Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = spatio-temporal information entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5430 KB  
Article
An Optimization Placement Method of Sensors for Water Film Thickness Estimation of the Entire Airport Runway
by Juewei Cai, Rongxin Zhao, Wei Ouyang, Dehuai Yang and Mengyuan Zeng
Appl. Sci. 2025, 15(17), 9476; https://doi.org/10.3390/app15179476 - 29 Aug 2025
Viewed by 270
Abstract
This study presents an optimized methodology for the placement of water film thickness sensors, integrating information theory with experimental validation. Initially, the two-dimensional shallow-water equations are employed to simulate the spatiotemporal evolution of water film thickness across the entire runway, providing a comprehensive [...] Read more.
This study presents an optimized methodology for the placement of water film thickness sensors, integrating information theory with experimental validation. Initially, the two-dimensional shallow-water equations are employed to simulate the spatiotemporal evolution of water film thickness across the entire runway, providing a comprehensive foundational dataset. By applying information entropy theory, the total information content at each runway grid point is quantified. Analysis indicates that grid points with higher total information content generally correspond to regions of greater water film thickness. The optimal placement for a single sensor is determined by identifying the location that maximizes total information content, and its effectiveness is validated through controlled rain–fog experiments. The results demonstrate that positioning a single sensor at a site with higher water film thickness reduces the overall mean estimation error by 57%, thereby enhancing prediction accuracy. By extending the single-sensor placement framework, the total information content across all runway points is recalculated, and additional rain–fog experiments are conducted to verify the optimal locations. By incorporating a correlation coefficient–distance (C–D) model to define each sensor’s influence radius, a collaborative multi-sensor placement strategy is developed and implemented at Seletar Airport, Singapore. The findings show that sensor locations with higher water film thickness correspond to increased total information content, and that expanding the number of deployed sensors further improves estimation accuracy. Compared with conventional placement approaches, which rely on subjective judgment and long-term operational experience, the proposed method enhances estimation accuracy by over 23% when deploying two sensors. These results provide a robust basis for the strategic placement of runway water film thickness sensors and contribute to more precise assessments of pavement surface conditions. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

25 pages, 7225 KB  
Article
Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon
by Shuhui Cao, Yingchao Dang, Xuan Ban, Qi Feng, Yadong Zhou, Jiahuan Luo, Jiazhi Zhu and Fei Xiao
Remote Sens. 2025, 17(16), 2901; https://doi.org/10.3390/rs17162901 - 20 Aug 2025
Viewed by 517
Abstract
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated [...] Read more.
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated satellite remote sensing with ecological modeling to assess spatiotemporal dynamics in marine habitat suitability across China’s continental shelf (2003–2020). Nine key habitat factors were derived from multi-source remote sensing data and inverted transparency algorithms. Species occurrence data were coupled with the Maximum Entropy (MaxEnt) model to evaluate habitat preferences and seasonal shifts. Results revealed distinct environmental preferences: shallow depths (≤20 m), sea surface and bottom temperature (10–30 °C and 10–25 °C), salinity (10–35‰), transparency (0.40–3.00 m), eastward and northward seawater velocity (−0.20–0.15 m/s and −0.20–0.20 m/s), moderate productivity (1000–3000 mg/m2), and zooplankton carbon (0.20–6.00 g/m2). Habitat factor importance varied seasonally—salinity, depth, and net primary productivity dominated in spring; bottom temperature and productivity in summer/autumn; salinity and transparency in winter. Spatially, high-suitability areas peaked in autumn (70% total suitable habitat), concentrating near the Yangtze Estuary, northern Jiangsu coast, and Zhoushan Archipelago. This study emphasizes the need to prioritize these areas for protection and inform proliferation and release schemes for Chinese sturgeon. It also demonstrates the efficacy of remote sensing for mapping essential habitats of migratory megafauna in complex coastal ecosystems and provides actionable insights for targeted conservation strategies. Full article
Show Figures

