Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = sonic environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2955 KiB  
Article
From Game to Concert: Exploratory Listening in ‘Stardew Valley: Festival of Seasons’ Concert Tour
by Natalie P. Miller and Elizabeth Hellmuth Margulis
Behav. Sci. 2025, 15(5), 667; https://doi.org/10.3390/bs15050667 - 13 May 2025
Viewed by 314
Abstract
Exploratory listening encompasses the various ways, contexts, and levels of attention with which listeners engage with their sonic environment. This paper presents findings from qualitative research conducted with audience members during the Stardew Valley: Festival of Seasons concert tour. During these events, attendees [...] Read more.
Exploratory listening encompasses the various ways, contexts, and levels of attention with which listeners engage with their sonic environment. This paper presents findings from qualitative research conducted with audience members during the Stardew Valley: Festival of Seasons concert tour. During these events, attendees encountered music from the widely successful indie video game, reorchestrated in a new context. Just as the game encourages exploration through open-ended gameplay, the concerts prompt listeners to explore how the rearranged music refers to and diverges from its use in the game. Findings suggest that attendees deployed their attention to divergent aspects of the music. While some attendees focused on specific musical aspects like recognizable melodies and instrumentation, others focused on the broader audiovisual and community aspects of the performance. Results also indicate that highly immersed listeners experience diverse thoughts, including those not directly about the immediate musical content. Positioning music-evoked imaginings as a way listeners become immersed in musical experiences, we report on how exploratory listening shapes the dynamics of attention, immersion, and enjoyment within musical and audiovisual contexts. Full article
(This article belongs to the Special Issue Music Listening as Exploratory Behavior)
Show Figures

Figure 1

23 pages, 13788 KiB  
Article
The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano
by Almo Farina and Timothy C. Mullet
Acoustics 2025, 7(2), 23; https://doi.org/10.3390/acoustics7020023 - 22 Apr 2025
Viewed by 254
Abstract
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high [...] Read more.
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high landscape heterogeneity, a result of widespread suburban agricultural abandonment and urban development. Sonic data were analyzed using the Sonic Heterogeneity Index and nine derivative metrics. The sonic signatures from 26 stations exhibited distinct, spatially explicit patterns that were hypothesized to be related to a set of 11 landcover types and seven landscape metrics. The unique sound profile of each sample site was consistent with the emerging heterogeneity of landcover typical of many Mediterranean regions. Some sonic indices exhibited stronger correlations with landscape metrics than others. In particular, the Effective Number of Frequency Bins Ratio (ENFBr) and Sheldon’s Evenness (E) proved particularly effective at revealing the link between sonic processes and landscape patterns. The sonoscape and landscape displayed correlations significantly aligned with their variability, highlighting the ecological heterogeneity of the sonic and physical domains in the study area. This case study underscores the importance of selecting appropriate metrics to describe complex ecological processes, such as the relationships and cause-and-effect dynamics of environmental sounds among human altered landscapes. Full article
Show Figures

Figure 1

23 pages, 9974 KiB  
Article
Environmental Toxicity of Cement Nanocomposites Reinforced with Carbon Nanotubes
by Eryk Goldmann, Edyta Kudlek, Oktawian Bialas, Marcin Górski, Marcin Adamiak and Barbara Klemczak
Materials 2025, 18(5), 1176; https://doi.org/10.3390/ma18051176 - 6 Mar 2025
Viewed by 578
Abstract
The addition of carbon nanotubes (CNTs) to cement matrix brings multiple beneficial effects ranging from improving mechanical and physical properties to the creation of smart materials. When subjected to an erosive environment or as end-of-life waste, mortars with CNT addition might get released [...] Read more.
The addition of carbon nanotubes (CNTs) to cement matrix brings multiple beneficial effects ranging from improving mechanical and physical properties to the creation of smart materials. When subjected to an erosive environment or as end-of-life waste, mortars with CNT addition might get released into the environment and come in contact with surface waters. The assessment of the environmental impact of mortars reinforced with carbon nanotubes is an important factor concerning their sustainability, as it has not yet been addressed in the literature. The presented paper aims to assess the water toxicity of cement mortars with various dosages of 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% of carbon nanotube. The effect of the quality of water dispersion of CNTs was also considered through two sonication times of the suspension: 20 min and 60 min. Tests using indicator organisms, Aliivibrio fischeri, Daphnia magna, and Lemna minor, were conducted on shredded and non-shredded mortars. The results reveal no to low toxicity for all tested mortars under the assumed framework of toxicity assessment. The toxicity results for samples containing CNTs were comparable to those without CNTs, indicating that the toxicity of mortars incorporating CNTs is not greater than that of conventional cement-based materials. The water toxicity of the cement mortars is rather connected with the washing away of the hydration products more than with the presence of carbon nanotubes. Full article
(This article belongs to the Special Issue Special Functional and Environmental Cement-Based Materials)
Show Figures

