Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = spacecraft characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4822 KB  
Article
Handheld Dual-Point Docking Mechanism for Spacecraft On-Orbit Service of Large-Scale Payloads
by Runqi Han, Weisong Liu, Botao Lin, Bo Wang and Yushu Bian
Machines 2025, 13(9), 782; https://doi.org/10.3390/machines13090782 - 1 Sep 2025
Viewed by 283
Abstract
The rapid development of spacecraft on-orbit services has increased the requirements for docking technology, especially for large-scale payloads that exceed the launch envelope. Docking technology based on astronaut extravehicular activities is one of the most promising directions for on-orbit services. In view of [...] Read more.
The rapid development of spacecraft on-orbit services has increased the requirements for docking technology, especially for large-scale payloads that exceed the launch envelope. Docking technology based on astronaut extravehicular activities is one of the most promising directions for on-orbit services. In view of this, this paper designs and characterizes a handheld double-point docking mechanism for assembling large-scale payloads that is suitable for extravehicular activity (EVA) in dual-astronaut collaborative operations. It achieves the functional decoupling of docking, locking, unlocking, and separation throughout the whole process. The mechanism also has excellent design for human factors engineering, allowing astronauts to change hands, operate with one hand, and apply limited force. The mechanism adopts a dual-point probe–drogue configuration, while the misalignment tolerance design guarantees the docking accuracy and the operating range, and forms a rigid structural connection through a force amplification mechanism. Theoretical analysis and numerical simulations are implemented to estimate the dynamics, statics, and kinematics of the docking process. Corresponding experiments of the prototype are also conducted, including high–low temperature dynamics, docking tests, and kinematic tolerance experiments. The experiments validate the finite element analysis and verify the actual performance of the mechanism. The designed handheld dual-point docking mechanism was successfully applied for the first time by the Shenzhou 15 crew on China’s Space Station in March 2023. This paves a new road for spacecraft on-orbit service of large-scale payloads by EVAs, providing guidance as well as a technical foundation for the on-orbit construction of large spacecraft in the future. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

28 pages, 67788 KB  
Article
YOLO-GRBI: An Enhanced Lightweight Detector for Non-Cooperative Spatial Target in Complex Orbital Environments
by Zimo Zhou, Shuaiqun Wang, Xinyao Wang, Wen Zheng and Yanli Xu
Entropy 2025, 27(9), 902; https://doi.org/10.3390/e27090902 - 25 Aug 2025
Viewed by 391
Abstract
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small [...] Read more.
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small targets that are easily obscured by background noise and characterized by low local information entropy, many existing object detection frameworks struggle to achieve high accuracy with low computational cost. To address this challenge, we propose YOLO-GRBI, an enhanced detection network designed to balance accuracy and efficiency. A reparameterized ELAN backbone is adopted to improve feature reuse and facilitate gradient propagation. The BiFormer and C2f-iAFF modules are introduced to enhance attention to salient targets, reducing false positives and false negatives. GSConv and VoV-GSCSP modules are integrated into the neck to reduce convolution operations and computational redundancy while preserving information entropy. YOLO-GRBI employs the focal loss for classification and confidence prediction to address class imbalance. Experiments on a self-constructed spacecraft dataset show that YOLO-GRBI outperforms the baseline YOLOv8n, achieving a 4.9% increase in mAP@0.5 and a 6.0% boost in mAP@0.5:0.95, while further reducing model complexity and inference latency. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

17 pages, 5026 KB  
Article
Numerical Investigation on Thermally Induced Self-Excited Thermoacoustic Oscillations in the Pipelines of Cryogenic Storage Systems
by Liu Liu, Cong Zhuo, Yongqing Liu and Geng Chen
Symmetry 2025, 17(8), 1361; https://doi.org/10.3390/sym17081361 - 20 Aug 2025
Viewed by 342
Abstract
Spacecraft and satellites are equipped with cryogenic storage systems to maintain instruments and engines at optimal operating temperatures. However, in cryogenic storage tanks, the steep temperature gradient along the pipeline (arising from sections inside and outside the tank) may induce instability in stored [...] Read more.