Figure 1

18 pages, 9486 KB  
Article
MCCSAN: Automatic Modulation Classification via Multiscale Complex Convolution and Spatiotemporal Attention Network
by Songchen Xu, Duona Zhang, Yuanyao Lu, Zhe Xing and Weikai Ma
Electronics 2025, 14(16), 3192; https://doi.org/10.3390/electronics14163192 - 11 Aug 2025
Viewed by 357
Abstract
Automatic Modulation Classification (AMC) is vital for adaptive wireless communication, yet it faces challenges in complex environments, including insufficient feature extraction, feature redundancy, and high interclass similarity among modulation schemes. To address these limitations, this paper proposes the Multiscale Complex Convolution Spatiotemporal Attention [...] Read more.
Automatic Modulation Classification (AMC) is vital for adaptive wireless communication, yet it faces challenges in complex environments, including insufficient feature extraction, feature redundancy, and high interclass similarity among modulation schemes. To address these limitations, this paper proposes the Multiscale Complex Convolution Spatiotemporal Attention Network (MCCSAN). In this work, we propose three key innovations tailored for AMC tasks: a multiscale complex convolutional module that directly processes raw I/Q sequences, preserving critical phase and amplitude information while extracting diverse signal features. A spatiotemporal attention mechanism dynamically weights temporal steps and feature channels to suppress redundancy and enhance discriminative feature focus. A combined loss function integrating cross-entropy and center loss improves intraclass compactness and interclass separability. Evaluated on the RML2018.01A dataset and RML2016.10A across SNR levels from −6 dB to 12 dB, MCCSAN achieves a state-of-the-art classification accuracy of 97.03% (peak) and an average accuracy improvement of 3.98% over leading methods. The study confirms that integrating complex-domain processing with spatiotemporal attention significantly enhances AMC performance. Full article
Show Figures

Figure 1

21 pages, 3293 KB  
Article
A Fusion of Entropy-Enhanced Image Processing and Improved YOLOv8 for Smoke Recognition in Mine Fires
by Xiaowei Li and Yi Liu
Entropy 2025, 27(8), 791; https://doi.org/10.3390/e27080791 - 25 Jul 2025
Viewed by 382
Abstract
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine [...] Read more.
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine fires faces serious challenges: the underground environment is complex, with smoke and backgrounds being highly integrated and visual features being blurred, which makes it difficult for existing image-based monitoring techniques to meet the actual needs in terms of accuracy and robustness. The conventional ground-based methods are directly used in the underground with a high rate of missed detection and false detection. Aiming at the core problems of mixed target and background information and high boundary uncertainty in smoke images, this paper, inspired by the principle of information entropy, proposes a method for recognizing smoke from mine fires by integrating entropy-enhanced image processing and improved YOLOv8. Firstly, according to the entropy change characteristics of spatio-temporal information brought by smoke diffusion movement, based on spatio-temporal entropy separation, an equidistant frame image differential fusion method is proposed, which effectively suppresses the low entropy background noise, enhances the detail clarity of the high entropy smoke region, and significantly improves the image signal-to-noise ratio. Further, in order to cope with the variable scale and complex texture (high information entropy) of the smoke target, an improvement mechanism based on entropy-constrained feature focusing is introduced on the basis of the YOLOv8m model, so as to more effectively capture and distinguish the rich detailed features and uncertain information of the smoke region, realizing the balanced and accurate detection of large and small smoke targets. The experiments show that the comprehensive performance of the proposed method is significantly better than the baseline model and similar algorithms, and it can meet the demand of real-time detection. Compared with YOLOv9m, YOLOv10n, and YOLOv11n, although there is a decrease in inference speed, the accuracy, recall, average detection accuracy mAP (50), and mAP (50–95) performance metrics are all substantially improved. The precision and robustness of smoke recognition in complex mine scenarios are effectively improved. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

