Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = solvent-borne coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15633 KB  
Article
Influence of Surface Sanding on the Coating Durability of Spruce as Facade Board
by Ondrej Dvořák, Monika Sarvašová Kvietková, Petr Horák, Markéta Kalábová, Chia-Feng Lin, Dennis Jones and Petr Ptáček
Coatings 2025, 15(10), 1133; https://doi.org/10.3390/coatings15101133 - 1 Oct 2025
Viewed by 220
Abstract
Surface pretreatment significantly influences the hygroscopic behavior of wood, which in turn affects surface stability when exposed to variable climatic conditions. This study focuses on how different surface pretreatment methods impact the performance of protective coating applied on spruce wood (Picea abies [...] Read more.
Surface pretreatment significantly influences the hygroscopic behavior of wood, which in turn affects surface stability when exposed to variable climatic conditions. This study focuses on how different surface pretreatment methods impact the performance of protective coating applied on spruce wood (Picea abies (L.) Karst.) during one year of natural weathering. Samples were prepared using various surface treatments: milling and sanding with grit sizes P40, P80, and P120, respectively. Two types of coatings were applied: a solventborne coating (ADLER Pullex Plus-Lasur) and a waterborne coating (DColor FK 47 UV Protect). The samples were exposed for 12 months at an outdoor testing site in Suchdol, Czech. Surface properties were assessed through color changes in the CIE Lab* space, gloss measurements (ISO 2813), contact angle analysis, and visual inspection. The results showed that exposure to UV radiation and microbial activities led to the gradual degradation of the optical properties and aesthetic appearance of the wood. Surfaces with greater roughness preserved their aesthetic properties more effectively, indicating a higher absorption of the coating. Untreated wood exhibited low water repellency, while the coated surface demonstrated enhanced hydrophobicity. Notably, the waterborne coating showed a temporary increase in contact angle around the sixth month, indicating surface clogging by dust particles. In contrast, the solventborne coating had a rapid decrease in wettability during the first nine months. These findings suggested the importance of surface pretreatment and coating type in maintaining the long-term performance and aesthetic appearance for wood used in exterior conditions. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

17 pages, 2801 KB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Viewed by 541
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

16 pages, 2594 KB  
Article
A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood
by Mariana M. M. Ramos, Christina P. Pappa, Panagiotis N. Manoudis, Vasiliki Kamperidou, Eleni Pavlidou, Vasilios Tsiridis, Maria Petala, Konstantinos S. Triantafyllidis, Panagiotis K. Spathis and Ioannis Karapanagiotis
Coatings 2025, 15(3), 293; https://doi.org/10.3390/coatings15030293 - 2 Mar 2025
Viewed by 1697
Abstract
Wood, a vital material for both modern and heritage objects, is particularly susceptible to degradation caused by water due to its hydrophilic nature and porous structure. Therefore, developing sustainable strategies to protect wood is of significant importance. This study aims to produce a [...] Read more.
Wood, a vital material for both modern and heritage objects, is particularly susceptible to degradation caused by water due to its hydrophilic nature and porous structure. Therefore, developing sustainable strategies to protect wood is of significant importance. This study aims to produce a highly hydrophobic coating for the protection of wood following a straightforward procedure and using materials that are compatible with wood. First, nano/sub-microlignin (NL) is isolated and produced from beech wood through a one-step tailored organosolv process. Next, NL is incorporated into Sivo 121, a water-borne and solvent-free silane system recommended by the manufacturer for protecting wood surfaces. Composite coatings containing various concentrations of NL and Sivo 121 are applied to chestnut (Castanea spp.) and oak (Quercus spp.). The impact of NL concentration on the contact angles of water drops (CAs) and colour changes (ΔE) of the treated wood specimens is investigated. The coating with 4% w/w NL demonstrates enhanced hydrophobicity (CA = 145°) and has a negligible effect on the colour of pristine oak (ΔE < 3). The wetting properties of coated oak are not affected after 100 tape peeling cycles. However, the coating exhibits poorer performance on chestnut, i.e., CA = 135°, which declines after 80 peeling cycles, and ΔE > 5. The drop pH does not have any noticeable effect on CA. The latter remains stable even after prolonged exposure of coated oak and chestnut samples to artificial UV radiation and outdoor environmental conditions. Finally, the composite coating offers good and comparable protection for both wood species in the biological durability soil burial test Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