Spacecraft and satellites are equipped with cryogenic storage systems to maintain instruments and engines at optimal operating temperatures. However, in cryogenic storage tanks, the steep temperature gradient along the pipeline (arising from sections inside and outside the tank) may induce instability in stored gases such as helium or hydrogen, leading to large-amplitude, self-excited thermoacoustic oscillations, known as Taconis oscillations. Taconis oscillations not only cause structural damage to pipelines, jeopardizing the safety of the cryogenic storage system, but also produce significant heat leakage and boil-off losses of cryogens. This study employs computational fluid dynamics (CFD) to simulate Taconis oscillations within a U-shaped cryogenic helium pipeline. The flow dynamics and acoustic field characteristics of the cryogenic helium pipeline are first analyzed. Fast Fourier transform and wavelet transform are employed to characterize the Taconis oscillations. A subsequent parametric study investigates the influence of the location and magnitude of temperature gradients on the dynamic behavior of Taconis oscillations. Simulation results reveal that the onset temperature gradient is at a minimum when the temperature gradient is applied at one-quarter of the cryogenic pipeline. To prevent the occurrence of Taconis oscillations, the transition between the warm and cold sections should be away from one-quarter of the cryogenic helium pipe. Moreover, increasing the temperature gradient leads to the emergence of multiple oscillation modes and an upward shift in their natural frequencies. This research gives deeper insights into the dynamics of thermally induced thermoacoustic oscillations in cryogenic pipelines, providing guidelines for improving the efficiency and safety of cryogenic storage systems in aerospace engineering. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 2875 KB  
Article
Optimization of Test Mass Motion State for Enhancing Stiffness Identification Performance in Space Gravitational Wave Detection
by Ningbiao Tang, Ziruo Fang, Zhongguang Yang, Zhiming Cai, Haiying Hu and Huawang Li
Aerospace 2025, 12(8), 673; https://doi.org/10.3390/aerospace12080673 - 28 Jul 2025
Viewed by 265
Abstract
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making [...] Read more.
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making accurate stiffness identification crucial. In response to the question, this paper proposes a method to optimize the test mass motion state for enhancing stiffness identification performance. First, the dynamics of the test mass are studied and a recursive least squares algorithm is applied for the implementation of on-orbit stiffness identification. Then, the motion state of the test mass is parametrically characterized by multi-frequency sinusoidal signals as the variable to be optimized, with the optimization objectives and constraints of stiffness identification defined based on convergence time, convergence accuracy, and engineering requirements. To tackle the dual-objective, computationally expensive nature of the problem, a multigranularity surrogate-assisted evolutionary algorithm with individual progressive constraints (MGSAEA-IPC) is proposed. A fuzzy radial basis function neural network PID (FRBF-PID) controller is also designed to address complex control needs under varying motion states. Numerical simulations demonstrate that the convergence time after optimization is less than 2 min, and the convergence accuracy is less than 1.5 × 10−10 s−2. This study can provide ideas and design references for subsequent related identification and control missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 3216 KB  
Article
Orbital Behavior Intention Recognition for Space Non-Cooperative Targets Under Multiple Constraints
by Yuwen Chen, Xiang Zhang, Wenhe Liao, Guoning Wei and Shuhui Fan
Aerospace 2025, 12(6), 520; https://doi.org/10.3390/aerospace12060520 - 9 Jun 2025
Viewed by 925
Abstract
To address the issue of misclassification and diminished accuracy that is prevalent in existing intent recognition models for non-cooperative spacecraft due to the omission of environmental influences, this paper presents a novel recognition framework leveraging a hybrid neural network subject to multiple constraints. [...] Read more.
