Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = spherical crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2145 KB  
Article
Structural Design of High-Coercivity Nd-Ce-Fe-B Magnets with Easy Axis Perpendicular Orientation and High-Abundance Ce Content Based on Micromagnetic Simulations
by Qian Zhao, Ying Yu, Chenlin Tang, Qingkang Hu, Suo Bai, Puyu Wang, Zhubai Li and Guoping Zhao
Nanomaterials 2025, 15(17), 1358; https://doi.org/10.3390/nano15171358 - 3 Sep 2025
Abstract
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to [...] Read more.
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to design the crystal structure of Nd-Ce-Fe-B magnets to compensate for the decline in magnetic performance caused by the Ce substitution. In this study, based on micromagnetic theory, Nd-Ce-Fe-B magnets with perpendicularly oriented easy axes—in which the two main phases, Nd2Fe14B and Ce2Fe14B, have a volume ratio of 1:1 but different spatial arrangements—are modeled and simulated using the MuMax3.11 software. The model is either cubic or spherical. The results from the demagnetization curve analysis indicate that the coercivity mechanism of all magnets is pinning. When the magnet volume is constant but the phase distribution differs, the Nd2Fe14B/Ce2Fe14B structure exhibits a higher coercivity and maximum energy product than the Ce2Fe14B/Nd2Fe14B structure. Furthermore, for both structural models with the same phase distribution, the coercivity and the maximum energy product decrease with the increasing volume of the main phase. Notably, the coercivity is similar when the magnet volume is very small and stabilizes after reaching a certain threshold. This qualitative conclusion was also observed in Nd-Dy-Fe-B magnets with the same structure and equal volume ratio of the two main phases. This general finding indicates that, in biphasic magnets with equal phase volumes, the phase with the larger anisotropy field located at the grain periphery can achieve a higher coercivity and maximum magnetic energy product. The analysis of the angular distribution reveals that the number of magnetic domains remains fixed at six in the Nd2Fe14B/Ce2Fe14B structure and two in the Ce2Fe14B/Nd2Fe14B structure. The in-plane magnetic moment analysis of the Ce2Fe14B/Nd2Fe14B magnet shows that the magnetic moments at the edges of the Ce2Fe14B begin to deflect first. Even at the pinning stage, the magnetic moments within the Nd2Fe14B remain unrotated. Nevertheless, the surface magnetic moments of Ce2Fe14B, through exchange coupling, drive the deflection of the interfacial and interior moments, completing the entire demagnetization process. These computational results provide theoretical guidance for related experimental studies and industrial applications. Full article
(This article belongs to the Special Issue Study on Magnetic Properties of Nanostructured Materials)
Show Figures

Figure 1

13 pages, 3334 KB  
Article
Open-Access Crystal Plasticity Finite Element Implementation in ANSYS for Dislocation-Induced Nanoindentation in Magnesium
by Syed Taha Khursheed, Moein Imani Foumani, Yunhua Luo and Guo-zhen Zhu
Inventions 2025, 10(5), 77; https://doi.org/10.3390/inventions10050077 - 28 Aug 2025
Viewed by 328
Abstract
This study focuses on developing and implementing crystal plasticity finite element modeling (CPFEM) codes on the ANSYS platform. The code incorporates a plasticity constitutive law that describes the behaviors of basal, prismatic, and pyramidal slips in magnesium, and is validated against plane-strain compression [...] Read more.
This study focuses on developing and implementing crystal plasticity finite element modeling (CPFEM) codes on the ANSYS platform. The code incorporates a plasticity constitutive law that describes the behaviors of basal, prismatic, and pyramidal slips in magnesium, and is validated against plane-strain compression experiments and simulations using established codes on the ABAQUS CAE platform. The validated CPFEM code is applied to simulate the dislocation-induced nanoindentation response of pure magnesium across different crystallographic orientations, allowing visualization of strain distributions associated with different slips. Consistent with experimental observations, basal slip is identified as the primary active slip, whereas prismatic and pyramidal slips show varying activities with respect to the direction of the indentation. Novelty arises from an ANSYS–native CPFEM implementation that is cross-validated against published ABAQUS simulations and an experiment under a single, consistent constitutive set. This framework enables orientation-resolved mapping of slip system activity and subsurface strain fields under spherical nanoindentation, providing analysis capability seldom available in prior ANSYS–based studies. Full article
Show Figures