Figure 1

20 pages, 8406 KiB  
Article
Mechanical and Microstructural Behavior of Cemented Paste Backfill Under Cyclic Loading
by Amin Safari, Abbas Taheri and Murat Karakus
Minerals 2025, 15(2), 123; https://doi.org/10.3390/min15020123 - 26 Jan 2025
Viewed by 704
Abstract
Understanding the mechanical and physical behavior of aged CPB under cyclic loading is a significant area of research. Many parameters such as cementation (hydration) and the microstructure, which dictate the arrangement of particles and permeability, affect the mechanical features of cemented paste backfill [...] Read more.
Understanding the mechanical and physical behavior of aged CPB under cyclic loading is a significant area of research. Many parameters such as cementation (hydration) and the microstructure, which dictate the arrangement of particles and permeability, affect the mechanical features of cemented paste backfill (CPB). The impact of a wide range of external energy sources within the mining environment, such as cyclic loading resulting from long-term blasting, can significantly alter the applied stresses on the backfill mass. This paper aims to delve into this crucial area of research. A series of uniaxial cyclic tests were conducted on CPB, utilizing samples made from tailing materials sourced from a copper mine in South Australia. Different loading levels were applied at various curing times. All samples exhibited cyclic loading hardening behavior for cyclic loading levels between 80% and 93% of monotonic unconfined compressive strength (UCS), and a cyclic loading damage behavior was observed for 96% of UCS loading level for both 14- and 28-day curing periods. To further investigate these findings, scanning electron microscope analysis as well as sonic velocity tests were conducted for capturing microstructural changes in the samples before and after tests. These findings can be used to indicate a safe firing distance to a filled mass. Full article
Show Figures

Figure 1

17 pages, 2312 KiB  
Article
Green Chemistry Method for Analyzing Bisphenol A in Milk
by Angela M. Encerrado Manriquez and Wen-Yee Lee
Separations 2025, 12(2), 25; https://doi.org/10.3390/separations12020025 - 25 Jan 2025
Viewed by 966
Abstract
A simple, fast, green, and sensitive method for determining Bisphenol A (BPA) levels in commercial milk was developed using a solventless sample preparation technique known as stir bar sorptive extraction, coupled with thermal desorption–gas chromatography/mass spectrometry. BPA was selected due to its ubiquitous [...] Read more.
A simple, fast, green, and sensitive method for determining Bisphenol A (BPA) levels in commercial milk was developed using a solventless sample preparation technique known as stir bar sorptive extraction, coupled with thermal desorption–gas chromatography/mass spectrometry. BPA was selected due to its ubiquitous presence in the environment and its classification as an endocrine-disrupting chemical of concern (i.e., its ability to mimic hormone functions). Studies have reported that BPA can leach into various food sources, including milk, a dietary staple for infants. It is critical to have an effective and efficient process for monitoring the presence of BPA in milk to protect children’s health. Current detection methods for BPA in milk are lengthy and tedious and tend to require the use of organic solvents for the extraction of BPA. This optimized “green” method provides an effective alternative for BPA detection in a challenging matrix, e.g., milk. Factors such as pH (1.5, 6, and 13), temperature (70–80 °C), and sonication (1 h, 2 h, and 3 h) were studied with a BPA-spiked whole milk sample (final concentration of 8 ppb) to optimize the extraction efficiency without the use of solvents. The developed methodology improves BPA recovery from whole milk by over 50%, with a detection limit in the parts per trillion range (45 ng/L). The sample preparation developed in this report rendered a more sensitive option for analyzing BPA in milk, with a limit of detection in the parts per trillion range (compared to low ppb) even though the recovery performance is not as good as in reported studies (54% vs. >85%); nonetheless, it provides a green alternative for future studies assessing BPA exposure through dairy products. Full article
Show Figures