21 pages, 1678 KB  
Article
Addressing the Sustainability Challenges: Digital Economy Information Security Risk Assessment
by Fanke Li and Zhongqingyang Zhang
Sustainability 2025, 17(14), 6428; https://doi.org/10.3390/su17146428 - 14 Jul 2025
Viewed by 535
Abstract
In the digital economy, sustainable development is based on digital technologies. However, information security issues arising from its use pose significant challenges to sustainable development. Assessing information security risks in the digital economy is crucial for sustainable development. This paper constructs an information [...] Read more.
In the digital economy, sustainable development is based on digital technologies. However, information security issues arising from its use pose significant challenges to sustainable development. Assessing information security risks in the digital economy is crucial for sustainable development. This paper constructs an information security risk assessment indicator system for the digital economy based on information ecology theory. Using game theory to combine CRITIC weights and entropy weights, the information security risk values for the digital economy in 29 provinces of China from 2019 to 2021 are calculated. Quantitative analysis is conducted using Ward’s method and the obstacle degree model. The combined weighting results indicate that the information security risks of the digital economy are mostly influenced by information infrastructure. Additionally, the spatio–temporal evolution pattern shows that the risk values of provinces vary to different degrees over time, with a distribution pattern of southern regions > northern regions > northwestern regions. Furthermore, the clustering results indicate that information technology is the primary cause of risk gaps. Finally, the obstacle degree model indicates that digital criminal behavior is the greatest obstacle to information security in the digital economy. The research findings hold significant implications for addressing information security challenges in the global digital economy’s sustainable development process, particularly in terms of the replicability of the research methodology and the valuable case study of China. Full article
Show Figures

Figure 1

16 pages, 2059 KB  
Article
A CNN-SA-GRU Model with Focal Loss for Fault Diagnosis of Wind Turbine Gearboxes
by Liqiang Wang, Shixian Dai, Zijian Kang, Shuang Han, Guozhen Zhang and Yongqian Liu
Energies 2025, 18(14), 3696; https://doi.org/10.3390/en18143696 - 13 Jul 2025
Viewed by 411
Abstract
Gearbox failures are a major cause of unplanned downtime and increased maintenance costs, making accurate diagnosis crucial in ensuring wind turbine reliability and cost-efficiency. However, most existing diagnostic methods fail to fully extract the spatiotemporal features in SCADA data and neglect the impact [...] Read more.
Gearbox failures are a major cause of unplanned downtime and increased maintenance costs, making accurate diagnosis crucial in ensuring wind turbine reliability and cost-efficiency. However, most existing diagnostic methods fail to fully extract the spatiotemporal features in SCADA data and neglect the impact of class imbalance, thereby limiting diagnostic accuracy. To address these challenges, this paper proposes a fault diagnosis model for wind turbine gearboxes based on CNN-SA-GRU and Focal Loss. Specifically, a CNN-SA-GRU network is constructed to extract both spatial and temporal features, in which CNN is employed to extract local spatial features from SCADA data, Shuffle Attention is integrated to efficiently fuse channel and spatial information and enhance spatial representation, and GRU is utilized to capture long-term spatiotemporal dependencies. To mitigate the adverse effects of class imbalance, the conventional cross-entropy loss is replaced with Focal Loss, which assigns higher weights to hard-to-classify fault samples. Finally, the model is validated using real wind farm data. The results show that, compared with the cross-entropy loss, using Focal Loss improves the accuracy and F1 score by an average of 0.24% and 1.03%, respectively. Furthermore, the proposed model outperforms other baseline models with average gains of 0.703% in accuracy and 4.65% in F1 score. Full article
Show Figures