To address the issue of misclassification and diminished accuracy that is prevalent in existing intent recognition models for non-cooperative spacecraft due to the omission of environmental influences, this paper presents a novel recognition framework leveraging a hybrid neural network subject to multiple constraints. The relative orbital motion of the targets is characterized and categorized through the use of Clohessy–Wiltshire equations, forming the foundation of a constrained intention dataset employed for training and evaluation. Furthermore, the method incorporates a composite architecture combining a convolutional neural network (CNN), long short-term memory (LSTM) unit, and self-attention (SA) mechanism to enhance recognition performance. The experimental results demonstrate that the integrated CNN-LSTM-SA model attains a recognition accuracy of 98.6%, significantly surpassing traditional methods and neural network models. Additionally, it demonstrates high efficiency, indicating significant promise for practical applications in avoiding spacecraft collisions and performing orbital maneuvers. Full article
(This article belongs to the Special Issue Asteroid Impact Avoidance)
Show Figures

Figure 1

23 pages, 4317 KB  
Article
Cloud Opacity Variations from Nighttime Observations in Venus Transparency Windows
by Daria Evdokimova, Anna Fedorova, Nikolay Ignatiev, Mariya Zharikova, Oleg Korablev, Franck Montmessin and Jean-Loup Bertaux
Atmosphere 2025, 16(5), 572; https://doi.org/10.3390/atmos16050572 - 10 May 2025
Cited by 2 | Viewed by 642
Abstract
The thick cloud layer enshrouding Venus influences its thermal balance and climate evolution. However, our knowledge of total optical depth, spatial and temporal variations in the clouds is limited. We present the first complete study of the SPICAV IR spectrometer observations in the [...] Read more.
The thick cloud layer enshrouding Venus influences its thermal balance and climate evolution. However, our knowledge of total optical depth, spatial and temporal variations in the clouds is limited. We present the first complete study of the SPICAV IR spectrometer observations in the 1.28- and 1.31-µm atmospheric transparency windows during the Venus Express mission in 2006–2014. The nadir spectra were analyzed with one-dimensional multiple scattering radiative transfer model to obtain the variability of total cloud opacity on the Venus night side. The optical depth recomputed to 1 µm averages 36.7 with a standard deviation of 6.1. Cloud opacity depends on latitude, with a minimum at 50–55° N. In the Southern Hemisphere, this latitude dependence is less pronounced due to the reduced spatial resolution of the experiment, determined by the eccentricity of the spacecraft’s orbit. Cloud opacity exhibits strong variability at short time scales, mostly in the range of 25–50. The variability is more pronounced in the equatorial region. The lack of imaging capability limits the quantitative characterization of the periodicity. No persistent longitude or local time trends were detected. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

24 pages, 11695 KB  
Article
Experimental Investigation of PWM Throttling in a 50-Newton-Class HTP Monopropellant Thruster: Analysis of Pressure Surges and Oscillations
by Suk Min Choi and Christian Bach
Aerospace 2025, 12(5), 418; https://doi.org/10.3390/aerospace12050418 - 8 May 2025
Viewed by 543
Abstract
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead [...] Read more.