Figure 1

30 pages, 7703 KiB  
Article
Numerical Simulation and Comprehensive Analysis of Double-Layer Elastic Acoustic Materials as Proppants for Sonic Logging
by Xiao Guo, Yanji Lin, Yujiang Guo, Zuo Chen, Yuan Gao, Jianfu Zhang, Pingfa Feng and Xiangyu Zhang
Coatings 2025, 15(1), 113; https://doi.org/10.3390/coatings15010113 - 20 Jan 2025
Viewed by 813
Abstract
This study presents a comprehensive numerical and theoretical investigation into the acoustic scattering properties of double-layer elastic spheres, designed as functional particles for enhancing sonic logging accuracy in reservoir exploration. By analyzing the normalized maximum scattering sound field under various external conditions, the [...] Read more.
This study presents a comprehensive numerical and theoretical investigation into the acoustic scattering properties of double-layer elastic spheres, designed as functional particles for enhancing sonic logging accuracy in reservoir exploration. By analyzing the normalized maximum scattering sound field under various external conditions, the research identifies critical parameters influencing acoustic scattering performance, including incident wave frequency, outer particle radius, and the elastic modulus of the outer material. The results demonstrate that the normalized maximum scattering field for a single-layer elastic sphere is approximately 2.0, while the introduction of a double-layer configuration increases this value to around 2.5, representing a 25% improvement in scattering performance. This enhancement underscores the effectiveness of the double-layer structure in optimizing scattering characteristics, particularly under challenging operational conditions. These findings provide a robust theoretical framework for the design and application of intelligent acoustic materials, enabling precise acoustic field control and improved logging accuracy in complex reservoir environments. This work advances the interdisciplinary understanding of acoustics and materials science, offering innovative insights into the development of next-generation sonic logging technologies for demanding exploration scenarios. Full article
Show Figures