Figure 1

25 pages, 24048 KB  
Article
SD-LSTM: A Dynamic Time Series Model for Predicting the Coupling Coordination of Smart Agro-Rural Development in China
by Chunlin Xiong, Yilin Zhang and Weijie Wang
Agriculture 2025, 15(14), 1491; https://doi.org/10.3390/agriculture15141491 - 11 Jul 2025
Viewed by 507
Abstract
The rapid advancement of digital information technology in rural China has positioned smart agro-rural development as a key driver of agricultural modernization. This study focuses on the theme of digital rural construction (DRC) and high-quality agricultural development (HAD), combining the two into smart [...] Read more.
The rapid advancement of digital information technology in rural China has positioned smart agro-rural development as a key driver of agricultural modernization. This study focuses on the theme of digital rural construction (DRC) and high-quality agricultural development (HAD), combining the two into smart agriculture and rural development. Utilizing panel data from 31 Chinese provinces from 2011 to 2022, a comprehensive evaluation index system is constructed to assess development levels. The entropy weight method and kernel density estimation are employed to evaluate indicator performance and capture dynamic distribution patterns. A coupling coordination model is used to analyze the spatio-temporal evolution of the interaction between the two systems, while a hybrid SD-LSTM (System Dynamics–Long Short-Term Memory) model forecasts coordination trends over the next six years. Results reveal a steady upward trend in both systems, with coordination levels improving from “moderate imbalance” to “moderate coordination.” A distinct spatial pattern emerges, characterized by “high in the east, low in the west” and a mismatch between high coupling and low coordination. Forecasts suggest a continued progression toward “good coordination.” The findings offer policy implications for enhancing digital village initiatives, accelerating rural technological diffusion, and strengthening regional collaboration—providing valuable insights into advancing China’s smart rural transformation and agricultural modernization. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

22 pages, 2953 KB  
Article
Risk Assessment Model for Railway Track Maintenance Operations Based on Combined Weights and Nonlinear FCE
by Rui Luan and Rengkui Liu
Appl. Sci. 2025, 15(13), 7614; https://doi.org/10.3390/app15137614 - 7 Jul 2025
Viewed by 494
Abstract
Current risk assessment in railway track maintenance operations faces challenges (low spatiotemporal accuracy, limited adaptability to various scenarios, and tendency of linear fuzzy comprehensive evaluation (FCE) methods to underestimate high-risk factors). To address these, this study proposes a novel risk assessment model that [...] Read more.
Current risk assessment in railway track maintenance operations faces challenges (low spatiotemporal accuracy, limited adaptability to various scenarios, and tendency of linear fuzzy comprehensive evaluation (FCE) methods to underestimate high-risk factors). To address these, this study proposes a novel risk assessment model that integrates subjective–objective weighting techniques with a nonlinear FCE approach. By incorporating spatiotemporal information, the model enables precise localization of risk occurrence in individual maintenance operations. A comprehensive risk index system is constructed across four dimensions: human, equipment, environment, and management. The game theory combined weighting method, integrating the G1 method and entropy weight method, is employed; it balances expert judgment with data-driven analysis. A cloud model is introduced to generate risk membership matrices, accounting for the fuzziness and randomness of risk data. The nonlinear FCE framework enhances the influence of high-risk factors. Risk levels are determined using the combined weights, membership matrices, and the maximum membership principle. A case study on the Lanzhou–Xinjiang Railway demonstrates that the proposed model achieves higher consistency with actual risk conditions than conventional methods, improving assessment accuracy and reliability. This model offers a practical and effective tool for risk prevention and control in railway maintenance operations. Full article
Show Figures

Figure 1

41 pages, 7199 KB  
Article
Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia
by Alfonso de Gorostegui, Massimiliano Zanin, Juan-Andrés Martín-Gonzalo, Javier López-López, David Gómez-Andrés, Damien Kiernan and Estrella Rausell
Sensors 2025, 25(13), 4235; https://doi.org/10.3390/s25134235 - 7 Jul 2025
Viewed by 490
Abstract
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some [...] Read more.
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon’s entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders. Full article
(This article belongs to the Special Issue Sensor Technologies for Gait Analysis: 2nd Edition)
Show Figures