16 pages, 10995 KB  
Article
Physical and Chemical Properties of High-Temperature Silicone-Based Polymer Coatings Applied on Different Surface Roughnesses
by Ivan Stojanović, Borna Škrlec, Marin Kurtela, Vesna Alar and Martina Odeljan
Coatings 2023, 13(12), 2100; https://doi.org/10.3390/coatings13122100 - 18 Dec 2023
Cited by 6 | Viewed by 3590
Abstract
High-temperature coatings play a crucial role in protecting surfaces exposed to extreme temperatures, corrosion, and other harsh environments. This paper focuses on the physical and chemical properties of solvent-borne and water-borne high-temperature silicone-based polymer coatings applied on two types of surface roughness of [...] Read more.
High-temperature coatings play a crucial role in protecting surfaces exposed to extreme temperatures, corrosion, and other harsh environments. This paper focuses on the physical and chemical properties of solvent-borne and water-borne high-temperature silicone-based polymer coatings applied on two types of surface roughness of carbon steel plates. The corrosion protection performance of the coatings was characterized using a salt spray chamber, humidity chamber, electrochemical impedance spectroscopy (EIS) measurements, and differential scanning calorimetry (DSC). The physical properties of high-temperature coatings were determined using the Shore D hardness method and cross-cut adhesion tests. This study investigates the effects of different surface preparation methods on coating adhesion, which is considered to be a crucial property of organic coatings for corrosion protection durability. The thermal stability of the coating was tested using furnace cyclic testing. The results show that high-temperature coatings in general exhibit excellent thermal stability, high adhesion strength, and good resistance to warm and humid environments, except in the conditions of a salty atmosphere. This study reveals that coating performance is affected by the composition and surface preparation method. This study can be useful for coating manufacturers and researchers interested in understanding the physical and chemical properties of high-temperature coatings and their applications in various environments. Full article
(This article belongs to the Special Issue Investigation on Corrosion Behaviour of Metallic Materials)
Show Figures

Figure 1

15 pages, 4286 KB  
Article
Evaluation of Resistance Properties of Selected Surface Treatments on Medium Density Fibreboards
by Gabriela Slabejová, Zuzana Vidholdová and Ján Iždinský
Coatings 2023, 13(11), 1903; https://doi.org/10.3390/coatings13111903 - 6 Nov 2023
Viewed by 2287
Abstract
The protection and decorative value of raw wood-based boards with various coatings can be enhanced during the service life of furniture using surface treatment techniques. In this study, selected transparent, pigmented polyurethane email finish and thin foils, commonly used in furniture, were used [...] Read more.
The protection and decorative value of raw wood-based boards with various coatings can be enhanced during the service life of furniture using surface treatment techniques. In this study, selected transparent, pigmented polyurethane email finish and thin foils, commonly used in furniture, were used for surface treatments of medium-density fibreboards with a thickness of 18 mm. Water-borne finish with polyurethane–acrylate resin, solvent-borne finish with polyacrylate resin, and finish based on native oil and waxes, as well as pigmented polyurethane email finish, were used on veneered medium-density fibreboards. The thin foils (polyvinyl chloride, polyethylene terephthalate, and lacquered acryl film) were used for raw medium-density fibreboards. Several resistance surface properties were investigated. It was found that the hardness and resistance to impact were very much related to the interactions between the coating film or thin foil and the substrate. The type of surface finish had a substantial impact on the coating and foil’s resistance qualities, such as resistance to mould and cold liquids. Full article
Show Figures