Figure 1

26 pages, 13796 KiB  
Article
The BIRDIES Experiment: Measuring Beryllium Isotopes to Resolve Dynamics in the Stratosphere
by Sonia Wharton, Alan J. Hidy, Thomas S. Ehrmann, Wenbo Zhu, Shaun N. Skinner, Hassan Beydoun, Philip J. Cameron-Smith, Marisa Repasch, Nipun Gunawardena, Jungmin M. Lee, Ate Visser, Matthew Griffin, Samuel Maddren and Erik Oerter
Atmosphere 2024, 15(12), 1502; https://doi.org/10.3390/atmos15121502 - 17 Dec 2024
Viewed by 1156
Abstract
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in [...] Read more.
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in the mid-stratosphere called Beryllium Isotopes for Resolving Dynamics in the Stratosphere (BIRDIES). BIRDIES targeted gravity waves produced by tropopause-overshooting convection to study their propagation and impact on STE dynamics, including the production of turbulence in the stratosphere. Two custom-designed payloads called FiSH and GASP were flown at altitudes approaching 30 km to measure in situ turbulence and beryllium isotopes (on aerosols), respectively. These were flown on nine high-altitude balloon flights over Kansas, USA, in summer 2022. The atmospheric samples were augmented with a ground-based rainfall collection targeting isotopic signatures of deep convection overshooting. Our GASP samples yielded mostly negligible amounts of both 10Be and 7Be collected in the mid-stratosphere but led to design improvements to increase aerosol capture in low-pressure environments. Observations from FiSH and the precipitation collection were more fruitful. FiSH showed the presence of turbulent velocity, temperature, and acoustic fluctuations in the stratosphere, including length scales in the infra-sonic range and inertial subrange that indicated times of elevated turbulence. The precipitation collection, and subsequent statistical analysis, showed that large spatial datasets of 10Be/7Be can be measured in individual rainfall events with minimum terrestrial contamination. While the spatial patterns in rainfall suggested some evidence for overshooting convection, inter-event temporal variability was clearly observed and predicted with good agreement using the 3D chemical transport model GEOS-CHEM. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 2051 KiB  
Article
Facultatively Anaerobic Staphylococci Enable Anaerobic Cutibacterium Species to Grow and Form Biofilms Under Aerobic Conditions
by Jeffrey B. Kaplan, Michael Assa, Noor Mruwat, Miloslav Sailer, Suresh Regmi and Khalaf Kridin
Microorganisms 2024, 12(12), 2601; https://doi.org/10.3390/microorganisms12122601 - 16 Dec 2024
Cited by 1 | Viewed by 1739
Abstract
Facultatively anaerobic Staphylococcus spp. and anaerobic Cutibacterium spp. are among the most prominent bacteria on human skin. Although skin microbes generally grow as multispecies biofilms, few studies have investigated the interaction between staphylococci and Cutibacterium spp. in dual-species biofilms. Here, we measured the [...] Read more.
Facultatively anaerobic Staphylococcus spp. and anaerobic Cutibacterium spp. are among the most prominent bacteria on human skin. Although skin microbes generally grow as multispecies biofilms, few studies have investigated the interaction between staphylococci and Cutibacterium spp. in dual-species biofilms. Here, we measured the mono- and dual-species biofilm formation of four staphylococcal species (S. epidermidis, S. hominis, S. capitis, and S. aureus) and two Cutibacterium spp. (C. acnes and C. avidum) cultured in vitro under both aerobic and anaerobic conditions. The biofilms were quantitated by rinsing them to remove planktonic cells, detaching the biofilm bacteria via sonication, and enumerating the cells by dilution plating. When cultured alone, staphylococci formed biofilms under both aerobic and anaerobic conditions, whereas Cutibacterium spp. formed biofilms only under anaerobic conditions. In co-culture, staphylococcal biofilm formation was unaffected by the presence of Cutibacterium spp., regardless of oxygen availability. However, Cutibacterium spp. biofilm formation was significantly enhanced in the presence of staphylococci, enabling robust growth under both anaerobic and aerobic conditions. Fluorescence confocal microscopy of the aerobic dual-species biofilms suggested that staphylococci create anaerobic niches at the base of the biofilm where C. acnes can grow. These findings demonstrate that staphylococci facilitate the colonization of Cutibacterium spp. in oxygen-rich environments, potentially explaining their presence in high numbers on the oxygen-exposed stratum corneum. Full article
Show Figures

Figure 1

16 pages, 3077 KiB  
Article
Comparison Between Numerical and Experimental Methodologies for Total Enthalpy Determination in Scirocco PWT
by Antonio Smoraldi and Luigi Cutrone
Aerospace 2024, 11(12), 1023; https://doi.org/10.3390/aerospace11121023 - 14 Dec 2024
Viewed by 873
Abstract
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had [...] Read more.
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had not yet been conducted. This study evaluates three experimental techniques—the sonic throat method, the heat balance method, and the heat transfer method—under various operating conditions in the Scirocco facility, employing a nozzle C configuration (10° half-angle conical nozzle with a 90 cm exit diameter). These methods are compared with computational fluid dynamics (CFDs) simulations to address discrepancies between experimental and predicted enthalpy and heat flux values. Significant deviations between measured and simulated results prompted a reassessment of the numerical and experimental models. Initially, the Navier–Stokes model, which assumes chemically reacting, non-equilibrium flows and fully catalytic copper walls, underestimated the heat flux. By incorporating partial catalytic behavior for the copper probe surface, the CFD results showed better agreement with the experimental data, providing a more accurate representation of heat flux and flow enthalpy within the test environment. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