Figure 1

26 pages, 8232 KB  
Article
A CML-ECA Chaotic Image Encryption System Based on Multi-Source Perturbation Mechanism and Dynamic DNA Encoding
by Xin Xie, Kun Zhang, Bing Zheng, Hao Ning, Yu Zhou, Qi Peng and Zhengyu Li
Symmetry 2025, 17(7), 1042; https://doi.org/10.3390/sym17071042 - 2 Jul 2025
Cited by 1 | Viewed by 519
Abstract
To meet the growing demand for secure and reliable image protection in digital communication, this paper proposes a novel image encryption framework that addresses the challenges of high plaintext sensitivity, resistance to statistical attacks, and key security. The method combines a two-dimensional dynamically [...] Read more.
To meet the growing demand for secure and reliable image protection in digital communication, this paper proposes a novel image encryption framework that addresses the challenges of high plaintext sensitivity, resistance to statistical attacks, and key security. The method combines a two-dimensional dynamically coupled map lattice (2D DCML) with elementary cellular automata (ECA) to construct a heterogeneous chaotic system with strong spatiotemporal complexity. To further enhance nonlinearity and diffusion, a multi-source perturbation mechanism and adaptive DNA encoding strategy are introduced. These components work together to obscure the image structure, pixel correlations, and histogram characteristics. By embedding spatial and temporal symmetry into the coupled lattice evolution and perturbation processes, the proposed method ensures a more uniform and balanced transformation of image data. Meanwhile, the method enhances the confusion and diffusion effects by utilizing the principle of symmetric perturbation, thereby improving the overall security of the system. Experimental evaluations on standard images demonstrate that the proposed scheme achieves high encryption quality in terms of histogram uniformity, information entropy, NPCR, UACI, and key sensitivity tests. It also shows strong resistance to chosen plaintext attacks, confirming its robustness for secure image transmission. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 5373 KB  
Article
Novel Spatio-Temporal Joint Learning-Based Intelligent Hollowing Detection in Dams for Low-Data Infrared Images
by Lili Zhang, Zihan Jin, Yibo Wang, Ziyi Wang, Zeyu Duan, Taoran Qi and Rui Shi
Sensors 2025, 25(10), 3199; https://doi.org/10.3390/s25103199 - 19 May 2025
Viewed by 539
Abstract
Concrete dams are prone to various hidden dangers after long-term operation and may lead to significant risk if failed to be detected in time. However, the existing hollowing detection techniques are few as well as inefficient when facing the demands of comprehensive coverage [...] Read more.
Concrete dams are prone to various hidden dangers after long-term operation and may lead to significant risk if failed to be detected in time. However, the existing hollowing detection techniques are few as well as inefficient when facing the demands of comprehensive coverage and intelligent management for regular inspections. Hence, we proposed an innovative, non-destructive infrared inspection method via constructed dataset and proposed deep learning algorithms. We first modeled the surface temperature field variation of concrete dams as a one-dimensional, non-stationary partial differential equation with Robin boundary. We also designed physics-informed neural networks (PINNs) with multi-subnets to compute the temperature value automatically. Secondly, we obtained the time-domain features in one-dimensional space and used the diffusion techniques to obtain the synthetic infrared images with dam hollowing by converting the one-dimensional temperatures into two-dimensional ones. Finally, we employed adaptive joint learning to obtain the spatio-temporal features. We designed the experiments on the dataset we constructed, and we demonstrated that the method proposed in this paper can handle the low-data (few shots real images) issue. Our method achieved 94.7% of recognition accuracy based on few shots real images, which is 17.9% and 5.8% higher than maximum entropy and classical OTSU methods, respectively. Furthermore, it attained a sub-10% cross-sectional calculation error for hollowing dimensions, outperforming maximum entropy (70.5% error reduction) and OTSU (7.4% error reduction) methods, which shows our method being one novel method for automated intelligent hollowing detection. Full article
Show Figures