Figure 1

19 pages, 6215 KB  
Article
Revealing the Impact of Micro-SiO2 Filer Content on the Anti-Corrosion Performance of Water-Borne Epoxy Resin
by Bifeng Fan, Junjie Yang, Lin Cao, Xiao Wang, Jie Li, Yingfei Yang, Qiwei Wang, Peng Zhang, Florin Vogel, Wei Li and Zhidan Lin
Polymers 2023, 15(15), 3273; https://doi.org/10.3390/polym15153273 - 2 Aug 2023
Cited by 3 | Viewed by 2243
Abstract
Due to green development in recent years, water-borne epoxy resins (WBE) have become increasingly popular since they generate the lowest level of volatile organic compounds (VOC) during curing. However, because of the large surface tension of water, it is easy to produce voids [...] Read more.
Due to green development in recent years, water-borne epoxy resins (WBE) have become increasingly popular since they generate the lowest level of volatile organic compounds (VOC) during curing. However, because of the large surface tension of water, it is easy to produce voids and cracks during the curing process of the coating. An electrochemical strategy was used in this study to assess the impact of different SiO2 content on the corrosion performance of a WBE coating, in which micron spherical SiO2 particles were synthesized in a liquid phase reduction. The results showed that the synthesized micron spherical SiO2 particles were about 800 ± 50 nm in diameter and in an amorphous state. By hydrophilizing the surfaces of these SiO2 particles, uniform dispersion in an aqueous solvent and a WBE can be achieved. It is important to note that adding a small or excessive amount of SiO2 to a coating will not improve corrosion resistance and may even reduce corrosion resistance. With the appropriate modification of SiO2, corrosion resistance of composite coatings is greatly enhanced, as is the adhesion between the coatings and the metallic substrates. Because the appropriately modified SiO2 can effectively fill the pores that are formed during the curing process, a corrosive medium is less likely to react with the matrix when the medium comes into contact with the matrix. Based on their incorporation content of 3 wt.%, their corrosion resistance is the best after 16 cycles of AC-DC-AC accelerated corrosion tests. Full article
Show Figures

Figure 1

17 pages, 6116 KB  
Article
Experimental Study of Atmospherically and Infrared-Dried Industrial Topcoats
by Ivan Stojanović, Mirta Logar, Ivan Fatović, Vesna Alar and Daniela Rakela-Ristevski
Coatings 2023, 13(8), 1343; https://doi.org/10.3390/coatings13081343 - 30 Jul 2023
Cited by 4 | Viewed by 1921
Abstract
In this paper, five different solvent-borne industrial topcoats were dried with infrared (IR) radiation and under atmospheric conditions. A comparison of physical, mechanical, chemical, and electrochemical properties of differently dried topcoats was made. The results of differential scanning calorimetry (DSC), Fourier-Transform Infrared Spectroscopy [...] Read more.
In this paper, five different solvent-borne industrial topcoats were dried with infrared (IR) radiation and under atmospheric conditions. A comparison of physical, mechanical, chemical, and electrochemical properties of differently dried topcoats was made. The results of differential scanning calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and adhesion of a topcoat to the metal substrate (determined by the pull-off test) indicate a higher degree of crosslinking of examined topcoats, which improves the coating’s protective properties. Scratch hardness was determined by the pencil hardness test. Impact resistance was examined with a falling-weight test. Changes in the shade of the coating were examined by visual inspection and using a gloss meter. The electrochemical measurements of open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were conducted. The thermal stability of topcoats was tested by thermogravimetric analysis (TGA). The results show overall better properties of IR-dried topcoats. In addition, topcoats dry significantly faster when IR radiation is applied, which makes this drying method very interesting for industrial application. Full article
(This article belongs to the Special Issue Investigation on Corrosion Behaviour of Metallic Materials)
Show Figures