14 pages, 1503 KiB  
Article
Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS)
by Giuseppe Ianiri, Alessandra Fratianni, Pasquale Avino and Gianfranco Panfili
Atmosphere 2024, 15(12), 1402; https://doi.org/10.3390/atmos15121402 - 22 Nov 2024
Viewed by 865
Abstract
Plant leaves can be used to determine the atmospheric deposition of organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), to assess the contamination status of an area. The purpose of this study was to develop an analytical method for the determination of PAHs deriving [...] Read more.
Plant leaves can be used to determine the atmospheric deposition of organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), to assess the contamination status of an area. The purpose of this study was to develop an analytical method for the determination of PAHs deriving from atmospheric deposition using Malva sylvestris leaves. Analytes were recovered from the leaves of the plant using cyclohexane as an organic solvent and subsequent sonication. The percentage recoveries (R%) were good (from 65.8 ± 3.2 to 104.2 ± 16.9), together with the instrumental analytical parameters, including correlation coefficients (r) ≥ 0.995 for all PAHs. The instrumental analysis was carried out using GC-MS in total ion current and single ion monitoring at the same time. Real samples taken from urban environments have shown that they are not always the most contaminated. At the Palermo site, leaves were observed to have high amounts of PAHs due to the deposition of dust generated by combustion processes that occurred near the sampling site. Further studies are recommended to compare the use of plants and classical sampling systems for monitoring the atmospheric deposition of key contaminants toxic to human health. Full article
Show Figures

Figure 1

12 pages, 2557 KiB  
Brief Report
Reduced Salivary Gustin and Statherin in Long-COVID Cohort with Impaired Bitter Taste
by Harika Chowdary, Naomi Riley, Parul Patel, Ana G. Gossweiler, Cordelia A. Running and Mythily Srinivasan
J. Clin. Med. 2024, 13(22), 6816; https://doi.org/10.3390/jcm13226816 - 13 Nov 2024
Viewed by 1133
Abstract
Background/Objectives: Taste dysfunction is a frequent symptom of acute coronavirus disease (COVID)-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While the majority of those affected reported recovery over time, emerging data suggest that 20–25% of individuals experience persistent taste dysfunction, [...] Read more.
Background/Objectives: Taste dysfunction is a frequent symptom of acute coronavirus disease (COVID)-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While the majority of those affected reported recovery over time, emerging data suggest that 20–25% of individuals experience persistent taste dysfunction, constituting a common symptom of long COVID. Gustation is mediated by continuously renewing taste bud cells. A balance between the counteracting processes of cell generation and cell death maintains the homeostatic turnover. Sonic hedgehog (SHH) is a morphogenic protein that promotes taste cell proliferation and differentiation. Enzymatic proteins such as gustin modulate the environment around the taste receptors and influence taste perception. Hence, we hypothesized that increased taste cell turnover and reduced taste-related salivary proteins contribute to the taste dysfunction in long COVID. Methods: Unstimulated whole saliva (UWS) was collected from individuals with long COVID experiencing taste dysfunction after obtaining informed consent. The normal control included archived saliva samples catalogued prior to 2019. Taste perception was objectively determined by the waterless empirical taste test. The SHH, gustin, and inflammatory cytokines in UWS were determined with ELISA. The expressions of epithelial and taste-cell-specific markers in cellular saliva were assessed by immunoflurorescence. Results: Impaired bitter taste was the most common dysfunction in the long-COVID cohort. Salivary gustin was significantly lower in those with long COVID and correlated with lower bitter taste score. Cellular saliva showed keratin-10- and small-proline-rich protein-positive epithelial cells as well as SHH-, occluding- and KCNQ1-positive taste cells. Conclusions: Salivary gustin could be a marker for impaired bitter taste in long COVID. Full article
(This article belongs to the Special Issue Novel Insights into COVID-19-Associated Complications and Sequelae)
Show Figures