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead to pressure surges and oscillations in the propellant feed system, potentially compromising system reliability. This study investigates the influence of PWM parameters, specifically duty cycle and frequency, on pressure surges and oscillations in a 50-newton-class HTP monopropellant thruster. The objective is to identify stable operating conditions that mitigate these effects, thereby enhancing the reliability of PWM throttling for lander applications. An experimental setup was developed, including a 50-newton-class thruster with a MnO2/La/Al2O3 catalyst and a solenoid valve for PWM control. Cold flow tests using water characterized the valve response and water hammer effects, while hot fire tests with 90 wt.% HTP were used to evaluate thruster performance under steady-state and PWM conditions. Analytical methods, including Joukowsky’s equation and power spectral density analysis, were used to interpret the data and understand the underlying mechanisms. The results showed that while surge pressures generally aligned with steady-state values, specific PWM conditions led to amplified surges, particularly at low duty cycles. Additionally, high duty cycles induced chugging instability. The natural frequencies of the feed system were found to play a crucial role in these phenomena. Stable operating conditions were identified by avoiding duty cycles that cause constructive interference of pressure waves. This research demonstrates that by carefully selecting PWM parameters based on the feed system’s dynamic characteristics, pressure surges and oscillations can be minimized, ensuring reliable operation of HTP monopropellant thrusters in PWM throttling mode. These findings contribute to the development of more efficient and safer propulsion systems for spacecraft landers. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

17 pages, 7946 KB  
Article
Optical Camera Characterization for Feature-Based Navigation in Lunar Orbit
by Pierluigi Federici, Antonio Genova, Simone Andolfo, Martina Ciambellini, Riccardo Teodori and Tommaso Torrini
Aerospace 2025, 12(5), 374; https://doi.org/10.3390/aerospace12050374 - 26 Apr 2025
Viewed by 686
Abstract
Accurate localization is a key requirement for deep-space exploration, enabling spacecraft operations with limited ground support. Upcoming commercial and scientific missions to the Moon are designed to extensively use optical measurements during low-altitude orbital phases, descent and landing, and high-risk operations, due to [...] Read more.
Accurate localization is a key requirement for deep-space exploration, enabling spacecraft operations with limited ground support. Upcoming commercial and scientific missions to the Moon are designed to extensively use optical measurements during low-altitude orbital phases, descent and landing, and high-risk operations, due to the versatility and suitability of these data for onboard processing. Navigation frameworks based on optical data analysis have been developed to support semi- or fully-autonomous onboard systems, enabling precise relative localization. To achieve high-accuracy navigation, optical data have been combined with complementary measurements using sensor fusion techniques. Absolute localization is further supported by integrating onboard maps of cataloged surface features, enabling position estimation in an inertial reference frame. This study presents a navigation framework for optical image processing aimed at supporting the autonomous operations of lunar orbiters. The primary objective is a comprehensive characterization of the navigation camera’s properties and performance to ensure orbit determination uncertainties remain below 1% of the spacecraft altitude. In addition to an analysis of measurement noise, which accounts for both hardware and software contributions and is evaluated across multiple levels consistent with prior literature, this study emphasizes the impact of process noise on orbit determination accuracy. The mismodeling of orbital dynamics significantly degrades orbit estimation performance, even in scenarios involving high-performing navigation cameras. To evaluate the trade-off between measurement and process noise, representing the relative accuracy of the navigation camera and the onboard orbit propagator, numerical simulations were carried out in a synthetic lunar environment using a near-polar, low-altitude orbital configuration. Under nominal conditions, the optical measurement noise was set to 2.5 px, corresponding to a ground resolution of approximately 160 m based on the focal length, pixel pitch, and altitude of the modeled camera. With a conservative process noise model, position errors of about 200 m are observed in both transverse and normal directions. The results demonstrate the estimation framework’s robustness to modeling uncertainties, adaptability to varying measurement conditions, and potential to support increased onboard autonomy for small spacecraft in deep-space missions. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

17 pages, 2027 KB  
Article
Unidirectional Orbit Determination for Extended Users Based on Navigation Ka-Band Inter-Satellite Links
by Yong Shangguan, Hua Zhang, Yong Yu, Wenjin Wang, Bin Liu, Haihan Li and Rong Ma
Sensors 2025, 25(8), 2566; https://doi.org/10.3390/s25082566 - 18 Apr 2025
Viewed by 458
Abstract
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS [...] Read more.