Figure 1

19 pages, 4134 KB  
Article
Dynamic Risk Assessment of Gas Accumulation During Coal and Gas Outburst Catastrophes Based on Analytic Hierarchy Process and Information Entropy
by Jingxiao Yu, Zongxiang Li, Dingding Yang and Yu Liu
Processes 2025, 13(5), 1305; https://doi.org/10.3390/pr13051305 - 25 Apr 2025
Cited by 1 | Viewed by 449
Abstract
Gas accumulation triggered by coal and gas outbursts is the core cause of secondary disasters in coal mines. This study focuses on the risk assessment of gas accumulation during disaster scenarios, proposing a multidimensional evaluation method integrating the analytic hierarchy process (AHP), information [...] Read more.
Gas accumulation triggered by coal and gas outbursts is the core cause of secondary disasters in coal mines. This study focuses on the risk assessment of gas accumulation during disaster scenarios, proposing a multidimensional evaluation method integrating the analytic hierarchy process (AHP), information entropy theory, kernel density estimation, and dynamic risk propagation modeling. A unified intelligent prevention system encompassing “monitoring–prediction–decision making” is established. Leveraging the TFIM3D simulation platform and case studies from the Qunli Coal Mine accident, this research reveals spatiotemporal evolution patterns of gas concentration and explosion risk thresholds. A ventilation optimization strategy based on risk classification is proposed. The results demonstrate that the dynamic risk index (DRI), derived from the coupling of the roadway air volume stability coefficient and gas concentration information entropy, can accurately identify high-risk zones. The findings provide theoretical foundations and practical pathways for dynamic risk management in ventilation systems during coal and gas outburst disasters. Full article
Show Figures

Figure 1

31 pages, 12545 KB  
Article
Complexity Analysis of Environmental Time Series
by Holger Lange and Michael Hauhs
Entropy 2025, 27(4), 381; https://doi.org/10.3390/e27040381 - 3 Apr 2025
Cited by 2 | Viewed by 830
Abstract
Small, forested catchments are prototypes of terrestrial ecosystems and have been studied in several disciplines of environmental science over several decades. Time series of water and matter fluxes and nutrient concentrations from these systems exhibit a bewildering diversity of spatiotemporal patterns, indicating the [...] Read more.
Small, forested catchments are prototypes of terrestrial ecosystems and have been studied in several disciplines of environmental science over several decades. Time series of water and matter fluxes and nutrient concentrations from these systems exhibit a bewildering diversity of spatiotemporal patterns, indicating the intricate nature of processes acting on a large range of time scales. Nonlinear dynamics is an obvious framework to investigate catchment time series. We analyzed selected long-term data from three headwater catchments in the Bramke valley, Harz mountains, Lower Saxony in Germany at common biweekly resolution for the period 1991 to 2023. For every time series, we performed gap filling, detrending, and removal of the annual cycle using singular system analysis (SSA), and then calculated metrics based on ordinal pattern statistics: the permutation entropy, permutation complexity, and Fisher information, as well as their generalized versions (q-entropy and α-entropy). Further, the position of each variable in Tarnopolski diagrams is displayed and compared to reference stochastic processes, like fractional Brownian motion, fractional Gaussian noise, and β noise. Still another way of distinguishing deterministic chaos and structured noise, and quantifying the latter, is provided by the complexity from ordinal pattern positioned slopes (COPPS). We also constructed horizontal visibility graphs and estimated the exponent of the decay of the degree distribution. Taken together, the analyses create a characterization of the dynamics of these systems which can be scrutinized for universality, either across variables or between the three geographically very close catchments. Full article
Show Figures