Figure 1

25 pages, 8432 KiB  
Article
Numerical Investigation of Jet-Propelled Multiple-Vehicle Hyperloop System Considering the Suspension Gap
by Seraj Alzhrani, Mohammed M. Abdulla, Khalid Juhany and Ibraheem AlQadi
Sustainability 2024, 16(21), 9465; https://doi.org/10.3390/su16219465 - 31 Oct 2024
Cited by 1 | Viewed by 1008
Abstract
The Hyperloop system offers revolutionary transportation, aiming for near-sonic speeds in a low-pressure environment. The aerodynamic design challenges of multiple vehicles in a confined tube remain largely unexplored, particularly regarding vehicle spacing and suspension gaps. This study investigates a jet-propelled, multi-vehicle Hyperloop system [...] Read more.
The Hyperloop system offers revolutionary transportation, aiming for near-sonic speeds in a low-pressure environment. The aerodynamic design challenges of multiple vehicles in a confined tube remain largely unexplored, particularly regarding vehicle spacing and suspension gaps. This study investigates a jet-propelled, multi-vehicle Hyperloop system using Reynolds-Averaged Navier–Stokes (RANS) equations and the kω turbulence model. Analysis of suspension gaps and vehicle spacing on drag and thrust revealed that suspension gaps cause significant jet deflection, reducing effective thrust and increasing drag. It was found that vehicle suspension, with a 75 mm suspension gap, increased drag by 58% at Mach 0.7 compared to the unsuspended configuration. Meanwhile, smaller vehicle spacing (Xv=0.25Lv) reduced the drag by up to 50%, enhancing system efficiency. The results emphasize the need to address the effect of jet deflection and optimize vehicle spacing for maximum energy savings. These findings offer valuable insights for enhancing aerodynamic performance in multi-vehicle Hyperloop systems. Full article
(This article belongs to the Special Issue Sustainable Transportation and Logistics Optimization)
Show Figures

Figure 1

14 pages, 2024 KiB  
Article
Evaluation of the OpTest Fiber Quality Analyzer for Quantifying Cotton and Rayon Microfibers
by Michael Santiago Cintron and Christopher D. Delhom
Fibers 2024, 12(10), 81; https://doi.org/10.3390/fib12100081 - 29 Sep 2024
Cited by 1 | Viewed by 1043
Abstract
Microfibers are small fiber particles that separate from larger textiles through wear abrasion or home laundering. Pervasive accumulation of synthetic microfibers in the environment is motivating efforts to quantify them, and to gain a better understanding of the factors that lead to their [...] Read more.
Microfibers are small fiber particles that separate from larger textiles through wear abrasion or home laundering. Pervasive accumulation of synthetic microfibers in the environment is motivating efforts to quantify them, and to gain a better understanding of the factors that lead to their release from garments. Automated imaging systems have been previously employed for the quantification of synthetic and natural microfibers. In the current study, a rayon standard and microfibers sourced from scoured cotton HVI calibration standards were examined with the Fiber Quality Analyzer-360 (FQA) automated imaging system. Mechanically stirred suspensions of six cotton microfiber standards showed significantly lower fiber counts than those obtained with a rayon standard. Probe sonication of the sample suspensions significantly increased observed fiber counts for the cotton standard samples, by 105% on average. Mean length determinations decreased by, on average, 5% for the sonicated samples, an indication that count increases were not due to sample fragmentation. No significant change was observed for the fiber counts or length measurements of the sonicated rayon samples. The sonicated cotton samples showed an average of 95% detection by the FQA. These results highlight the importance of proper microfiber suspension for accurate detection and quantification using the FQA system. Full article
Show Figures

