Preliminary Structural System Design for Planetary Sunshade
Abstract
1. Introduction
2. Methodology
3. Design
3.1. Requirements Definitions
- Sail efficiency (Q) shall be less than or equal to 0.5.
- 2.
- A single sail shall be no smaller than 196 m2.
- 3.
- A single sail should have an estimated lifespan of 30 years.
- 4.
- The areal density of a single sail should be small enough to allow the shade to operate near the modified Lagrange point, L1*, where the gravitational and radiation pressure forces are in equilibrium.
- 5.
- The sail should stay at its correct position within the constellation.
- 6.
- The sail could be capable of reaching L1* from Earth orbit under its own propulsion.
- 7.
- The area blocked by the shade shall be reversible.
- 8.
- The sail deployer shall have a radius expansion ratio of 5 or greater.
- 9.
- The bus interface shall withstand axial and lateral forces caused during launch on an Atlas V (see Figure 3).
- 10.
- The bus interface shall be able to connect with Atlas V’s standard payload adapter.
3.2. Frame Analysis and Design
3.3. Sail Design
3.4. Deployment Mechanism
- A motor rotates the boom’s spool, pushing the booms outward through a curved hole which changes the boom’s cross-section.
- The boom spool continues to rotate and push the booms outwards, which in turn pulls the sail.
- This results in the rotation of the sail spool and the unfolding of the sail.
- The booms continue to deploy until the sail is fully unfolded and pulled taught.
3.5. Weight Breakdown
3.6. Final Design Overview
3.7. Scale Model Prototype
4. Discussion
4.1. Assumptions Made During the Project
4.2. The Design
4.3. The Scale Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FEA | Finite Element Analysis |
ECSS | European Cooperation for Space Standardization |
SAI | Stratospheric Aerosol Injection |
L1 | Lagrange Point 1 |
CFRP | Carbon Fiber-Reinforced Polymer |
PLA | Polylactic Acid |
ESA | European Space Agency |
OADCS | Orbit and Attitude Determination and Control Systems |
EPS | Electrical Power System |
TTC | Telemetry, Tracking and Command |
OBC | On-Board Computer |
References
- United Nations Environment Programme. Emissions Gap Report 2024; United Nations Environment Programme: Nairobi, Kenya, 2024. [Google Scholar]
- Sánchez, J.-P.; McInnes, C.R.; Marchis, F. Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point. PLoS ONE 2015, 10, e0136648. [Google Scholar] [CrossRef] [PubMed]
- Azriel, M.; Amrouni-Keiling, A.; Cappaert, J.; DeLatte, D.; Henry, A.; Kovács, R.; Platzer, P.; Wong, N.; Welch, C. Weighing Geoengineering: An Interdisciplinary Assessment of the Space-Based Solar Shield. Int. J. Clim. Change Impacts Responses 2013, 4, 103–117. [Google Scholar] [CrossRef]
- Planetary Sunshade Foundation. State of Space Based Solar Radiation Modification; Planetary Sunshade Foundation: Los Angeles, CA, USA, 2023; pp. 4–9. [Google Scholar]
- Fix, S. Feasibility Study of a Sunshade in the Vicinity of the Sun Earth L1 Lagrange Poin; University of Stuttgart, Planetary Sunshade Foundation: Stuttgart, Germany, 2021. [Google Scholar]
- Fuglesang, C.; de Herreros Miciano, M.G. Realistic sunshade system at L1 for global temperature control. Acta Astronaut. 2021, 186, 269–279. [Google Scholar] [CrossRef]
- Angel, R. Feasibility of Cooling the Earth with a Cloud of Small Spacecraft near the Inner Lagrange Point (L1). Proc. Natl. Acad. Sci. USA 2006, 103, 17184–17189. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Matonti, C.L.; Cappelletti, C.; Chesley, B.; Fuglesang, C.; Governale, G.; Pushparaj, N.; Romano, M.; Tibert, G.; Wilk, L. Planetary sunshade for solar geoengineering: Preliminary design of a precursor system and mission. Acta Astronaut. 2025, 235, 452–462. [Google Scholar] [CrossRef]
- Matonti, C.L.; Coco, M.; Governale, G.; Wilk, L.; Shimazaki, T.; Krantz, E.; Pushparaj, N.; Mao, H.; Tibert, G.; Cappelletti, C.; et al. A Roadmap toward a Planetary Sunshade for Space-based Solar Geoengineering. In Proceedings of the 75th International Astronautical Congress, Milan, Italy, 14 October 2024. [Google Scholar]
- Branz, F.; Cappelletti, C.; Ricco, A.J.; Hines, J. (Eds.) Next Generation CubeSats and SmallSats: Enabling Technologies, Missions, and Markets; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Spradling, J. Artist’s Rendition of Lightsail 2 in Earth Orbit. Available online: https://www.planetary.org/space-images/ls2-earth (accessed on 25 August 2025).
