi.org/10.3390/act13100384 - 1 Oct 2024
Cited by 3 | Viewed by 1547
Abstract
This paper analyzes the performance of an interplanetary CubeSat equipped with a hybrid propulsion system (HPS), which combines two different types of thrusters in the same deep space vehicle, in a heliocentric transfer between two assigned (Keplerian) orbits. More precisely, the propulsion system [...] Read more.
This paper analyzes the performance of an interplanetary CubeSat equipped with a hybrid propulsion system (HPS), which combines two different types of thrusters in the same deep space vehicle, in a heliocentric transfer between two assigned (Keplerian) orbits. More precisely, the propulsion system of the CubeSat considered in this work consists of a combination of a (low-performance) photonic solar sail and a more conventional solar electric thruster. In particular, the characteristics of the solar electric thruster are modeled using a recent mathematical approach that describes the performance of the miniaturized engine that will be installed on board the proposed ESA’s M-ARGO CubeSat. The latter will hopefully be the first interplanetary CubeSat to complete a heliocentric transfer towards a near-Earth asteroid using its own propulsion system. In order to simplify the design of the CubeSat attitude control subsystem, we assume that the orientation of the photonic solar sail is kept Sun-facing, i.e., the sail reference plane is perpendicular to the Sun-CubeSat line. That specific condition can be obtained, passively, by using an appropriate design of the shape of the sail reflective surface. The performance of an HPS-based CubeSat is analyzed by optimizing the transfer trajectory in a three-dimensional heliocentric transfer between two closed orbits of given characteristics. In particular, the CubeSat transfer towards the near-Earth asteroid 99942 Apophis is studied in detail. Full article
(This article belongs to the Special Issue Dynamics and Control of Aerospace Systems)
Show Figures

Figure 1

16 pages, 1450 KB  
Article
Venus Magnetotail Long-Term Sensing Using Solar Sails
by Alessandro A. Quarta
Appl. Sci. 2024, 14(17), 8016; https://doi.org/10.3390/app14178016 - 7 Sep 2024
Cited by 1 | Viewed by 1298
Abstract
Propellantless propulsion systems, such as the well-known photonic solar sails that provide thrust by exploiting the solar radiation pressure, theoretically allow for extremely complex space missions that require a high value of velocity variation to be carried out. Such challenging space missions typically [...] Read more.
Propellantless propulsion systems, such as the well-known photonic solar sails that provide thrust by exploiting the solar radiation pressure, theoretically allow for extremely complex space missions that require a high value of velocity variation to be carried out. Such challenging space missions typically need the application of continuous thrust for a very long period of time, compared to the classic operational life of a space vehicle equipped with a more conventional propulsion system as, for example, an electric thruster. In this context, an interesting application of this propellantless thruster consists of using the solar sail-induced acceleration to artificially precess the apse line of a planetocentric elliptic orbit. This specific mission application was thoroughly investigated about twenty years ago in the context of the GeoSail Technology Reference Study, which analyzed the potential use of a spacecraft equipped with a small solar sail to perform an in situ study of the Earth’s upper magnetosphere. Taking inspiration from the GeoSail concept, this study analyzes the performance of a solar sail-based spacecraft in (artificially) precessing the apse line of a high elliptic orbit around Venus with the aim of exploring the planet’s induced magnetotail. In particular, during flight, the solar sail orientation is assumed to be Sun-facing, and the required thruster’s performance is evaluated as a function of the elliptic orbit’s characteristics by using both a simplified mathematical model of the spacecraft’s planetocentric dynamics and an approximate analytical approach. Numerical results show that a medium–low-performance sail is able to artificially precess the apse line of a Venus-centered orbit in order to ensure the long-term sensing of the planet’s induced magnetotail. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

Back to TopTop