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS orbit determination is hindered by a limited number of receivable satellites, weak signal strength and suboptimal geometric configurations, thereby failing to meet the demands for the continuous, high-precision orbit measurement of overseas high-orbit satellites. Satellite navigation systems, characterized by global coverage and Ka-band inter-satellite links, offer measurement and communication services to extended users, such as satellites, aircraft, space stations and other spacecraft. With the widespread adoption of navigation satellite systems, particularly in scenarios where ground tracking, telemetry and command (TT&C) stations are out of sight, there is a growing demand among users for Ka-band inter-satellite links for high-precision ranging and orbit determination. This paper introduces an innovative unidirectional orbit-determination technology for extended users, leveraging the navigation Ka-band inter-satellite link. When extended users are constrained by weight and power consumption limitations, preventing the incorporation of high-precision atomic clocks, they utilize their extensive capture capability to conduct distance measurements between navigation satellites. This process involves constructing clock error models, calculating clock error parameters and compensating for these errors, thereby achieving high-precision time–frequency synchronization and bidirectional communication. The technology has enhanced the time and frequency accuracies by three and two orders of magnitude, respectively. Following the establishment of bidirectional communication, unidirectional ranging values are collected daily for one hour. Utilizing these bidirectional ranging values, a mechanical model and state-transfer matrix are established, resulting in orbit-determination calculations with an accuracy of less than 100 m. This approach addresses the challenge of high-precision time–frequency synchronization and orbit determination for users without atomic clocks, utilizing minimal inter-satellite link time slot resources. For the first time in China, extended users can access the navigation inter-satellite link with a minimal allocation of time slot resources, achieving orbit determination at the 100 m level. This advancement significantly enhances the robustness of extended users and provides substantial technical support for various extended users to employ the Ka inter-satellite link for emergency communication and orbit determination. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 3396 KB  
Article
Augmented Hohmann Transfer for Spacecraft with Continuous-Thrust Propulsion System
by Alessandro A. Quarta
Aerospace 2025, 12(4), 307; https://doi.org/10.3390/aerospace12040307 - 3 Apr 2025
Viewed by 517
Abstract
Hohmann transfer is the classical approach used in astrodynamics to analyze the optimal bi-impulsive transfer, from the point of view of the total velocity change, between two circular, coplanar orbits of assigned radius. The Hohmann transfer is characterized by an elliptical trajectory tangent [...] Read more.
Hohmann transfer is the classical approach used in astrodynamics to analyze the optimal bi-impulsive transfer, from the point of view of the total velocity change, between two circular, coplanar orbits of assigned radius. The Hohmann transfer is characterized by an elliptical trajectory tangent to both circular orbits at the points where the transfer begins or ends and can be used to simply model, in a Kepler problem, a possible optimal transfer of a spacecraft equipped with a high-thrust propulsion system. Recent literature has proposed a sort of extension of the Hohmann transfer to a heliocentric mission scenario, where the total velocity change is reduced compared to the classical result by employing a photonic solar sail operating along the deep-space transfer trajectory. The study of this so-called augmented Hohmann transfer, where the spacecraft uses both two tangential impulses (one at the beginning and one at the end of the flight) provided by a high-thrust propulsion system and the propulsive acceleration (during the flight) provided by a low-thrust propulsion system, is extended in this paper by considering a more general case where the spacecraft moves around a generic primary body and uses, along the transfer, a freely orientable propulsive acceleration vector with constant and assigned magnitude. This scenario is consistent, for example, with the use of a typical electric thruster instead of the photonic solar sail considered in recent literature. In particular, the paper studies the impact of the continuous-thrust propulsion system on the transfer performance between the two circular orbits, analyzing the variation of the total velocity change as a function of the propulsive acceleration magnitude. The procedure, which uses an optimal approach to performance estimation, can be used both in a heliocentric and planetocentric mission scenario and can also be employed to analyze the performance of a spacecraft equipped with a multimode propulsion system. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 7662 KB  
Article
Pre-Launch Day-Night Band Radiometric Performance of JPSS-3 and -4 VIIRS
by Daniel Link, Thomas Schwarting, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2025, 17(7), 1111; https://doi.org/10.3390/rs17071111 - 21 Mar 2025
Cited by 1 | Viewed by 514
Abstract
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that [...] Read more.