Figure 1

12 pages, 1142 KB  
Article
Synthesis and Characterization of Hydrophobic and Low Surface Tension Polyurethane
by Autumn M. Rudlong and Julie M. Goddard
Coatings 2023, 13(7), 1133; https://doi.org/10.3390/coatings13071133 - 21 Jun 2023
Cited by 6 | Viewed by 3581
Abstract
Polyurethane is a common polymeric coating, providing abrasion resistance, chemical durability, and flexibility to surfaces in the biomedical, marine, and food processing industries with great promise for future materials due to its tunable chemistry. There exists a large body of research focused on [...] Read more.
Polyurethane is a common polymeric coating, providing abrasion resistance, chemical durability, and flexibility to surfaces in the biomedical, marine, and food processing industries with great promise for future materials due to its tunable chemistry. There exists a large body of research focused on modifying polyurethane with additional functionalities, such as antimicrobial, non-fouling, anticorrosive action, or high heat resistance. However, there remains a need for the characterization and surface analysis of fluoro-modified polyurethanes synthesized with commercially available fluorinated polyol. In this work, we have synthesized traditional solvent-borne polyurethane, conventionally found in food processing facilities, boat hulls, and floor coatings, with polyurethane containing 1%, 2%, and 3% perfluoropolyether (PFPE). Polyurethane formation was confirmed by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, with the urethane band forming at 1730 cm−1 and the absence of free isocyanate stretching from 2275–2250 cm−1. X-ray photoelectron spectroscopy (XPS) was used to confirm perfluoropolyether polymerization with an increase in the atomic percentage of fluorine. Wettability and hydrophobicity were determined using a dynamic water contact angle with significant differences in advancing the water contact angle with the inclusion of perfluoropolyether blocks (PU–co–1PFPE 131.5° ± 8.0, PU–co–2PFPE 130.9° ± 5.8, and PU–co–3PFPE 128.8° ± 5.2) compared to the control polyurethane (93.6° ± 3.6). The surface orientation of fluorine supported the reduced critical surface tensions of polyurethane modified with PFPE (12.54 mN m−1 for PU–co–3PFPE compared to 17.19 mN m−1 for unmodified polyurethane). This work has demonstrated the tunable chemical qualities of polyurethane by presenting its ability to incorporate fluoropolymer surface characteristics, including low critical surface tension and high hydrophobicity. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

16 pages, 2917 KB  
Article
Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens
by Tuhina Banerjee, Nilamben Panchal, Carissa Sutton, Rebekah Elliott, Truptiben Patel, Kajal Kajal, Eniola Arogunyo, Neelima Koti and Santimukul Santra
Biosensors 2023, 13(1), 109; https://doi.org/10.3390/bios13010109 - 7 Jan 2023
Cited by 7 | Viewed by 3821
Abstract
Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low [...] Read more.
Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin–spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens. Full article
Show Figures

Figure 1

10 pages, 5450 KB  
Article
A Novel Method to Formulate Pigmented Powder Coatings by Ultrafine Powders
by Lang Li, Liyi Xu, Marshall Shuai Yang, Jinbao Huang, Hui Zhang and Jesse Zhu
Powders 2022, 1(4), 221-230; https://doi.org/10.3390/powders1040015 - 17 Nov 2022
Viewed by 3301
Abstract
Powder coatings are a green alternative to conventional solvent-borne liquid coatings, but they have the intrinsic drawback of color-matching and adjustment in production with the conventional extrusion process. In this study, an industrially applicable approach to formulate color powder coatings utilizing ultrafine powders, [...] Read more.
Powder coatings are a green alternative to conventional solvent-borne liquid coatings, but they have the intrinsic drawback of color-matching and adjustment in production with the conventional extrusion process. In this study, an industrially applicable approach to formulate color powder coatings utilizing ultrafine powders, i.e., a powdery blending and pressing method, was invented. This novel method was validated by comparing samples prepared by the Method 1 conventional extrusion method with an extra ultramarine pigment at 3%; Method 2 powdery blending and pressing of the original coatings and the same coating with 6% ultramarine pigment utilizing regular (coarse) powder coatings; and Method 3 utilizing ultrafine powder coatings for the two coatings with the same formulations as Method 2. The coating powders were prepared to have similar particle sizes and particle size distributions, with three commonly used coating binders, namely polyester-epoxy hybrid, polyester/TGIC (triglycidyl isocyanurate), and polyurethane (PU). The powders prepared by Methods 1 and 3 had similar flow abilities in terms of angle of repose (AOR) and avalanche angle (AVA). The performance of the new coatings by Method 3 was close to or better than the ones prepared by Method 1 in terms of the specular gloss, DOI (distinctness-of-image), reflection haze and color values, being superior to Method 2. The coatings via ultrafine powders also exhibited a comparable ultramarine particle distribution in the coating cross-sections as the conventional ones, whereas the ones via regular powders had an inferior pigment dispersion. The new method can greatly enhance the production efficiency and reduce the cost of powder coatings with compound colors, especially for small batch manufacturing. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Figure 1