- European Space Agency. European Cooperation for Space Standardization. Available online: https://ecss.nl/ (accessed on 15 April 2025).
- ECSS-M-ST-10C Rev.1; Project Planning and Implementation. ECSS Secretariat ESA-ESTEC: Noordwijk, The Netherlands. Available online: https://ecss.nl/standard/ecss-m-st-10c-rev-1-project-planning-and-implementation/ (accessed on 25 August 2025).
- Tsuda, Y.; Mori, O.; Funase, R.; Sawada, H.; Yamamoto, T.; Saiki, T.; Endo, T.; Yonekura, K.; Hoshino, H.; Kawaguchi, J.I. Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 2013, 82, 183–188. [Google Scholar] [CrossRef]
- Chen, T.; Bilal, O.R.; Lang, R.; Daraio, C.; Shea, K. Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators. Phys. Rev. Appl. 2019, 11, 064069. [Google Scholar] [CrossRef]
- United Launch Alliance. Atlas V Launch Services, User’s Guide; United Launch Alliance: Centennial, CO, USA, 2010. [Google Scholar]
- The CubeSat Program. CubeSat Design Specification. Revision 14; Cal Poly: San Luis Obispo, CA, USA, 2022; Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed on 25 August 2025).
- Hexcel Composites. HexWebTM Honeycomb Sandwich Design Technology. December 2000. Available online: https://mecway.com/forum/uploads/FileUpload/38/1279af91c13830e36e59c40671f067.pdf (accessed on 25 August 2025).
- World Material. Aluminum 6061, Al 6061-T6 Alloy Properties, Density, Tensile & Yield Strength, Thermal Conductivity, Modulus of Elasticity, Welding. Available online: https://www.theworldmaterial.com/al-6061-t6-aluminum-alloy/ (accessed on 20 April 2025).
- Stohlman, O.R.; Fernandez, J.M.; Dean, G.; Schneider, N.; Kang, J.H.; Barfield, R.; Herndon, T.; Stokes, P. Advances in Low-Cost Manufacturing and Folding of Solar Sail Membranes. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Cormier, L.; Yousif, T.; Thompson, S.; Arcia Gil, A.; Pushparaj, N.; Blunt, P.; Cappelletti, C. Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail. Aerospace 2024, 11, 901. [Google Scholar] [CrossRef]
- Acktar Advanced Coatings. Acktar Black World’s Blackest Coatings. Available online: https://acktar.com/wp-content/uploads/2024/04/Direct-Coating-15.2.24.pdf (accessed on 12 April 2025).
- Aptek. Aptek 2711-1 Technical Aata & Information. Available online: https://apteklabs.com/wp-content/uploads/2023/01/2711-1.pdf (accessed on 12 April 2025).
- ECSS-E-ST-33-01C; Space Engineering Mechanisms. ECSS Secretariat ESA-ESTEC: Noordwijk, The Netherlands. Available online: https://ecss.nl/standard/ecss-e-st-33-01c-rev-2-1-march-2019-space-engineering-mechanisms/ (accessed on 25 August 2025).
- Thin Gap. LS Frameless Motor Kit. Available online: https://www.thingap.com/wp-content/uploads/2021/11/LSI-25-10-Datasheet-Rev_D.pdf (accessed on 22 April 2025).
- Ibeos. E28-200 28V SmallSat Electric Power System (EPS). Available online: https://satsearch.co/products/ibeos-28v-smallsat-electric-power-system (accessed on 22 April 2025).
- AAC Clyde Space. OPTIMUS-40. Available online: https://satsearch.co/products/aac-clyde-optimus-40 (accessed on 22 April 2025).
- Innovative Solutions in Space B.V.(ISIS). Antenna System for 6U/12U CubeSats. Available online: https://satsearch.co/products/isis-antenna-system-for-6u-12u-cube-sats (accessed on 22 April 2025).