Figure 1

17 pages, 4849 KiB  
Article
SHH Signaling as a Key Player in Endometrial Cancer: Unveiling the Correlation with Good Prognosis, Low Proliferation, and Anti-Tumor Immune Milieu
by V. P. Snijesh, Shivakumar Krishnamurthy, Vipul Bhardwaj, K. M. Punya, Ashitha S. Niranjana Murthy, Mahmoud Almutadares, Wisam Tahir Habhab, Khalidah Khalid Nasser, Babajan Banaganapalli, Noor Ahmad Shaik and Walaa F. Albaqami
Int. J. Mol. Sci. 2024, 25(19), 10443; https://doi.org/10.3390/ijms251910443 - 27 Sep 2024
Cited by 3 | Viewed by 1602
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies. Despite its prevalence, molecular pathways, such as the Sonic Hedgehog (SHH) pathway, have not been extensively studied in the context of EC. This study aims to explore the clinical implications of SHH [...] Read more.
Endometrial Cancer (EC) is one of the most common gynecological malignancies. Despite its prevalence, molecular pathways, such as the Sonic Hedgehog (SHH) pathway, have not been extensively studied in the context of EC. This study aims to explore the clinical implications of SHH expression in EC, potentially uncovering new insights into the disease’s pathogenesis and offering valuable insights for therapeutic strategies in EC. We utilized data from The Cancer Genome Atlas (TCGA) to divide the dataset into ‘High SHH’ and ‘Low SHH’ groups based on a gene signature score derived from SHH pathway-related genes. We explored the clinical and tumor characteristics of these groups, focusing on key cancer hallmarks, including stemness, proliferation, cytolytic activity, tumor micro-environment, and genomic instability. ‘High SHH’ tumors emerged as a distinct category with favorable clinical and molecular features. These tumors exhibited lower proliferation rates, reduced angiogenesis, and diminished genomic instability, indicating a controlled and less aggressive tumor growth pattern. Moreover, ‘High SHH’ tumors displayed lower stemness, highlighting a less invasive phenotype. The immune micro-environment in ‘High SHH’ tumors was enriched with immune cell types, such as macrophage M0, monocytes, B cells, CD8 T cells, CD4 T cells, follicular helper T cells, and natural killer cells. This immune enrichment, coupled with higher cytolytic activity, suggested an improved anti-tumor immune response. Our study sheds light on the clinical significance of Sonic signaling in EC. ‘High SHH’ tumors exhibit a unique molecular and clinical profile associated with favorable cancer hallmarks, lower grades, and better survival. These findings underscore the potential utility of SHH expression as a robust prognostic biomarker, offering valuable insights for tailored therapeutic strategies in EC. Understanding the SHH pathway’s role in EC contributes to our growing knowledge of this cancer and may pave the way for more effective treatment strategies in the future. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2071 KiB  
Article
The Side-Release Method Measures the High-Pressure Sound Velocity of Iron Using Line-Spatially Resolved DISAR
by Long Chen, Cangli Liu, Longhuang Tang, Heli Ma, Xing Jia, Tianjiong Tao, Shenggang Liu, Yongchao Chen, Xiang Wang, Jian Wu, Chengjun Li, Dameng Liu, Jidong Weng and Huan Liu
Micromachines 2024, 15(9), 1165; https://doi.org/10.3390/mi15091165 - 20 Sep 2024
Viewed by 1185
Abstract
The study of high-pressure sound velocity is an important part of shock wave physics, and the study of ultra-high pressure sound velocity of iron is of great significance to many research fields such as geophysics, solid state physics, and crystallography. At present, the [...] Read more.
The study of high-pressure sound velocity is an important part of shock wave physics, and the study of ultra-high pressure sound velocity of iron is of great significance to many research fields such as geophysics, solid state physics, and crystallography. At present, the measurement of sound velocity is usually carried out by the catch-up sparse wave method and windowed VISAR technology, which is complex in structure and not highly adaptable. In particular, for the ultra-high pressure sonic velocity measurement of metals, it is limited by the loading platform and window materials and cannot realize the high temperature and high-pressure environment of the earth’s inner core. In this paper, the sound velocity measurement of iron under high temperature and high-pressure environment (78 GPa) is realized based on the two-stage light gas cannon experimental platform. The side-side sparse wave method was used to establish a coupling model of high-spatially resolved optical group and fiber bundle. A multiplexed all-fiber laser interferometry velocity measurement system (DISAR) was built, and the spatial resolution was better than 20 μm. In this paper, we will provide a feasible route for a method for measuring the high spatiotemporal resolution velocity. Full article
Show Figures

Figure 1

Back to TopTop