19 pages, 22356 KB  
Article
Durability and Corrosion Properties of Waterborne Coating Systems on Mild Steel Dried under Atmospheric Conditions and by Infrared Radiation
by Ivan Stojanović, Ivan Cindrić, Lovro Turkalj, Marin Kurtela and Daniela Rakela-Ristevski
Materials 2022, 15(22), 8001; https://doi.org/10.3390/ma15228001 - 12 Nov 2022
Cited by 7 | Viewed by 2775
Abstract
Increasing attention is given to waterborne coatings for corrosion protection due to the lower ecological impact on the environment. It has been found that by using waterborne coatings, the emission of harmful volatile organic compounds (VOCs) is reduced by more than 50 g/L. [...] Read more.
Increasing attention is given to waterborne coatings for corrosion protection due to the lower ecological impact on the environment. It has been found that by using waterborne coatings, the emission of harmful volatile organic compounds (VOCs) is reduced by more than 50 g/L. However, they require longer drying time, their anti-corrosion performance is not as good as solvent-borne coatings and they still have not been developed for all corrosion environments. Another way to reduce VOCs is by using infrared (IR) drying technology. With catalytic infrared radiation, it is possible to cure all surfaces at notably reduced costs compared to traditional systems and in total respect for the environment, thanks to significant energy savings and minimal CO2 emissions. The aim of this paper was to evaluate corrosion protective properties of waterborne coatings which were dried with traditional and accelerated drying techniques, i.e., under atmospheric conditions and by using IR technology. Two different coating systems were applied, with and without Zn in the primer. To achieve this goal, the test samples were subjected to electrochemical, corrosion, and physical tests. It was shown that infrared technology does not affect the quality of the coating and it drastically reduces the intercoating interval. A coating system with zinc in the primer showed better overall protection properties after being subjected to impedance and salt spray testing, but generally, solvent-borne coatings still have higher durability than waterborne in extreme marine conditions according to recent research. Microstructure and porosity remained intact and the atomic force microscope confirmed that the flash-off was conducted correctly since there were no pinholes and blisters detected on the coating’s surface. This study can serve as a foundation for further investigations of IC-dried waterborne coatings because there are not many at the moment. Full article
(This article belongs to the Topic Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

19 pages, 4844 KB  
Article
A Mechanistic Study on the Anti-Corrosive Performance of Zinc-Rich Polyester/TGIC Powder Coatings
by Marshall Shuai Yang, Jinbao Huang, James Joseph Noël, Jian Chen, Ivan Barker, Jeffrey Daniel Henderson, Hui Zhang, Haiping Zhang and Jesse Zhu
Processes 2022, 10(9), 1853; https://doi.org/10.3390/pr10091853 - 14 Sep 2022
Cited by 9 | Viewed by 4943
Abstract
Powder coatings represent an environmentally friendly VOC-free alternative to widely used solvent-borne zinc-rich coatings, with economic and ecological benefits. In particular, powder coatings have several advantageous properties, such as chemical resistance and mechanical strength. However, the performance and characteristics of polyester-based zinc-containing powder [...] Read more.
Powder coatings represent an environmentally friendly VOC-free alternative to widely used solvent-borne zinc-rich coatings, with economic and ecological benefits. In particular, powder coatings have several advantageous properties, such as chemical resistance and mechanical strength. However, the performance and characteristics of polyester-based zinc-containing powder coatings remain unknown. In this study, the corrosion performance of polyester powder coatings containing up to 80% zinc is compared. Electrochemical and salt-spray testing results indicate that coatings formulated with 80% zinc demonstrate superior anti-corrosive properties than coatings with lower zinc dosages. Two distinct behavioral phases of the coating with 80% zinc were observed by measurements of open circuit potential (OCP) and polarization resistance (Rp) during immersion tests—a phase indicative of a barrier effect and a phase consistent with galvanic protection. The evolution of the coating was further characterized and interpreted as five stages by electrochemical impedance spectroscopy (EIS), and the mechanistic details were discussed. This UV-resistant single-layer powder coating has the potential to replace the commonly used high-VOC multi-layer liquid coating systems at a significantly lower cost. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Graphical abstract