Figure 1

14 pages, 4544 KB  
Article
Temporal-Spatial Redundancy Reduction in Video Sequences: A Motion-Based Entropy-Driven Attention Approach
by Ye Yuan, Baolei Wu, Zifan Mo, Weiye Liu, Ji Hong, Zongdao Li, Jian Liu and Na Liu
Biomimetics 2025, 10(4), 192; https://doi.org/10.3390/biomimetics10040192 - 21 Mar 2025
Viewed by 748
Abstract
The existence of redundant video frames results in a substantial waste of computational resources during video-understanding tasks. Frame sampling is a crucial technique in improving resource utilization. However, existing sampling strategies typically adopt fixed-frame selection, which lacks flexibility in handling different action categories. [...] Read more.
The existence of redundant video frames results in a substantial waste of computational resources during video-understanding tasks. Frame sampling is a crucial technique in improving resource utilization. However, existing sampling strategies typically adopt fixed-frame selection, which lacks flexibility in handling different action categories. In this paper, inspired by the neural mechanism of the human visual pathway, we propose an effective and interpretable frame-sampling method called Entropy-Guided Motion Enhancement Sampling (EGMESampler), which can remove redundant spatio-temporal information in videos. Our fundamental motivation is that motion information is an important signal that drives us to adaptively select frames from videos. Thus, we first perform motion modeling in EGMESampler to extract motion information from irrelevant backgrounds. Then, we design an entropy-based dynamic sampling strategy based on motion information to ensure that the sampled frames can cover important information in videos. Finally, we perform attention operations on the motion information and sampled frames to enhance the motion expression of the sampled frames and remove redundant spatial background information. Our EGMESampler can be embedded in existing video processing algorithms, and experiments on five benchmark datasets demonstrate its effectiveness compared to previous fixed-sampling strategies, as well as its generalizability across different video models and datasets. Full article
Show Figures

Figure 1

26 pages, 9094 KB  
Article
Study on Ecosystem Service Values of Urban Green Space Systems in Suzhou City Based on the Extreme Gradient Boosting Geographically Weighted Regression Method: Spatiotemporal Changes, Driving Factors, and Influencing Mechanisms
by Tailong Shi and Hao Xu
Land 2025, 14(3), 564; https://doi.org/10.3390/land14030564 - 7 Mar 2025
Cited by 2 | Viewed by 1517
Abstract
Urban green space systems (UGSS) play a crucial role in enhancing citizens’ well-being and promoting sustainable urban development through their ecosystem service values (ESV). However, understanding the spatiotemporal changes, driving factors, and influencing mechanisms of ESV remains a critical challenge for advancing urban [...] Read more.
Urban green space systems (UGSS) play a crucial role in enhancing citizens’ well-being and promoting sustainable urban development through their ecosystem service values (ESV). However, understanding the spatiotemporal changes, driving factors, and influencing mechanisms of ESV remains a critical challenge for advancing urban green theories and formulating effective policies. This study focuses on Suzhou, China’s third-largest prefecture-level city by economic volume and ecological core city of the Taihu watershed, to evaluate the ESV of its UGSS from 2010 to 2020, identify key driving factors, and analyze their influencing mechanisms. Using the InVEST model combined with the entropy weight method (EWM), we assessed the ESV changes over the study period. To examine the influencing mechanisms, we employed an innovative XGBoost-GWR approach, where XGBoost was used to screen globally significant factors from 37 potential drivers, and geographically weighted regression (GWR) was applied to model local spatial heterogeneity, providing a research perspective that balances global nonlinear relationships with local spatial heterogeneity. The results revealed three key findings: First, while Suzhou’s UGSS ESV increased by 9.92% from 2010 to 2020, the Global Moran’s I index rose from 0.325 to 0.489, indicating that its spatial distribution became more uneven, highlighting the increased ecological risks. Second, climate, topography, landscape pattern, and vegetation emerged as the most significant driving factors, with topographic factors showing the greatest variation (the negatively impacted area increased by 455.60 km2) and climate having the largest overall impact but least variation. Third, the influencing mechanisms were primarily driven by land use changes resulting from urbanization and industrialization, leading to increased ecological risks such as soil erosion, pollution, landscape fragmentation, and habitat degradation, particularly in the Kunshan, Wujiang, and Zhangjiagang Districts, where agricultural land has been extensively converted to constructed land. This study not only elucidates the mechanisms influencing UGSS’s ESV driving factors but also expands the theoretical understanding of urbanization’s ecological impacts, providing valuable insights for optimizing UGSS layout and informing sustainable urban planning policies. Full article
Show Figures

Figure 1

Back to TopTop