Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Formulation
Electric Field Representation
2.2. Methodology
2.2.1. Measurement Setup
2.2.2. Artificial Data Generation
3. Simulation Results and Discussions
3.1. Artificial Neural Network Setup
3.2. Neural Network Performance Evaluation
3.3. Verification Results
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glassmeier, K.-H.; Auster, H.-U.; Heyner, D.; Okrafka, K.; Carr, C.; Berghofer, G.; Anderson, B.; Balogh, A.; Baumjohann, W.; Cargill, P.; et al. The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Planet. Space Sci. 2010, 58, 287–299. [Google Scholar] [CrossRef]
- Koutantos, G.I.; Nikolopoulos, C.D.; Baklezos, A.T.; Capsalis, C.N. On the modeling of ELF electric fields for space mission equipment. IEEE Trans. Electromagn. Compat. 2017, 59, 1457–1464. [Google Scholar] [CrossRef]
- Mehlem, K. Multiple magnetic dipole modeling and field prediction of satellites. IEEE Trans. Magn. 1978, 14, 1064–1071. [Google Scholar] [CrossRef]
- Brown, P.; Auster, U.; Bergman, J.E.S.; Fredriksson, J.; Kasaba, Y.; Mansour, M.; Pollinger, A.; Baughen, R.; Berglund, M.; Hercik, D.; et al. Meeting the magnetic EMC challenges for the in-situ field measurements on the Juice mission. In Proceedings of the 2019 ESA Workshop on Aerospace EMC, Budapest, Hungary, 20–22 May 2019. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Kucera, T.A.; Davila, J.M.; Cyr, O.C.S.; Guhathakurta, M.; Christian, E. The STEREO mission: An introduction. Space Sci. Rev. 2008, 136, 5–16. [Google Scholar] [CrossRef]
- Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Capsalis, C.N. A deep learning method for modeling the magnetic signature of spacecraft equipment using multiple magnetic dipoles. IEEE Magn. Lett. 2021, 12, 2100905. [Google Scholar] [CrossRef]
- Pudney, M.; King, S.; Horbury, T.; Maksimovic, M.; Owen, C.J.; Laget, P. Solar Orbiter strategies for EMC control and verification. In Proceedings of the 2019 ESA Workshop on Aerospace EMC, Budapest, Hungary, 20–22 May 2019. [Google Scholar] [CrossRef]
- Carrubba, E.; Junge, A.; Marliani, F.; Monorchio, A. Particle swarm optimization for multiple dipole modeling of space equipment. IEEE Trans. Magn. 2014, 50, 7028010. [Google Scholar] [CrossRef]
- Junge, A.; Marliani, F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft. In Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 14–19 August 2011. [Google Scholar] [CrossRef]
- Oche, P.A.; Ewa, G.A.; Ibekwe, N. Applications and challenges of artificial intelligence in space missions. IEEE Access 2024, 12, 44481–44509. [Google Scholar] [CrossRef]
- Martin, A.S.; Freeland, S. The advent of artificial intelligence in space activities: New legal challenges. Space Policy 2021, 55, 101408. [Google Scholar] [CrossRef]
- Poduval, B.; McPherron, R.L.; Walker, R.; Himes, M.D.; Pitman, K.M.; Azari, A.R.; Shneider, C.; Tiwari, A.K.; Kapali, S.; Bruno, G.; et al. AI-ready data in space science and solar physics: Problems, mitigation and action plan. Front. Astron. Space Sci. 2023, 10, 1203598. [Google Scholar] [CrossRef]
- Nikolopoulos, C.D.; Baklezos, A.T.; Capsalis, C.N. Measuring transient and steady state electric field emissions of space equipment for EMC and cleanliness purposes. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE 2018), Athens, Greece, 10–13 September 2018. [Google Scholar] [CrossRef]
- Mathworks. Available online: https://www.mathworks.com/help/deeplearning/ref/radbasn.html (accessed on 30 August 2024).
- Mathworks. Available online: https://www.mathworks.com/help/deeplearning/ref/mse.html (accessed on 26 September 2024).