Figure 1

23 pages, 12244 KB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 457
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

14 pages, 3262 KB  
Article
Integrated LCOS-SLM-Based Laser Slicing System for Aberration Correction in Silicon Carbide Substrate Manufacturing
by Heng Wang, Qiang Cao, Yuting Hou, Lulu Yu, Tianhao Wu, Zhenzhong Wang and Du Wang
Micromachines 2025, 16(8), 930; https://doi.org/10.3390/mi16080930 - 13 Aug 2025
Viewed by 459
Abstract
Silicon carbide (SiC), a wide-bandgap semiconductor, is renowned for its exceptional performance in power electronics and extreme-temperature environments. However, precision low-loss laser slicing of SiC is impeded by energy divergence and crack delamination induced by refractive-index-mismatch interfacial aberrations. This study presents an integrated [...] Read more.
Silicon carbide (SiC), a wide-bandgap semiconductor, is renowned for its exceptional performance in power electronics and extreme-temperature environments. However, precision low-loss laser slicing of SiC is impeded by energy divergence and crack delamination induced by refractive-index-mismatch interfacial aberrations. This study presents an integrated laser slicing system based on a liquid crystal on silicon spatial light modulator (LCOS-SLM) to address aberration-induced focal elongation and energy inhomogeneity. Through dynamic modulation of the laser wavefront via an inverse ray-tracing algorithm, the system corrects spherical aberrations from refractive index mismatch, thus achieving precise energy concentration at wanted depths. A laser power attenuation model based on interface reflection and the Lambert–Beer law is established to calculate the required laser power at varying processing depths. Experimental results demonstrate that aberration correction reduces focal depth to approximately one-third (from 45 μm to 15 μm) and enhances energy concentration, eliminating multi-layer damage and increasing crack propagation length. Post-correction critical power measurements across depths are consistent with model predictions, with maximum error decreasing from >50% to 8.4%. Verification on a 6-inch N-type SiC ingot shows 90 μm damage thickness, confirming system feasibility for SiC laser slicing. The integrated aberration-correction approach provides a novel solution for high-precision SiC substrate processing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

18 pages, 4361 KB  
Article
Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol
by Nasser Mohamed-Noriega, Julia Grothe and Stefan Kaskel
Nanomaterials 2025, 15(16), 1226; https://doi.org/10.3390/nano15161226 - 12 Aug 2025
Viewed by 511
Abstract
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase [...] Read more.
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase is stabilized at room temperature instead of the tetragonal phase. This value depends on multiple factors, mostly resulting from the synthesis route and conditions. Especially, internal stresses are known to promote the loss of tetragonality. Stresses are commonly present in water-containing synthesis routes because of the incorporation of hydroxyl groups into the oxygen sublattice of BaTiO3. On the other hand, the use of an organic solvent instead of water as a reaction medium overcomes the mentioned problem. This work presents a one-pot water-free solvothermal treatment of a Ti(O-iPr)4-Ba(OH)2·8H2O sol in methanol in the presence of small amounts of oleic acid, which allows the synthesis of spherical crystalline BT nanoparticles (from ~12 nm to ~30 nm in diameter) at temperatures as low as 100 °C with a cubic/tetragonal crystal structure confirmed by powder XRD, but predominantly tetragonal according to the Raman spectra. The retention of the tetragonal crystal structure is attributed to the lack of lattice hydroxyls (confirmed by FTIR spectroscopy) resulting from the use of an organic solvent (methanol) as reaction medium. To the best of the author’s knowledge, this synthesis approach is the first report of tetragonal BT nanoparticles synthesized in methanol without the addition of extra water and without the need for a post-synthetic calcination step. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 6767 KB  
Article
Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis
by Wenbin Qu, Bountheva Louangsouphom, Xiaoling Ye, Huimei Liu and Xin Wang
Catalysts 2025, 15(8), 759; https://doi.org/10.3390/catal15080759 - 8 Aug 2025
Viewed by 506
Abstract
Integrating photocatalysis with adsorption represents an efficient approach to improving the removal performance of organic contaminants from aqueous environments. To address the issues of severe charge recombination and poor adsorption activity in TiO2 photocatalysts during the photocatalytic degradation of organic pollutants. In [...] Read more.
Integrating photocatalysis with adsorption represents an efficient approach to improving the removal performance of organic contaminants from aqueous environments. To address the issues of severe charge recombination and poor adsorption activity in TiO2 photocatalysts during the photocatalytic degradation of organic pollutants. In this study, we used macroporous resin as a carrier and prepared La/N-doped TiO2/macroporous resin composite materials (La/N/TiO2-MAR) via a hydrothermal-assisted sol–gel method. The results show that the composite material has a spherical morphology. N can be doped into the TiO2 crystal, while La3+ remains on the surface of TiO2 without entering the crystal lattice. La/N/TiO2-MAR demonstrates a higher specific surface area and enhanced light absorption capacity, which facilitates both adsorption and photocatalytic degradation. At the La3+ doping concentration of 0.05 M, La0.05/N/TiO2-MAR demonstrates optimal photocatalytic degradation performance, achieving an 85.36% removal rate of Rhodamine B after 240 min of visible-light exposure. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