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that end, each instrument underwent a comprehensive sensor-level test campaign at the Raytheon Technologies, El Segundo facility, in both ambient and thermal-vacuum environments. Unique among the 22 VIIRS sensing bands is the day-night band (DNB)—a panchromatic imager that leverages multiple CCD detectors set at different gain levels to make continuous (day and night) radiometric observations of the Earth. The results from the JPSS-3 and JPSS-4 VIIRS DNB pre-launch testing are presented and compared against the design specifications in this paper. Characterization parameters include dark offset, gain, linearity, uniformity, SNR, and uncertainty. Performance relative to past builds is also included where appropriate. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

23 pages, 4703 KB  
Article
Exploring the Design Space of Low-Thrust Transfers with Ballistic Terminal Coast Segments in Cis-Lunar Space
by Kevin I. Alvarado and Sandeep K. Singh
Aerospace 2025, 12(3), 217; https://doi.org/10.3390/aerospace12030217 - 7 Mar 2025
Cited by 1 | Viewed by 935
Abstract
Spacecraft catering to the Lunar Gateway or other “permanent” stations in the lunar vicinity would require frequent travel between periodic orbits around the Earth–Moon L1 and L2 Lagrange points. The transition through the Hill sphere is often characterized by close passages [...] Read more.
Spacecraft catering to the Lunar Gateway or other “permanent” stations in the lunar vicinity would require frequent travel between periodic orbits around the Earth–Moon L1 and L2 Lagrange points. The transition through the Hill sphere is often characterized by close passages of our nearest neighbor—rendering the optimization problem numerically challenging due to the increased local sensitivities. Depending on the mission requirements and resource constraints, transfer architectures must be studied, and trade-offs between flight time and fuel consumption quantified. While direct low-thrust transfers between the circular restricted three-body problem periodic orbit families have been studied, the asymptotic flow in the neighborhood of the periodic orbits could be leveraged for expansion and densification of the solution space. This paper presents an approach to achieve a dense mapping of manifold-assisted, low-thrust transfers based on initial and terminal coast segments. Continuation schemes are utilized to attain the powered intermediate time-optimal segment through a multi-shooting approach. Interesting insights regarding the linear correlation between ΔV and change in reduced two-body osculating elements associated with the initial-terminal conditions are discussed. These insights could inform the subsequent filtering of the osculating selenocentric periapsis map and provide additional interesting and efficient solutions. The described approach is anticipated to be extremely useful for future crewed and robotic cis-lunar operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

20 pages, 2765 KB  
Article
Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture
by Ding Wang, Ethan Wang and Ruhai Wang
Sensors 2025, 25(1), 195; https://doi.org/10.3390/s25010195 - 1 Jan 2025
Viewed by 1663
Abstract
Future 7G/8G networks are expected to integrate both terrestrial Internet and space-based networks. Space networks, including inter-planetary Internet such as cislunar and deep-space networks, will become an integral part of future 7G/8G networks. Vehicle-to-everything (V2X) communication networks will also be a significant component [...] Read more.
Future 7G/8G networks are expected to integrate both terrestrial Internet and space-based networks. Space networks, including inter-planetary Internet such as cislunar and deep-space networks, will become an integral part of future 7G/8G networks. Vehicle-to-everything (V2X) communication networks will also be a significant component of 7G/8G networks. Therefore, space networks will eventually integrate with V2X communication networks, with both space vehicles (or spacecrafts) and terrestrial vehicles involved. DTN is the only candidate networking technology for future heterogeneous space communication networks. In this work, we study possible concatenations of different DTN convergence layer protocol adapters (CLAs) over a cislunar relay communication architecture. We present a performance characterization of the concatenations of different CLAs and the associated data transport protocols in an experimental manner. The performance of different concatenations is compared over a typical primary and secondary cislunar relay architecture. The intent is to find out which network relay path and DTN protocol configuration has the best performance over the end-to-end cislunar path. Full article
(This article belongs to the Special Issue Vehicle-to-Everything (V2X) Communication Networks 2024–2025)
Show Figures

Figure 1

14 pages, 3805 KB  
Article
Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units
by Anna N. Lampou, Anargyros T. Baklezos, Konstantinos K. Spyridakis, Dimitrios A. Rigas-Papakonstantinou, Ioannis O. Vardiambasis and Christos D. Nikolopoulos
Appl. Sci. 2024, 14(23), 11283; https://doi.org/10.3390/app142311283 - 3 Dec 2024
Viewed by 1057
Abstract
In this work, a machine learning technique employing a measurement-driven artificial neural network (ANN) architecture is proposed as a solution to the precise determination of the position and the moment of equivalent electric dipoles for unit characterization. These dipoles are used to match [...] Read more.