- Deng, C.; Dong, X.; Tan, Y.; Peng, H. Enhanced differential evolution algorithm with local search based on Hadamard matrix. Comput. Intell. Neurosci. 2021, 2021, 8930980. [Google Scholar] [CrossRef] [PubMed]
Data Sample Size | Test MAEx / MAEy / MAEz (m) | Test MAEpx / MAEpy / MAEpz ) |
---|---|---|
10,000 | 0.0024 / 0.0023 / 0.0026 | 2.6177 / 2.9975 / 2.8126 |
20,000 | 0.0016 / 0.0017 / 0.0017 | 2.2935 / 2.2030 / 2.2338 |
40,000 | 0.0016 / 0.0017 / 0.0016 | 2.0314 / 2.1723 / 2.0643 |
100,000 | 0.0016 / 0.0016 / 0.0016 | 2.2639 / 2.6554 / 2.2791 |
[L1 L2 L3 L4 L5] | Test MAEx / MAEy / MAEz (m) | Test MAEpx / MAEpy / MAEpz ) |
---|---|---|
[550 250 50] | 0.0027 / 0.0030 / 0.0029 | 3.4642 / 3.5243 / 3.6122 |
[350 150 100 50] | 0.0025 / 0.0025 / 0.0026 | 3.3937 / 3.5066 / 3.5379 |
[580 280 180 80] | 0.0016 / 0.0017 / 0.0016 | 2.0314 / 2.1723 / 2.0643 |
[470 370 270 170 70] | 0.0018 / 0.0019 / 0.0019 | 2.3513 / 2.4934 / 2.3510 |
[350 250 150 100 50] | 0.0018 / 0.0019 / 0.0018 | 2.5087 / 2.5930 / 2.4311 |
Learning Rate | Test MAEx / MAEy / MAEz (m) | Test MAEpx / MAEpy / MAEpz ) |
---|---|---|
0.01 | 0.0016 / 0.0017 / 0.0016 | 2.0314 / 2.1723 / 2.0643 |
0.001 | 0.0019 / 0.0019 / 0.0018 | 2.3739 / 2.4802 / 2.3651 |
x Dipole Position Generated (m) | x Dipole Position Calculated (m) | y Dipole Position Generated (m) | y Dipole Position Calculated (m) | z Dipole Position Generated (m) | z Dipole Position Calculated (m) |
---|---|---|---|---|---|
0.0470 | 0.0484 | −0.2232 | −0.2202 | 0.3311 | 0.3324 |
−0.0327 | −0.0328 | 0.0078 | 0.0086 | 0.3529 | 0.3521 |
0.1072 | 0.1060 | −0.1533 | −0.1527 | 0.2686 | 0.2687 |
0.0756 | 0.0755 | −0.0037 | −0.0033 | 0.3827 | 0.3834 |
−0.2035 | −0.2034 | −0.0147 | −0.0172 | 0.2883 | 0.2925 |
0.1973 | 0.1999 | −0.0176 | −0.0153 | 0.1350 | 0.1319 |
0.0501 | 0.0512 | 0.2456 | 0.2536 | 0.4867 | 0.4886 |
0.1801 | 0.1800 | −0.1872 | 0.1871 | 0.2836 | 0.2857 |
−0.0687 | −0.0676 | −0.2210 | −0.2178 | 0.2271 | 0.2263 |
−0.0458 | −0.0464 | 0.1549 | 0.1542 | 0.3903 | 0.3931 |
px Electric Dipole Moment Generated ) | px Electric Dipole Moment Calculated ) | py Electric Dipole Moment Generated ) | py ELECTRIC Dipole Moment Calculated ) | pz Electric Dipole Moment Generated ) | pz Electric Dipole Moment Calculated ) |
---|---|---|---|---|---|
3.4288 × 10−14 | 3.4236 × 10−14 | −8.3500 × 10−15 | −8.4496 × 10−15 | 3.7943 × 10−14 | 3.8256 × 10−14 |
3.3400 × 10−15 | 3.2049 × 10−15 | 3.1184 × 10−14 | 3.1345 × 10−14 | −3.5865 × 10−14 | −3.5803 × 10−14 |
−1.9000 × 10−15 | −1.6746 × 10−15 | 4.4120 × 10−15 | 4.4138 × 10−15 | 2.3214 × 10−15 | 2.3311 × 10−14 |
3.8461 × 10−14 | 3.8419 × 10−14 | −1.5352 × 10−14 | −1.5187 × 10−14 | −2.2280 × 10−14 | −2.2396 × 10−14 |
1.9769 × 10−14 | 1.9707 × 10−14 | −4.7800 × 10−15 | −4.8572 × 10−15 | 4.4728 × 10−14 | 4.4841 × 10−14 |
4.7139 × 10−14 | 4.7292 × 10−14 | −3.7521 × 10−14 | −3.7648 × 10−14 | −4.6177 × 10−14 | −4.6269 × 10−14 |
2.5831 × 10−14 | 2.6678 × 10−14 | 3.9439 × 10−14 | 3.8626 × 10−14 | −3.8829 × 10−14 | −4.1089 × 10−14 |
−8.7290 × 10−15 | −8.5717 × 10−15 | 4.3612 × 10−14 | 4.3438 × 10−14 | 1.8381 × 10−14 | −1.8322 × 10−14 |
2.2363 × 10−14 | 2.2490 × 10−14 | 4.4925 × 10−14 | 4.4639 × 10−14 | −3.0269 × 10−14 | −3.0059 × 10−14 |
−9.2940 × 10−15 | −9.2646 × 10−15 | −2.0527 × 10−14 | −2.0534 × 10−14 | −2.3873 × 10−14 | −2.3781 × 10−14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampou, A.N.; Baklezos, A.T.; Spyridakis, K.K.; Rigas-Papakonstantinou, D.A.; Vardiambasis, I.O.; Nikolopoulos, C.D. Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units. Appl. Sci. 2024, 14, 11283. https://doi.org/10.3390/app142311283
Lampou AN, Baklezos AT, Spyridakis KK, Rigas-Papakonstantinou DA, Vardiambasis IO, Nikolopoulos CD. Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units. Applied Sciences. 2024; 14(23):11283. https://doi.org/10.3390/app142311283
Chicago/Turabian StyleLampou, Anna N., Anargyros T. Baklezos, Konstantinos K. Spyridakis, Dimitrios A. Rigas-Papakonstantinou, Ioannis O. Vardiambasis, and Christos D. Nikolopoulos. 2024. "Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units" Applied Sciences 14, no. 23: 11283. https://doi.org/10.3390/app142311283
APA StyleLampou, A. N., Baklezos, A. T., Spyridakis, K. K., Rigas-Papakonstantinou, D. A., Vardiambasis, I. O., & Nikolopoulos, C. D. (2024). Measurement-Based Neural Network Technique for Modeling the Low-Frequency Electric Field Radiated Behavior of Satellite Units. Applied Sciences, 14(23), 11283. https://doi.org/10.3390/app142311283