Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,585)

Search Parameters:
Keywords = solid minerals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9645 KB  
Review
Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials
by Xue Wang, Wen Ni, Jiajie Li and Siqi Zhang
Separations 2025, 12(9), 230; https://doi.org/10.3390/separations12090230 - 29 Aug 2025
Viewed by 63
Abstract
With the continuous expansion of rare earth resource development, the large-scale accumulation of ionic rare earth tailings (IRETs) has exerted pressure on both environmental and resource management. Due to their inherent low reactivity, unstable composition, and potential environmental risks, their widespread engineering application [...] Read more.
With the continuous expansion of rare earth resource development, the large-scale accumulation of ionic rare earth tailings (IRETs) has exerted pressure on both environmental and resource management. Due to their inherent low reactivity, unstable composition, and potential environmental risks, their widespread engineering application faces many challenges. To achieve the resource utilization of this solid waste, scholars in recent years have conducted extensive research on their application in silicate materials. This study systematically reviews the existing research. Given that the trace rare earth oxides in IRETs exhibit excellent mineralization effects and that IRETs contain a significant amount of clay minerals, IRETs can be feasibly applied in the production of silicate materials, including clinker, tiles, ceramics, glass-ceramics, and geopolymers. The research findings aim to provide technical support and practical guidance for the large-scale resource utilization of IRETs, promoting their application in silicate material production. This study identifies the common issues found in the research and provides recommendations for the high-value and large-scale resource utilization of IRETs in the future. Full article
(This article belongs to the Special Issue Recent Advances in Rare Earth Separation and Extraction)
Show Figures

Figure 1

51 pages, 4639 KB  
Review
Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment
by Somayeh Nassiri, Ali Azhar Butt, Ali Zarei, Souvik Roy, Iyanuoluwa Filani, Gandhar Abhay Pandit, Angel Mateos, Md Mostofa Haider and John T. Harvey
Buildings 2025, 15(17), 3099; https://doi.org/10.3390/buildings15173099 - 28 Aug 2025
Viewed by 220
Abstract
This paper reviews various emerging alternative SCMs derived from minerals and biomass sources, industrial byproducts, and underutilized waste streams. The paper compiles and evaluates physicochemical properties, reaction mechanisms in cementitious systems, resource availability, supply chain dynamics, technology readiness, the impact on concrete performance, [...] Read more.
This paper reviews various emerging alternative SCMs derived from minerals and biomass sources, industrial byproducts, and underutilized waste streams. The paper compiles and evaluates physicochemical properties, reaction mechanisms in cementitious systems, resource availability, supply chain dynamics, technology readiness, the impact on concrete performance, and environmental and cost factors for each candidate SCM. Specifically, the review examines wood ash from bioenergy plants, volcanic and sedimentary natural pozzolans, and construction and demolition waste. This includes recycled concrete fines, asphalt plants’ rock dust (baghouse fines), aggregate production fines, and post-consumer waste, particularly municipal solid waste incinerator ash and wastewater sludge ash. Additionally, the paper explores innovative additives such as cellulose and chitin nanomaterials and calcium–silicate–hydrate nanoseeds to address challenges of slower strength development and rheological changes. The key contribution of this review is a multifactor framework for assessing alternative SCMs, emphasizing availability, supply chain, market readiness, and environmental performance, combined with an engineering performance review. Full article
(This article belongs to the Special Issue Innovative Composite Materials in Construction)
Show Figures

Graphical abstract

16 pages, 4224 KB  
Article
Zoning of the Territory of Southern Kazakhstan Based on the Conditions of Groundwater Availability for Watering Pasture Lands
by Vladimir Smolyar, Dinara Adenova, Timur Rakhimov, Rakhmatulla Ayazbayev, Gulnura Nyssanbayeva and Almagul Kerimkulova
Hydrology 2025, 12(9), 227; https://doi.org/10.3390/hydrology12090227 - 28 Aug 2025
Viewed by 125
Abstract
In the arid and semi-arid climate of Southern Kazakhstan, groundwater is the primary and most resilient source of water for pasture irrigation. This study provides an integrated assessment of the predicted, natural, and operational groundwater resources across five administrative regions—Almaty, Zhetysu, Zhambyl, Kyzylorda, [...] Read more.
In the arid and semi-arid climate of Southern Kazakhstan, groundwater is the primary and most resilient source of water for pasture irrigation. This study provides an integrated assessment of the predicted, natural, and operational groundwater resources across five administrative regions—Almaty, Zhetysu, Zhambyl, Kyzylorda, and Turkestan—considering water quality (total dissolved solids, TDS), potential well yield, and aquifer depth. Hydrogeological maps at 1:200,000 and 1:1,000,000 scales, a regional well inventory, and GIS-based spatial analysis were combined to classify resource availability and identify surplus and deficit zones. Results show that 92.5% of predicted exploitable resources (totaling 1155.2 m3/s) have TDS ≤ 3 g/L, making them suitable for domestic and livestock use. Regional disparities are pronounced: Zhetysu, Almaty, and Zhambyl exhibit resource surpluses, Kyzylorda approaches balance, while Turkestan faces a marked deficit. The developed groundwater availability map integrates mineralization, well productivity, and recommended drilling depth, enabling the design of water intake systems without costly field exploration. This decision-support tool has practical value for optimizing water allocation, reducing operational costs, and improving the sustainability of pasture management under the constraints of limited surface water resources. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

24 pages, 4120 KB  
Article
Hydrogeochemical Characterization of Mineral Springs in Peruvian Tropical Highlands
by Damaris Leiva-Tafur, Hardy Geoffrey Manco Perez, Jesús Rascón, Lorenzo Culqui, Oscar Andrés Gamarra-Torres and Manuel Oliva-Cruz
Water 2025, 17(17), 2539; https://doi.org/10.3390/w17172539 - 27 Aug 2025
Viewed by 231
Abstract
Water quality in natural mineral springs is essential for sustainable use and conservation in the Amazon region. This study presents a hydrogeochemical characterization of 21 springs in the Peruvian Tropical Highlands, expanding on previous records of only six sources. The springs, which are [...] Read more.
Water quality in natural mineral springs is essential for sustainable use and conservation in the Amazon region. This study presents a hydrogeochemical characterization of 21 springs in the Peruvian Tropical Highlands, expanding on previous records of only six sources. The springs, which are thermal, saline, and sulfurous, are located between 384 and 3147 m a.s.l., mainly in mountainous areas with structural slopes and permeable sedimentary formations, such as the Pulluicana Group (composed mainly of sandstones and shales) and the Sarayaquillo Formation (characterized by reddish sandstones and siltstones). Physicochemical analysis showed temperatures ranging from 15.1 to 38.2 °C, pH from 5.20 to 8.72, conductivity between 0.05 and 253 mS/cm, and total dissolved solids from 0.02 to 162.50 g/L. High levels of arsenic and aluminum, likely originating from the natural weathering of rocks rich in these elements, exceeded national limits. Microbiological analysis detected fecal coliforms and Escherichia coli, indicating potential health risks. The results highlight the importance of regular monitoring and proper management to ensure safe use and explore its therapeutic and biotechnological applications, such as microbial bioremediation or development of extremophile-based enzymes. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 7059 KB  
Article
Chromium in Slag from SOEL Interconnects Remelting: Characterization and Recycling Potential
by Shine-Od Mongoljiibuu, Jeraldine Lastam, Ralf Ditscherlein, Doreen Ebert, Michael Müller and Urs A. Peuker
Minerals 2025, 15(9), 904; https://doi.org/10.3390/min15090904 - 26 Aug 2025
Viewed by 307
Abstract
The recycling of interconnects from solid oxide electrolyzer (SOEL) stacks is essential for closing material loops in green hydrogen systems. Since it is mostly made of high-quality stainless steel, remelting is the most practical recovery route, but it inevitably generates slag, where strategic [...] Read more.
The recycling of interconnects from solid oxide electrolyzer (SOEL) stacks is essential for closing material loops in green hydrogen systems. Since it is mostly made of high-quality stainless steel, remelting is the most practical recovery route, but it inevitably generates slag, where strategic elements like chromium (Cr) are retained. This study investigates the mineralogical and grain characteristics of slag from SOEL interconnect remelting, with an emphasis on Cr distribution and its recovery potential. A correlative approach was applied using X-ray diffraction (XRD), scanning electron microscopy-based mineral liberation Analysis (MLA), and X-ray computed tomography (XCT). Cr was primarily found in magnesiochromite Mg(Al,Cr)2O4 (~54 wt.% Cr), constituting only ~5 wt.% of the slag, while lower concentrations were also detected in monticellite and åkermanite. XCT revealed the macroscopic heterogeneity of the slag system, with metallic inclusions and pores concentrated near the metal–slag interface, indicating density-driven settling. Cr-rich spinels were fine-grained (x50,2 ≈ 55 µm), irregular in shape, and partially intergrown, presenting challenges for mechanical liberation and physical recovery. These features, combined with their compositional selectivity, suggest that Cr-rich spinels are promising candidates for future Engineered Artificial Mineral (EnAM) strategies aimed at enhancing selective recovery from slag. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

11 pages, 1306 KB  
Article
Hydrogen Generation in the Leaching of Chalcopyrite Concentrate in Acid Medium Assisted by Methanol
by Oscar Joaquín Solís Marcial, Alfonso Talavera López, José Pablo Ruelas-Leyva, Roberto Zarate Gutiérrez, José Ricardo Rosas Cedillo, José Alfredo Hernández Maldonado and Benito Serrano Rosales
Processes 2025, 13(9), 2697; https://doi.org/10.3390/pr13092697 - 25 Aug 2025
Viewed by 308
Abstract
Currently, chalcopyrite is the world’s largest copper reserve. Commonly, the copper contained in chalcopyrite is obtained by pyrometallurgical processes. Still, in recent years, due to the environmental problems generated by this route, more environmentally friendly techniques have been proposed, such as hydrometallurgy; but [...] Read more.
Currently, chalcopyrite is the world’s largest copper reserve. Commonly, the copper contained in chalcopyrite is obtained by pyrometallurgical processes. Still, in recent years, due to the environmental problems generated by this route, more environmentally friendly techniques have been proposed, such as hydrometallurgy; but chalcopyrite has the drawback of passiveness. A promising alternative to minimize this phenomenon is using polar organic solvents in an acidic medium, obtaining copper extraction percentages of 90% in five h. A solvent that has significant functionality is methanol. Moreover, a topic barely studied in depth is the characterization of the gases emitted in the leaching of minerals such as chalcopyrite. In this sense, one gas generated through chalcopyrite leaching is molecular hydrogen, which would increase the economic viability of the process. In this work, the gases formed during the leaching of chalcopyrite concentrate are analyzed, and the formation of only molecular hydrogen by gas chromatography was detected. The hydrogen production was 0.24 µmol in 300 min, and the copper extraction was around 65%, using a concentration of 0.5 M of H2SO4, 60 mL of methanol, and 20 mL of H2O2. Thus, based on the detected chemicals in solid residues of the leaching of chalcopyrite concentrate, the thermodynamic analysis supports the spontaneous formation of hydrogen with a value of ΔG = −119.66 kJ/mol. Full article
Show Figures

Figure 1

28 pages, 1337 KB  
Review
Recent Advances in Microbial Bioconversion as an Approach to Boost Hydroxytyrosol Recovery from Olive Mill Wastewater
by Irene Maria Zingale, Anna Elisabetta Maccarronello, Claudia Carbone, Cinzia Lucia Randazzo, Teresa Musumeci and Cinzia Caggia
Fermentation 2025, 11(8), 477; https://doi.org/10.3390/fermentation11080477 - 20 Aug 2025
Viewed by 539
Abstract
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic [...] Read more.
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic hydrolysis, utilizing purified enzymes to cleave glycosidic or ester bonds, and microbial bioconversion, employing whole microorganisms with their intrinsic enzymes and metabolic pathways, are effective biotechnological strategies for fostering the release of HT from its conjugated forms. These approaches offer great potential for the sustainable recovery of HT from OMWW, contributing to the valorization of this environmentally impactful agro-industrial by-product. Processed OMWW can lead to clean-label HT-enriched foods and beverages, capitalizing on by-product valorization and improving food safety and quality. In this review, the most important aspects of the chemistry, technology, and microbiology of OMWW were explored in depth. Recent trends and findings in terms of both enzymatic and microbial bioconversion processes are critically discussed, including spontaneous and driven fermentation, using selected microbial strains. These approaches are presented as economically viable options for obtaining HT-enriched OMWW for applications in the food and nutraceutical sectors. The selected topics aim to provide the reader with a solid background while inspiring and facilitating future research and innovation. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Graphical abstract

11 pages, 371 KB  
Article
Phytochemical and Nutritional Profile of Apricot, Plum-Apricot, and Plum Stones
by Dasha Mihaylova, Galia Gentscheva, Nadezhda Petkova-Ognyanova, Anton Slavov and Aneta Popova
Separations 2025, 12(8), 216; https://doi.org/10.3390/separations12080216 - 15 Aug 2025
Viewed by 229
Abstract
Fruit stones constitute a significant portion of solid waste generated from the consumption and processing of fruits. This study demonstrated the potential of fruit stones as viable sources of nutritional compounds. The stones from three types of fruits—the “Modesto” apricot, the “Stendesto” plum-apricot, [...] Read more.
Fruit stones constitute a significant portion of solid waste generated from the consumption and processing of fruits. This study demonstrated the potential of fruit stones as viable sources of nutritional compounds. The stones from three types of fruits—the “Modesto” apricot, the “Stendesto” plum-apricot, and the “Stanley” plum—were assessed for their protein, carbohydrate, lipid, and mineral content. Additionally, their total phenolic content, total flavonoid content, and total anthocyanin content were also analyzed. The antioxidant activity, evaluated through four contemporary assays (DPPH, ABTS, FRAP, and CUPRAC), revealed the biological potential of these stones. Notably, the results pertaining to the hybrid plum-apricot variety “Stendesto” are absent from the existing literature, rendering them novel. The findings indicate that the stone of this hybrid has the lowest caloric value in kcal/100 g, including its fat content, when compared to the other studied stones. Therefore, fruit stones can be effectively utilized as innovative food ingredients, aligning with the need for proper waste management and their potential application across various industries. Full article
Show Figures

Figure 1

35 pages, 17908 KB  
Article
Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil
by Karel Breiter, Hilton Tulio Costi, Zuzana Korbelová and Marek Dosbaba
Minerals 2025, 15(8), 863; https://doi.org/10.3390/min15080863 - 15 Aug 2025
Viewed by 258
Abstract
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions [...] Read more.
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions for the study of chemistry and shape of zircon and the relation between the contents of particular trace elements in magma vs. in crystallizing zircon. Textural and chemical zircon data obtained using scanning electron microscopy (BSE) and cathodoluminescence (CL) imaging, automated mineralogy by TESCAN Integrated Mineral Analyzer (TIMA), and electron probe microanalyses (EPMA) enabled us to define four albite granite facies containing zircons of specific structures and chemistry. Zircon in the Madeira albite granite was formed during several, largely temporally and spatially independent episodes. During the crystallization of the common facies, occupying most of the intrusion volume, Zr/Hf value in zircon decreased from 40 to 20. This zircon, in some episodes, incorporated a higher amount of Th, which was later unmixed in the form of thorite inclusions. The pegmatoidal facies, representing crystallization of residual magma, contains zircon without thorite inclusions with a Zr/Hf value from 35 to 5. The Th/U and Y/Yb values during this evolution scattered but generally evolved to Th, Yb-enriched compositions (Th/U up to >10, Y/Yb down to 0.1). The Li-poor facies, located in the center of the stock near the cryolite deposit, contains zircon with comparatively high Zr/Hf = 45–70 and higher U and Y contents. Later, part of the common facies was hydrothermally altered to border facies, but zircon did not change noticeably during this process. The contents of minor elements in all zircon varieties are generally low (U + Th + Y + REE ˂ 0.05 apfu); Y and REE are incorporated exclusively in the xenotime component. Many crystals have low analytical totals, down to 95 wt%, and are enriched in Al, Fe, Mn, Ca, and F but this process does not influence the primary Zr/Hf, Th/U, and Y/Yb ratios. Zircons from other Madeira granite facies, including the neighboring Europa pluton, differ mainly in much higher Y/Yb values and in having (Y + REE) >> P, indicating a different than xenotime substitution mechanism. Zircon from the Madeira albite granite differs from zircons from many metaluminous rare-metal granites in low contents of minor elements and a common assemblage with thorite, instead of forming Zrn–Thr–Xnt solid solutions. Full article
Show Figures

Figure 1

23 pages, 9894 KB  
Article
The Problem of Formation Destruction in Carbon Dioxide Storage: A Microscopic Model
by Natalia Levashova, Pavel Levashov, Dmitry Erofeev and Alla Sidorova
Algorithms 2025, 18(8), 503; https://doi.org/10.3390/a18080503 - 12 Aug 2025
Viewed by 316
Abstract
In the context of the current global transition toward low-carbon energy, the issue of CO2 utilization has become increasingly important. One of the most promising natural targets for CO2 sequestration is the terrigenous sedimentary formations found in oil, gas, [...] Read more.
In the context of the current global transition toward low-carbon energy, the issue of CO2 utilization has become increasingly important. One of the most promising natural targets for CO2 sequestration is the terrigenous sedimentary formations found in oil, gas, and coal basins. It is generally assumed that CO2 injected into such formations can be stored indefinitely in a stable form. However, the dissolution of CO2 into subsurface water leads to a reduction in pH, which may cause partial dissolution of the host formation, altering the structure of the subsurface in the injection zone. This process is relatively slow, potentially unfolding over decades or even centuries, and its long-term consequences require careful investigation through mathematical modeling. The geological formation is treated as a partially soluble porous medium, where the dissolution rate is governed by surface chemical reactions occurring at the pore boundaries. In this study, we present an applied mathematical model that captures the coupled processes of mass transport, surface chemical reactions, and the resulting microscopic changes in the pore structure of the formation. To ensure the model remains grounded in realistic geological conditions, we based it on exploration data characterizing the composition and microstructure of the pore space typical of the Cenomanian suite in northern Western Siberia. The model incorporates the dominant geochemical reactions involving calcium carbonate (calcite, CaCO3), characteristic of Cenomanian reservoir rocks. It describes the dissolution of CO2 in the pore fluid and the associated evolution of ion concentrations, specifically H+, Ca2+, and HCO3. The input parameters are derived from experimental data. While the model focuses on calcite-based formations, the algorithm can be adapted to other mineralogies with appropriate modifications to the reaction terms. The simulation domain is defined as a cubic region with a side length of 1 μm, representing a fragment of the geological formation with a porosity of 0.33. The pore space is initially filled with a mixture of liquid CO2 and water at known saturation levels. The mathematical framework consists of a system of diffusion–reaction equations describing the dissolution of CO2 in water and the subsequent mineral dissolution, coupled with a model for surface evolution of the solid phase. This model enables calculation of surface reaction rates within the porous medium and estimates the timescales over which significant changes in pore structure may occur, depending on the relative saturations of water and liquid CO2. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

24 pages, 15974 KB  
Article
Enhancing Copper Leaching from Refractory Copper Oxide Ore Using Organic Cationic Surfactant
by Yang Li, Jue Kou, Chunbao Sun, Peilong Wang and Xiaoli Wang
Separations 2025, 12(8), 212; https://doi.org/10.3390/separations12080212 - 12 Aug 2025
Viewed by 347
Abstract
The copper oxide ore in Zambia exhibits complex mineralogical characteristics, with copper primarily occurring in mica. The local hydrometallurgical plant employs heating–agitation acid leaching, which is hindered by a low leaching rate and prolonged leaching period, resulting in high energy consumption. To enhance [...] Read more.
The copper oxide ore in Zambia exhibits complex mineralogical characteristics, with copper primarily occurring in mica. The local hydrometallurgical plant employs heating–agitation acid leaching, which is hindered by a low leaching rate and prolonged leaching period, resulting in high energy consumption. To enhance the copper leaching efficiency, a systematic study was conducted on the use of organic cationic surfactants to enhance the leaching of the copper oxide ore. The results indicated that the primary copper-bearing mineral in the raw ore is cupriferous biotite, which is the reason for the difficulty in leaching. Under optimal conditions: a sulfuric acid dosage of 45 kg/t, a CTAB dosage of 75 g/t, a leaching temperature of 65 °C, a liquid-to-solid ratio of 2:1, and a leaching time of 120 min, the copper leaching rate reached 78.32%. Compared to the optimal result of regular heating–agitation acid leaching, this approach increased the copper leaching rate by 3.06%, reduced the leaching time by 80 min, and lowered leaching energy consumption without destroying the structure of cupriferous biotite. Mechanistic studies show that organic cations in CTAB neutralize excess anions, thereby weakening the electrostatic Coulomb forces between the interlayer cations and the hexagonal structure. This increases the interlayer spacing of biotite, facilitating the entry of H+ from sulfuric acid into the interlayer. The H+ then reacts with the copper in the biotite, enhancing the copper leaching rate and reducing leaching time. Because CTAB has high degradability, it will not cause persistent pollution to the environment. The use of CTAB as a leaching aid can reduce the energy consumption of heating–agitation acid leaching and reduce the heating cost per ton of ore by USD 6.11–9.36. Full article
(This article belongs to the Special Issue Advances in Novel Beneficiation Technology of Critical Minerals)
Show Figures

Figure 1

20 pages, 7776 KB  
Article
Integrated Gravity Data Interpretation for Potash Exploration in the Vientiane Basin, Laos
by Juncheng Liu, Tao Xu, Tie Gao, Dexiang Geng and Wei Du
Minerals 2025, 15(8), 842; https://doi.org/10.3390/min15080842 - 8 Aug 2025
Viewed by 396
Abstract
Gravity exploration, an Earth science method leveraging gravitational field variations due to density differences in geological structures, is a pivotal tool for subterranean investigation due to its cost-effectiveness and efficient data acquisition. This study focuses on potash, a vital agricultural resource, which forms [...] Read more.
Gravity exploration, an Earth science method leveraging gravitational field variations due to density differences in geological structures, is a pivotal tool for subterranean investigation due to its cost-effectiveness and efficient data acquisition. This study focuses on potash, a vital agricultural resource, which forms low-density geological deposits manifesting gravitational anomalies. The research delineates favorable regions for potash enrichment within an exploration zone in Laos, utilizing gravity data, geological information, drilling records, and insights into mineralization mechanisms. The study employed analytic continuation, residual anomaly calculation, and vertical derivative analysis to interpret anomalies and identify low-density potash targets. Apparent density calculations revealed significant variations at different depths. Fault identification using integrated methods identified 16 fault lines, predominantly north–south and northeast oriented. Primary potash targets are in the northeastern and northwestern parts, with secondary targets in the central-western and southeast regions. The study acknowledges limitations such as potential field ambiguity, restricted resolution, and scarce geological data. It recommends integrating other geophysical methods, denser exploration grids, and prompt drilling for verification to refine interpretations and improve understanding, laying a solid foundation for future exploration. Full article
Show Figures

Figure 1

22 pages, 9502 KB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 - 6 Aug 2025
Viewed by 278
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

20 pages, 2299 KB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 375
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

19 pages, 6141 KB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 - 1 Aug 2025
Viewed by 339
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
Show Figures

Figure 1

Back to TopTop