- Yan, B.; Qin, L.; Tao, S.; Fang, G. Development and challenges of large space flexible solar arrays. Space Sol. Power Wirel. Transm. 2025, 2, 33–42. [Google Scholar] [CrossRef]
- CAVU Aerospace UK. OBC-Cube-Polar Cubesat OnBoard Computer. Available online: https://satsearch.co/products/cavu-corp-obc-cube-polar (accessed on 22 April 2025).
- Satlab A/S. SRS-4 Full-Duplex High-Speed S-Band Transceiver. Available online: https://satsearch.co/products/satlab-srs-4-s-band-transceiver (accessed on 22 April 2025).
- Space Inventor. WHL-200. Available online: https://satsearch.co/products/space-inventor-whl-200 (accessed on 22 April 2025).
- Catello, L.M.; Marcello, R. New Families of Halo Orbits about the Photo-Gravitational Equilibrium in the Sun—Earth–Moon System’s Center of Mass Elliptic Restricted Three Body Problem for Planetary Sunshade Missions. In Proceedings of the 75th International Astronautical Congress, Milan, Italy, 14 October 2024. [Google Scholar]
- Royal Belgian Institute for Space Aeronomy. SPENVIS. 2024. Available online: https://www.spenvis.oma.be/ (accessed on 22 April 2025).
- Zhao, P.; Wu, C.; Li, Y. Design and application of solar sailing: A review on key technologies. Chin. J. Aeronaut. 2023, 36, 125–144. [Google Scholar] [CrossRef]
- Zachary, K.M.; Mark, S.L. Design and Testing of a Deployment Mechanism for NASA’s 1,653-m2 Solar Cruiser Sail. In Proceedings of the 47th Aerospace Mechanisms Symposium, NASA Langley Research Center, Virginia Beach, VA, USA, 15–17 May 2024. [Google Scholar]
- Sobey, A.R.; Lockett, T.R. Design and Development of NEA Scout Solar Sail Deployer Mechanism. In Proceedings of the 43rd Aerospace Mechanisms Symposium, Santa Clara, CA, USA, 4–6 May 2016. [Google Scholar]
Method | Density | Strength | Availability | Thermal Expansion | Total |
---|---|---|---|---|---|
Weight | 0.4 | 0.4 | 0.1 | 0.1 | 1 |
ABS | 10 | 2 | 7 | 2 | 5.7 |
Acetate | 8 | 4 | 6 | 2 | 5.6 |
PC | 9 | 4 | 5 | 5 | 6.2 |
PTFE | 5 | 1 | 3 | 1 | 2.8 |
Al | 4 | 9 | 8 | 6 | 6.6 |
Steel | 1 | 10 | 10 | 7 | 6.1 |
Component | Weight [kg] |
---|---|
Motor [25] | 0.02 |
Electric power system [26] | 0.14 |
Battery [27] | 0.67 |
Antenna [28] | 0.12 |
Solar Panel [29] | 0.37 |
On-board computer [30] | 0.08 |
Transceiver [31] | 0.26 |
Attitude control system [32] | 1.72 |
Subsystem | Weight [g] |
---|---|
Bus Total | 6423 |
Structure + Fasteners | 2950 |
EPS + Harness | 1300 |
OADCS | 1720 |
TTC + OBDH | 453 |
Payload Total | 22368 |
Sail | 15631 |
Booms | 3516 |
Deployment mechanism | 2854 |
System Total | 28791 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Town, J.; Pushparaj, N.; Cappelletti, C. Preliminary Structural System Design for Planetary Sunshade. Aerospace 2025, 12, 785. https://doi.org/10.3390/aerospace12090785
Town J, Pushparaj N, Cappelletti C. Preliminary Structural System Design for Planetary Sunshade. Aerospace. 2025; 12(9):785. https://doi.org/10.3390/aerospace12090785
Chicago/Turabian StyleTown, Joel, Nishanth Pushparaj, and Chantal Cappelletti. 2025. "Preliminary Structural System Design for Planetary Sunshade" Aerospace 12, no. 9: 785. https://doi.org/10.3390/aerospace12090785
APA StyleTown, J., Pushparaj, N., & Cappelletti, C. (2025). Preliminary Structural System Design for Planetary Sunshade. Aerospace, 12(9), 785. https://doi.org/10.3390/aerospace12090785