17 pages, 4153 KB  
Article
Spherical Indentation Behavior of DD6 Single-Crystal Nickel-Based Superalloy via Crystal Plasticity Finite Element Simulation
by Xin Hao, Peng Zhang, Hao Xing, Mengchun You, Erqiang Liu, Xuegang Xing, Gesheng Xiao and Yongxi Tian
Materials 2025, 18(15), 3662; https://doi.org/10.3390/ma18153662 - 4 Aug 2025
Viewed by 367
Abstract
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure [...] Read more.
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure evolution within the material. Combining nanoindentation experiments with the crystal plasticity finite element method (CPFEM), this study systematically investigates the effects of loading rate and crystal orientation on the elastoplastic deformation of DD6 alloy under spherical indenter loading. The results indicate that the maximum indentation depth increases and hardness decreases with prolonged loading time, exhibiting a significant strain rate strengthening effect. The CPFEM model incorporating dislocation density effectively simulates the nonlinear characteristics of the nanoindentation process and elucidates the evolution of dislocation density and slip system strength with indentation depth. At low loading rates, both dislocation density and slip system strength increase with loading time. Significant differences in mechanical behavior are observed across different crystal orientations, which correspond to the extent of lattice rotation during texture evolution. For the [111] orientation, crystal rotation is concentrated and highly regular, while the [001] orientation shows uniform texture evolution. This demonstrates that anisotropy governs the deformation mechanism through differential slip system activation and texture evolution. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 3171 KB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 462
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

17 pages, 6752 KB  
Article
Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
by Zi-Xian Li, Chen Yang, Lei Guo, Jun Ling and Jun-Ting Xu
Molecules 2025, 30(15), 3108; https://doi.org/10.3390/molecules30153108 - 24 Jul 2025
Viewed by 455
Abstract
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs [...] Read more.
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs with controlled polymerization degrees (DP of PCL: 45/67; DP of PSar: 28–99) and low polydispersity indexes (Đ ≤ 1.1) and systematically investigated their crystallization-driven self-assembly (CDSA) in alcohol solvents (ethanol, n-butanol, and n-hexanol). It was found that the limited solubility of PSar in alcohols resulted in competition between micellization and crystallization during self-assembly of PCL-b-PSar, and thus coexistence of lamellae and spherical micelles. To overcome this morphological heterogeneity, we developed a modified self-seeding method by employing a two-step crystallization strategy (i.e., Tc1 = 33 °C and Tc2 = 8 °C), achieving conversion of micelles into crystals and yielding uniform self-assembled structures. PCL-b-PSar BCPs with short PSar blocks tended to form well-defined two-dimensional lamellar crystals, while those with long PSar blocks induced formation of hierarchical structures in the PCL45 series and polymer aggregation on crystal surfaces in the PCL67 series. Solvent quality notably influenced the self-assembly pathways of PCL45-b-PSar28. Lamellar crystals were formed in ethanol and n-butanol, but micrometer-scale dendritic aggregates were generated in n-hexanol, primarily due to a significant Hansen solubility parameter mismatch. This study elucidated the CDSA mechanism of PCL-b-PSar in alcohols, enabling precise structural control for biomedical applications. Full article
Show Figures

Graphical abstract

22 pages, 8896 KB  
Article
Synergistic Sequestration and Hydroxyapatite-Based Recovery of Phosphorus by the Coupling Process of CaCl2/Modified Oyster Shell and Circulating Fluidized Bed Reactor
by Xuejun Long, Nanshan Yang, Huiqi Wang, Jun Fang, Rui Wang, Zhenxing Zhong, Peng Yu, Xuelian Xu, Hao Huang, Jun Wan, Xiejuan Lu and Xiaohui Wu
Catalysts 2025, 15(8), 706; https://doi.org/10.3390/catal15080706 - 24 Jul 2025
Viewed by 513
Abstract
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the [...] Read more.
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the coupling process of CaCl2/MOS-800 and a circulating fluidized bed (CFB), resulting in an 86.5% phosphate separation. In continuous flow experiments, phosphorus elimination reached 98.2%. Material characterization revealed that hydroxyapatite (HAP) was the primary component of the crystallized products. Additionally, MOS-800 released 506.5–572.2 mg/g Ca2+ and 98.1 mg/g OH. A four-stage heterogeneous crystallization mechanism was proposed for the coupling process. In the first stage, Ca2+ quickly reacted with phosphate to form Ca-P ion clusters, etc. In the second stage, these clusters packed randomly to form spherical amorphous calcium phosphate (ACP). In the third stage, the ACP spheres were transformed and rearranged into sheet-like HAP crystallites, Finally, in the fourth stage, the HAP crystallites aggregated on the surface of crystal seeds, also with the addition of crystal seeds and undissolved MOS-800, potentially catalyzing the heterogeneous crystallization. These findings suggest that the CaCl2/MOS-800/CFB system is a promising technique for phosphate recovery from wastewater. Full article
Show Figures

Figure 1

22 pages, 4859 KB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 621
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

16 pages, 2901 KB  
Article
SiO2-Al2O3-ZrO2-Ag Composite and Its Signal Enhancement Capacity on Raman Spectroscopy
by Jesús Alberto Garibay-Alvarado, Pedro Pizá-Ruiz, Armando Erasto Zaragoza-Contreras, Francisco Espinosa-Magaña and Simón Yobanny Reyes-López
Chemosensors 2025, 13(7), 266; https://doi.org/10.3390/chemosensors13070266 - 21 Jul 2025
Viewed by 413
Abstract
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. [...] Read more.
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. The enhancement substrates were made of fibers of cylindric morphology with an average diameter of approximately 190 nm, a smooth surface, and 9 nm spherical particles decorating the surface of the fibers. The enhancement capacity of the substrates was tested using pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at different concentrations with Raman spectroscopy to determine whether the size and complexity of the analyte has an impact on the enhancement capacity. Enhancement factors of 2.53 × 102, 3.06 × 101, 2.97 × 103, 4.66 × 103, and 1.45 × 103 times were obtained for the signal of pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at concentrations of 1 nM. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Graphical abstract

16 pages, 6052 KB  
Article
Crystal Form Investigation and Morphology Control of Salbutamol Sulfate via Spherulitic Growth
by Xinyue Qiu, Hongcheng Li, Yanni Du, Xuan Chen, Shichao Du, Yan Wang and Fumin Xue
Crystals 2025, 15(7), 651; https://doi.org/10.3390/cryst15070651 - 16 Jul 2025
Viewed by 432
Abstract
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate [...] Read more.
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate were obtained via antisolvent crystallization. Four different antisolvents, including ethanol, n-propanol, n-butanol, and sec-butanol, were selected, and their effects on crystal form and morphology were compared. Notably, a new solvate of salbutamol sulfate with sec-butanol has been obtained. The novel crystal form was characterized by single-crystal X-ray diffraction, revealing a 1:1 stoichiometric ratio between solvent and salbutamol sulfate in the crystal lattice. In addition, the effects of crystallization temperature, solute concentration, ratio of antisolvent to solvent, feeding rate, and stirring rate on the morphology of spherical particles were investigated in different antisolvents. We have found that crystals grown from the n-butanol–water system at optimal conditions (25 °C, antisolvent/solvent ratio of 9:1, and drug concentration of 0.2 g·mL−1) could be developed into compact and uniform spherulites. The morphological evolution process was also monitored, and the results indicated a spherulitic growth pattern, in which sheaves of plate-like crystals gradually branched into a fully developed spherulite. This work paves a feasible way to develop new crystal forms and prepare spherical particles of pharmaceuticals. Full article
(This article belongs to the Special Issue Crystallization and Purification)
Show Figures

Figure 1

21 pages, 14585 KB  
Article
Zingiber officinale Polysaccharide Silver Nanoparticles: A Study of Its Synthesis, Structure Elucidation, Antibacterial and Immunomodulatory Activities
by Xiaoyu Chang, Huina Xiao, Mingsong Li, Yongshuai Jing, Kaiyan Zheng, Beibei Hu, Yuguang Zheng and Lanfang Wu
Nanomaterials 2025, 15(14), 1064; https://doi.org/10.3390/nano15141064 - 9 Jul 2025
Viewed by 436
Abstract
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles [...] Read more.
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles (ZOP-NPs-AgNPs) was determined as follows: V(AgNO3):V(ZOP) = 2.98:1, 59.79 °C, 3 h, pH 9, and 20 mL NaCl, achieving a 92.51% silver chelation rate. Structure analysis revealed that ZOP-NPs-AgNPs were spherical or quasi-spherical, with a particle size < 20 nm and a face-centered cubic crystal structure, which has good thermal stability. Subsequent studies explored the antibacterial and immunomodulatory effects of ZOP-NPs-AgNPs. The minimum inhibitory concentration (MIC) of ZOP-NPs-AgNPs against Escherichia coli and Staphylococcus aureus was determined to be 0.5000 mg/mL and 0.0310 mg/mL, respectively, while the minimum bactericidal concentration (MBC) was 0.5000 mg/mL and 0.0310 mg/mL, respectively. Additionally, ZOP-NPs-AgNPs significantly enhance RAW264.7 cell proliferation and phagocytosis and boost IL−1β, IL−6, NO, and TNF-α production. This confirms that ZOP can act as a green reductant and stabilizer, offering a new method for green nano-silver synthesis. This provides a sustainable way to produce antibacterial products and functional foods, and offers useful references for eco-friendly nano-silver applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

13 pages, 4081 KB  
Article
Tailored Morphology and Phase Evolution of Magnesium Whitlockite Granules via a Dissolution–Precipitation Approach
by Ruta Raiseliene, Greta Linkaite, Akvile Ezerskyte and Inga Grigoraviciute
Appl. Sci. 2025, 15(13), 7221; https://doi.org/10.3390/app15137221 - 26 Jun 2025
Viewed by 401
Abstract
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for [...] Read more.
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for possible use in bone regeneration applications. Three distinct precursor granules were prepared by mixing varying amounts of ammonium dihydrogen phosphate and magnesium hydrogen phosphate with calcium sulfate. The precursors were then transformed into biphasic and single-phase Mg-WH granules by means of immersion in magnesium- and phosphate-containing solutions under controlled conditions. The X-ray diffraction results demonstrated that biphasic materials containing Mg-WH and either calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate anhydrous (DCPA) formed after 24 h of synthesis, depending on the synthesis conditions. Prolonging the reaction time to 48 h resulted in complete transformation into single-phase Mg-WH granules. Fourier-transform infrared spectroscopy confirmed the presence of functional groups characteristic of Mg-WH, CDHA, and DCPA in the intermediate products. The spectra also indicated the absence of precursor phases and the progressive elimination of secondary phases as the reaction time increased. Scanning electron microscopy analyses revealed notable morphological transformations from the raw granules to the product granules, with the latter exhibiting interlocked spherical and rod-like particles composed of fine Mg-WH rhombohedral crystals. N2 adsorption–desorption analyses exposed significant differences in the surface properties of the synthesized granules. By varying precursor, reaction solution compositions, and reaction times, the study elucidated the phase evolution mechanisms and demonstrated their impact on the structural, morphological, and surface properties of Mg-WH granules. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

Back to TopTop