16 pages, 15558 KB  
Article
Performance Assessment of Differently Dried Coating Systems for Potential Application in the Power Transformer Industry
by Ivan Stojanović, Ivan Cindrić, Lara Janković, Vinko Šimunović and Hrvoje Franjić
Coatings 2022, 12(3), 331; https://doi.org/10.3390/coatings12030331 - 2 Mar 2022
Cited by 5 | Viewed by 3186
Abstract
Many companies in the power transformer industry are striving to speed up the drying process of coatings, which is why alternative drying methods are constantly being explored while maintaining the same coating protection properties. The infrared (IR) drying of protective coatings is a [...] Read more.
Many companies in the power transformer industry are striving to speed up the drying process of coatings, which is why alternative drying methods are constantly being explored while maintaining the same coating protection properties. The infrared (IR) drying of protective coatings is a potential solution for their higher productivity, but has not yet been extensively investigated. In this paper, two solvent-borne coating systems, with and without zinc in the primer, from two different manufacturers, dried by infrared radiation and under atmospheric conditions, were studied. The coating systems consisted of epoxy primer, epoxy intermediate coat, and polyurethane topcoat. Anti-corrosion performance of the coatings was characterized using a salt spray chamber, pull-off adhesion testing, electrochemical impedance spectroscopy (EIS) investigation, and open circuit potential (OCP) measurement. All samples were analyzed using stereo microscope. A scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX) for detailed study and chemical composition determination was used. The results showed that infrared technology notably reduced coating drying times while maintaining or improving anticorrosion performance properties compared to the coatings dried under atmospheric conditions. Full article
Show Figures

Figure 1

11 pages, 17528 KB  
Article
Application of Waterborne Acrylic and Solvent-Borne Polyester Coatings on Plasma-Treated Fir (Abies alba M.) Wood
by Hadi Gholamiyan, Behnam Gholampoor and Reza Hosseinpourpia
Materials 2022, 15(1), 370; https://doi.org/10.3390/ma15010370 - 4 Jan 2022
Cited by 9 | Viewed by 2890
Abstract
This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated [...] Read more.
This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood. Full article
(This article belongs to the Special Issue Application of Natural Polymers in Bio-Based Products)
Show Figures

Figure 1

13 pages, 2635 KB  
Article
Thermoplastic Intumescent Coatings Modified with Pentaerythritol-Occluded Carbon Nanotubes
by Michał Tomczak, Jakub Łopiński, Agnieszka Kowalczyk and Krzysztof Kowalczyk
Materials 2021, 14(21), 6284; https://doi.org/10.3390/ma14216284 - 21 Oct 2021
Cited by 3 | Viewed by 2388
Abstract
A thermoplastic intumescent coating system (IC) based on poly(vinyl acetate) was modified by two forms of multiwalled carbon nanotubes (CNTs), i.e., by a nanofiller powder and its solid dispersions in pentaerythritol (PER-CNTs). It was revealed that only the PER-CNTs modifier allows us to [...] Read more.
A thermoplastic intumescent coating system (IC) based on poly(vinyl acetate) was modified by two forms of multiwalled carbon nanotubes (CNTs), i.e., by a nanofiller powder and its solid dispersions in pentaerythritol (PER-CNTs). It was revealed that only the PER-CNTs modifier allows us to obtain solvent-borne ICs with a relatively high CNTs concentration (1–3 wt. parts of CNTs/100 wt. parts of paint solids) and acceptable application viscosity. Thermal insulation time (TIT) and intumescent factor (IF) of the ICs on a steel substrate (a fire test according to a cellulosic fire curve), as well as morphology, chemical structure (by the FT-IR technique) and mechanical strength of the charred systems, were investigated. It was found that the CNTs powder decreases TIT and IF values while PER-occluded CNTs improve these parameters (e.g., +4.6 min and +102% vs. an unmodified sample, respectively). Compressive strength of the charred ICs was improved by the PER-CNTs modifier as well. Full article
Show Figures

Graphical abstract

Back to TopTop