In this work, a machine learning technique employing a measurement-driven artificial neural network (ANN) architecture is proposed as a solution to the precise determination of the position and the moment of equivalent electric dipoles for unit characterization. These dipoles are used to match the generated electric field from various sources inside the spacecraft, during space exploration missions. Various methodologies for unit characterization have been proposed in the literature, the most common being the heuristic approaches, least squares variants, method of auxiliary sources, etc. Contrary to the previous time-consuming post-process methodologies, the proposed electric dipole neural network (EDMnet) can offer a real-time characterization of the measured unit (Device Under Test) after a proper training stage, especially as a fast pre-compliance method. The network uses the electric field vector, measured at 14 discrete locations, as input and reports the position and moment of the electric dipole that best matches the measured fields. In this work, various ANN architectures are tested and compared in order to select the optimal EDMnet parameters for accurate source identification. It is shown that the size of the artificial training data affects the performance of the network. The proposed EDMnet can provide accuracy in mm-scale, with respect to dipole positioning, greater than 99% in dipole moment prediction. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 8085 KB  
Article
Orbital Analysis of a Dual Asteroid System Explorer Based on the Finite Element Method
by Linli Su, Wenyu Feng, Lie Yang, Zichen Fan, Mingying Huo and Naiming Qi
Aerospace 2024, 11(12), 993; https://doi.org/10.3390/aerospace11120993 - 30 Nov 2024
Viewed by 1012
Abstract
In the study of dual asteroid systems, a model that can rapidly compute the motion and orientation of these bodies is essential. Traditional modeling techniques, such as the double ellipsoid or polyhedron methods, fail to deliver sufficient accuracy in estimating the interactions between [...] Read more.
In the study of dual asteroid systems, a model that can rapidly compute the motion and orientation of these bodies is essential. Traditional modeling techniques, such as the double ellipsoid or polyhedron methods, fail to deliver sufficient accuracy in estimating the interactions between dual asteroids. This inadequacy primarily stems from the non-tidally locked nature of asteroid systems, which necessitates continual adjustments to account for changes in gravitational fields. This study adopts the finite element method to precisely model the dynamic interaction forces within irregular, time-varying dual asteroid systems and, thereby, enhance the planning of spacecraft trajectories. It is possible to derive the detailed characteristics of a spacecraft’s orbital patterns via the real-time monitoring of spacecraft orbits and the relative positions of dual asteroids. Furthermore, this study examines the orbital stability of a spacecraft under various trajectories, revealing that orbital stability is intrinsically linked to the geometric configuration of the orbits. And considering the influence of solar pressure on the orbit of asteroid detectors, a method was proposed to characterize the stability of detector orbits in the time-varying gravitational field of binary asteroids using cloud models. The insights gained from the analysis of orbital characteristics can inform the design of landing trajectories for binary asteroid systems and provide data for deep learning algorithms that are aimed at optimizing such orbits. By introducing the application of the finite element method, detailed analysis of spacecraft orbit characteristics, and a stability characterization method based on a cloud model, this paper systematically explores the logic and structure of spacecraft orbit planning in a dual asteroid system. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop