Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,637)

Search Parameters:
Keywords = spray additives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4266 KB  
Article
Self-Healing Imidazole-Cured Epoxy Using Microencapsulated Epoxy-Amine Chemistry
by Zhihui Li, Gang Du, Sen Yang, Xuerong Lu, Fuli Zheng, Bin Hao, Peng Zhan, Guangmao Li and He Zhang
Polymers 2025, 17(17), 2391; https://doi.org/10.3390/polym17172391 - 1 Sep 2025
Abstract
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for [...] Read more.
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for reactors using epoxy microcapsules and amine microcapsules prepared by electrospraying-interfacial polymerization (ES-IP) microencapsulation technique. Firstly, this investigation studies the feasibility of using double nozzles for simultaneous spraying to improve the preparation of small-sized microcapsules. After successful synthesis, the healing performance of self-healing imidazole-cured epoxy based on the microencapsulated epoxy-amine chemistry was studied, focusing on the influence of the ratio, concentration, and size of the two microcapsules on the healing efficiency, and further exploring the thermal stability of the self-healing performance. The addition of microcapsules to the mechanical properties was also investigated. Results show that the double-nozzle technique can prepare microcapsules with controllable sizes (20~200 μm). The self-healing imidazole-cured epoxy exhibits high self-healing performance, reaching 100% at the optimal ratio with 10.0 wt% 50~100 μm microcapsules. Although the added microcapsules reduce the tensile strength of the material, they improve its high-temperature aging resistance. The above investigation is significant for developing self-healing fiber-reinforced epoxy-based composite materials for reactors. Full article
(This article belongs to the Special Issue Thermal Behavior of Polymer Materials II)
18 pages, 1341 KB  
Article
Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development
by Silvia Matiacevich, Ignacio Durán, Marlen Gutiérrez-Cutiño, Javier Echeverría, César Echeverría and Daniela Soto-Madrid
Polymers 2025, 17(17), 2371; https://doi.org/10.3390/polym17172371 - 31 Aug 2025
Abstract
This study explores the valorization of walnut green husk, an agro-industrial by-product, through ultrasound-assisted extraction to obtain polyphenol-rich extracts with antioxidant properties. The extracts demonstrated non-cytotoxicity, regardless of the presence of pesticides, antibiotics, or the type of crop. Notably, organic walnut husk yielded [...] Read more.
This study explores the valorization of walnut green husk, an agro-industrial by-product, through ultrasound-assisted extraction to obtain polyphenol-rich extracts with antioxidant properties. The extracts demonstrated non-cytotoxicity, regardless of the presence of pesticides, antibiotics, or the type of crop. Notably, organic walnut husk yielded higher total polyphenols and antioxidant activity, identifying 37 polyphenolic compounds compared to 22 in traditional crops. Chickpea protein was utilized as a wall material to encapsulate the extract, resulting in a sustainable, vegan antioxidant powder. Optimal results were achieved using 5% (w/v) chickpea protein and spray drying at 136 °C, yielding a light-colored powder with high antioxidant content and stability under low humidity (≤35%). The product shows promise as a natural, plant-based alternative to synthetic antioxidants in food systems. Further studies are needed to evaluate its functional and technological performance during food integration and storage. Full article
(This article belongs to the Special Issue Advanced Study on Natural Polymers and Their Applications)
Show Figures

Figure 1

14 pages, 1431 KB  
Article
Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains
by Xijun Yuan, Muyan Zhang, Jingtong Sun, Xinyue Liu, Jie Chen, Rui Wang, Hao Lu and Yanju Yang
Agronomy 2025, 15(9), 2096; https://doi.org/10.3390/agronomy15092096 - 30 Aug 2025
Viewed by 35
Abstract
Synergizing iron nutrition and rice quality is essential for the development of integrated high-quality rice. In this study, a two-year field experiment was conducted to investigate the influence of ferric oxide nanoparticles (Fe2O3 NPs) foliar spraying on rice yield, quality, [...] Read more.
Synergizing iron nutrition and rice quality is essential for the development of integrated high-quality rice. In this study, a two-year field experiment was conducted to investigate the influence of ferric oxide nanoparticles (Fe2O3 NPs) foliar spraying on rice yield, quality, and iron bioavailability, with spraying water as the control (CK). Our results demonstrate that Fe2O3 NPs foliar application increase grain yield by 1.22–3.97% for the improved filled grain rate and 1000-grain weight, essentially attributed to improved net photosynthetic rate and SPAD value after heading. In addition, Fe2O3 NPs application achieved a higher rate of brown rice, polished rice, and head rice, and decreased chalkiness grain rate and chalkiness degree. Rice taste value treated with Fe2O3 NPs application was notably increased by 2.75–9.43% compared to CK, respectively, which is also reflected in the superior breakdown value (5.85–15.18%) and inferior setback value (12.38–28.19%). Meanwhile, foliar spraying Fe2O3 NPs significantly increased the iron content (16.97–58.74% and 26.48–94.01%) and proportion (2.90–5.35% and 13.10–26.44%), while they decreased the molar ratio of phytate to Fe (19.70–33.67% and 31.55–45.77%) in brown rice and polished rice, increasing iron bioavailability. Our findings indicate that Fe2O3 NPs can be effectively applied as a foliar fertilizer to enhance rice yield, quality, and iron nutrition. Full article
16 pages, 302 KB  
Review
Hand Surgery Anaesthesia Innovations: Balancing Efficiency, Cost, and Comfort with WALANT, Ultrasound, and Emerging Adjuncts—A Narrative Review
by Omar Shadid, Jennifer Novo, Raj Saini, Gianluca Marcaccini, Brett K. Sacks, Warren M. Rozen, Ishith Seth and Roberto Cuomo
J. Clin. Med. 2025, 14(17), 6146; https://doi.org/10.3390/jcm14176146 (registering DOI) - 30 Aug 2025
Viewed by 48
Abstract
Background: Hand surgery is increasingly transitioning from hospital operating theatres to outpatient settings, requiring anaesthetic methods that are efficient, cost-effective, and patient-centred. Traditional anaesthesia, such as general anaesthesia, poses challenges including prolonged recovery and physiological stress. Novel strategies, such as Wide-Awake Local Anaesthesia [...] Read more.
Background: Hand surgery is increasingly transitioning from hospital operating theatres to outpatient settings, requiring anaesthetic methods that are efficient, cost-effective, and patient-centred. Traditional anaesthesia, such as general anaesthesia, poses challenges including prolonged recovery and physiological stress. Novel strategies, such as Wide-Awake Local Anaesthesia No Tourniquet (WALANT), ultrasound-guided distal nerve blocks, and adjunctive approaches (vapocoolant spray, patient-controlled regional analgesia, cryoanalgesia, jet injectors), have emerged to address these limitations. This narrative review consolidates current evidence regarding the efficacy, applicability, and economic implications of these evolving anaesthesia techniques. Methods: A literature search was conducted across MEDLINE, Embase, CENTRAL, and Scopus databases up to 1 June 2025. Inclusion criteria were English-language original studies on WALANT, vapocoolant sprays, ultrasound-guided distal nerve blocks, or emerging adjunctive anaesthesia methods applicable to hand and upper limb surgery. Exclusion criteria included non-English publications and those without original clinical data. Two independent reviewers screened and selected studies, ensuring relevance and methodological quality. Results: WALANT can provide high patient satisfaction, cost savings of 70–85%, and allow for real-time functional testing during surgery. Ultrasound-guided nerve blocks provided targeted analgesia, preserved elbow function, reduced the need for sedation, and improved perioperative efficiency. Adjuncts such as vapocoolant sprays significantly decreased needle-injection discomfort, offering quick and economical analgesia for superficial procedures. Other emerging adjuncts, including patient-controlled regional anaesthesia (PCRA), cryoanalgesia, and jet injectors, offered additional patient-tailored pain management options, although with higher resource demands. Conclusions: The review highlights the transformative potential of WALANT and adjunctive techniques to enhance efficiency, patient experience, and cost-effectiveness in hand surgery. Despite clear benefits, optimal application requires tailored patient selection, clinician familiarity, and consideration of procedure-specific demands. Full article
(This article belongs to the Special Issue Plastic and Reconstructive Surgery: Cutting-Edge Expert Perspective)
33 pages, 20297 KB  
Article
Mechanical and Tribological Performance of Additively Manufactured Nanocrystalline Aluminum via Cryomilling and Cold Spray
by Amanendra K. Kushwaha, Manoranjan Misra and Pradeep L. Menezes
Lubricants 2025, 13(9), 386; https://doi.org/10.3390/lubricants13090386 - 28 Aug 2025
Viewed by 141
Abstract
In this study, nanocrystalline (NC) aluminum (Al) and magnesium (Mg)-doped Al bulk components were fabricated using a hybrid manufacturing process that combines cryomilling and high-pressure cold spray (HPCS) additive deposition techniques. Yttria-stabilized zirconia (YSZ) was also added during the HPCS process to improve [...] Read more.
In this study, nanocrystalline (NC) aluminum (Al) and magnesium (Mg)-doped Al bulk components were fabricated using a hybrid manufacturing process that combines cryomilling and high-pressure cold spray (HPCS) additive deposition techniques. Yttria-stabilized zirconia (YSZ) was also added during the HPCS process to improve deposition efficiency and build-up thickness via peening. The evolution of morphology, crystallite size, and elemental composition of both cryomilled powders and cold-sprayed (CS’ed) components was systematically characterized using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). Mechanical characterization was performed using Vickers microhardness and uniaxial tensile testing, while the tribological behavior was assessed using sliding wear tests under dry/lubricated conditions. XRD analysis revealed that increased cryomilling duration led to significant crystallite refinement, which directly correlated with enhanced hardness and strength. This mechanical strengthening was accompanied by an increase in coefficient of friction (COF) and lower wear rates. The results also showed that the Mg-doped Al exhibited superior hardness, tensile strength, and tribological performance compared to pure Al. The study further explores the underlying mechanisms responsible for these enhancements, highlighting the potential of solute-assisted grain boundary stabilization in tailoring high-performance NC Al alloys. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 3364 KB  
Article
Mitigation of Carbonation-Induced Corrosion in Alkali-Activated Slag Concrete Using Calcined Mg–Al Hydrotalcite: Electrochemical and Microstructural Evaluations
by Willian Aperador, Jonnathan Aperador and J. C. Caicedo
Corros. Mater. Degrad. 2025, 6(3), 40; https://doi.org/10.3390/cmd6030040 - 27 Aug 2025
Viewed by 152
Abstract
This study investigates the effectiveness of calcined magnesium–aluminium layered double hydroxide (CLDH) as a functional additive for mitigating carbonation-induced corrosion in alkali-activated slag concrete (AASC). Mixtures incorporating different CLDH contents (0%, 2%, 4%, 6%, and 8%) were evaluated under accelerated CO2 exposure [...] Read more.
This study investigates the effectiveness of calcined magnesium–aluminium layered double hydroxide (CLDH) as a functional additive for mitigating carbonation-induced corrosion in alkali-activated slag concrete (AASC). Mixtures incorporating different CLDH contents (0%, 2%, 4%, 6%, and 8%) were evaluated under accelerated CO2 exposure (3%, 65% RH, 25 °C) for 90 days. Mechanical characterisation was carried out through 28-day compressive strength tests to assess the potential impact of CLDH on the structural performance of the material. Performance characterisation included electrochemical impedance spectroscopy (EIS) to assess the corrosion of embedded steel, phenolphthalein spraying to determine the carbonation depth, and complementary techniques such as X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM/EDX) for assessments of the microstructural evolution. The results demonstrate that CLDH significantly enhances resistance to CO2 ingress, increasing the polarisation resistance (Rp) to over 55 kΩ·cm2 (at 6% CLDH) and reducing the carbonation depth by more than 50% compared to the reference mix. These improvements are attributed to the memory effect-induced regeneration of LDH-type lamellar phases, controlled release of OH and CO32− anions, and progressive densification of the microstructure, thereby limiting the ingress of aggressive agents. The optimal dosage was identified as 6%, as higher contents offered no further improvement and evidenced the formation of residual phases such as MgO. This work highlights the potential of CLDH as an effective and sustainable strategy to enhance the durability of alkali-activated cementitious materials against degradation processes driven by carbonation and corrosion. Full article
Show Figures

Figure 1

18 pages, 6259 KB  
Article
Wind-Induced Bending Characteristics of Crop Leaves and Their Potential Applications in Air-Assisted Spray Optimization
by Zhouming Gao, Jing Ma, Wei Hu, Kaiyuan Wang, Kuan Liu, Jian Chen, Tao Wang, Xiaoya Dong and Baijing Qiu
Horticulturae 2025, 11(9), 1002; https://doi.org/10.3390/horticulturae11091002 - 23 Aug 2025
Viewed by 271
Abstract
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined [...] Read more.
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined with high-speed photography and digital image analysis were conducted to systematically investigate the curvature and flexibility distributions of three typical crop leaves: walnut, peach, and pepper, across a range of wind speeds. The results indicate that with increasing wind speed, all three types of leaves gradually transition from smooth, uniform bending to a multi-peak pattern of pronounced local curvature, with increasingly prominent nonlinear deformation characteristics. Moreover, once the wind speed exceeds the critical threshold of 6 m/s, the primary deformation region generally shifts from the leaf base to the tip. For example, the maximum curvature of walnut leaves increased from 0.018 mm−1 to 0.047 mm−1, and that of pepper leaves from 0.031 mm−1 to 0.101 mm−1, both more than double their original values. In addition, all three types of leaves demonstrated a distinct structural gradient characterized by strong basal rigidity and high apical flexibility. The tip flexibility values exceeded 1.5 × 10−5, 4 × 10−4, and 5.6 × 10−4 mm−2·mN−1 for walnut, peach, and pepper leaves, respectively. These findings elucidate the mechanical response mechanisms of non-uniform flexible crop leaves under wind-induced bending and provide a theoretical basis and data support for the optimization of air-assisted spraying parameters. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

22 pages, 1492 KB  
Article
Foliar Application of Iron and Zinc Affected Aromatic Plants Grown Under Conventional and Organic Agriculture Differently
by Nikolaos Tzortzakis, Efraimia Hajisolomou, Nikoletta Zaravelli and Antonios Chrysargyris
Horticulturae 2025, 11(8), 967; https://doi.org/10.3390/horticulturae11080967 - 14 Aug 2025
Viewed by 433
Abstract
The utilization of organic fertilizers for the cultivation of wild edible and medicinal plants offers agronomic and ecological benefits, given their suitability to low-input and sustainable production systems. Under such conditions, these species may also benefit from targeted foliar applications of micronutrients to [...] Read more.
The utilization of organic fertilizers for the cultivation of wild edible and medicinal plants offers agronomic and ecological benefits, given their suitability to low-input and sustainable production systems. Under such conditions, these species may also benefit from targeted foliar applications of micronutrients to enhance their nutritional quality. This study examined the effects of a vinasse-based organic fertilizer and conventional fertilization regime, in combination with foliar applications of iron (Fe) and zinc (Zn), on the biomass, leaf photochemistry, and plant stress-related responses of Sideritis cypria and Origanum dubium. In S. cypria, organic fertilization resulted in a similar yield compared to conventional fertilization, while O. dubium showed a significant decrease in yield when using organic fertilizers. The impact of spraying with Zn on S. cypria dry matter content was related to the availability of nutrients, particularly nitrogen, while in O. dubium Zn spraying induced a decrease in dry matter. The total phenols content and antioxidant activity of S. cypria were elevated by conventional fertilization and foliar application of Fe, while the combination of organic fertilization and foliar application of Fe and Zn reduced lipid peroxidation. In O. dubium, foliar application of Fe and Zn led to a reduction in total phenols content, antioxidant capacity, and hydrogen peroxide content under adequate nutrition. In general, foliar spraying with Zn tended to improve water use efficiency under specific fertilization practices on both species, while the positive effect of conventional fertilization on nutrient use efficiency still requires further validation. Ultimately, the efficiency of organic fertilization was related to the examined species, inducing variations in leaf chlorophyll content. In addition, foliar application of Fe and Zn affected the antioxidant capacity and mineral content of the examined species. Thus, appropriate fertilization management is vital to fully realize the specific benefits of foliar micronutrient addition. Full article
Show Figures

Figure 1

16 pages, 2250 KB  
Article
Comparative Study of ZnO and ZnO-Ag Particle Synthesis via Flame and Spray Pyrolysis for the Degradation of Methylene Blue
by Kusdianto, Nurdiana Ratna Puri, Adhi Setiawan, Sugeng Winardi, Widiyastuti, Suci Madhania, Mohammad Irwan Fatkhur Rozy and Manabu Shimada
Molecules 2025, 30(16), 3364; https://doi.org/10.3390/molecules30163364 - 13 Aug 2025
Viewed by 367
Abstract
The treatment of organic waste from dyes or other industry processes is a crucial issue that requires urgent attention. Photocatalysis is a promising method for tackling this problem, with ZnO being a commonly used photocatalyst material. This study compared the degrading efficiency of [...] Read more.
The treatment of organic waste from dyes or other industry processes is a crucial issue that requires urgent attention. Photocatalysis is a promising method for tackling this problem, with ZnO being a commonly used photocatalyst material. This study compared the degrading efficiency of ZnO particles and ZnO-Ag composites by utilizing flame and spray pyrolysis techniques. Under UV light, methylene blue (MB) was used as a model organic waste. The generated particles were characterized using Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy (SEM), X-Ray diffraction (XRD), and a UV-Vis spectrometer. The findings showed that the ZnO and ZnO-Ag obtained using both methods exhibited hexagonal Wurtzite crystal structures, and there was no significant difference in the crystal sizes produced. SEM analysis indicated that the morphology of the resulting particles differed significantly, with flame-synthesized particles being remarkably smaller in size (one-thirtieth the size following spray synthesis) and having smoother surfaces. Furthermore, the addition of Ag particles to ZnO enhanced the MB degradation efficiency by two to three times, achieving a maximum of 64% at 75 min. The BET analysis showed that the surface area of ZnO doped with Ag was larger compared to that of pristine ZnO. On the other hand, the ZnO-Ag particles produced via spray pyrolysis exhibited a total pore volume (determined through nitrogen adsorption–desorption analysis) three times larger than that of the particles produced via the flame method. The particles produced via spray pyrolysis also had better MB degradation performance compared to those synthesized using flame pyrolysis. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

14 pages, 1052 KB  
Article
Regulatory Mechanism of the GmMYB14 Transcription Factor on Auxin-Related Proteins in Soybean
by Lihua Peng, Yangyan Liu, Hongli Yang, Wei Guo, Qingnan Hao, Shuilian Chen, Songli Yuan, Chanjuan Zhang, Zhonglu Yang, Bei Han, Yi Huang, Zhihui Shan, Limiao Chen and Haifeng Chen
Int. J. Mol. Sci. 2025, 26(16), 7763; https://doi.org/10.3390/ijms26167763 - 11 Aug 2025
Viewed by 258
Abstract
In a previous study, GmMYB14 overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact phenotype, which was regulated by the brassinosteroid (BR) pathway. However, the phenotype of GmMYB14-OX plants could be partly rescued after spraying them with exogenous BR. This [...] Read more.
In a previous study, GmMYB14 overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact phenotype, which was regulated by the brassinosteroid (BR) pathway. However, the phenotype of GmMYB14-OX plants could be partly rescued after spraying them with exogenous BR. This indicates that other hormones, in addition to BR, also play a role in regulating the architecture of GmMYB14-OX plants. We observed a significant decrease in the content of endogenous indole-3-acetic acid (IAA) in transgenic soybean lines (OX9 and OX12) compared to wild type (WT) plants. The plant height, leaf area, leaf petiole length, and leaf petiole angle of GmMYB14-OX plants could also be partly rescued after applying exogenous IAA for two weeks. Transcriptome sequencing analysis revealed that the expression of many genes within the Aux/IAA gene family underwent alterations in the GmMYB14-OX transgenic soybean plants. Among them, Glyma.02G000500 (GmIAA1) showed the highest expression in GmMYB14-OX plants. Furthermore, the results of electrophoretic mobility shift assay and dual-luciferase reporter indicate that GmMYB14 protein could bind to the promoter of GmIAA1. In summary, a decrease in endogenous IAA content may be one of the factors contributing to the compact and dwarfed architecture of GmMYB14-OX plants. GmMYB14 also acts as a transcriptional activator of GmIAA1 to potentially block IAA effects. Our findings provide a theoretical basis for further investigation of the regulatory mechanism of GmMYB14 on soybean plant architecture. Full article
(This article belongs to the Special Issue Recent Advances in Soybean Molecular Breeding)
Show Figures

Figure 1

13 pages, 5177 KB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 762
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 2979 KB  
Article
Discussion on the Design of Sprayed Eco-Protection for Near-Slope Roads Along Multi-Level Slopes
by Haonan Chen and Jianjun Ye
Appl. Sci. 2025, 15(15), 8408; https://doi.org/10.3390/app15158408 - 29 Jul 2025
Viewed by 261
Abstract
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, [...] Read more.
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, including mixing areas, turnaround areas, berms, and access ramps. Critical technical parameters, such as curve radii and widths of berms and ramps, as well as dimensional specifications for turnaround areas, are systematically formulated with corresponding design formulas. The methodology is applied to the ecological restoration project of multi-level slopes in the Huamahu mountainous area, and a comparative technical-economic analysis is conducted between the proposed design and the original scheme. Results demonstrate that the optimized design reduces additional maintenance costs caused by near-slope roads by 6.5–8.0% during the curing period. This research advances the technical framework for multi-level slope governance and enhances the ecological design standards for slope protection engineering. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 1872 KB  
Article
Development of Supplements of Calcium Microencapsulated with Brewer’s Spent Yeast Mannoproteins—Study of Gastrointestinal and Colonic Bioaccessibility
by Marilin E. Aquino, Silvina R. Drago and Raúl E. Cian
Foods 2025, 14(15), 2632; https://doi.org/10.3390/foods14152632 - 27 Jul 2025
Viewed by 551
Abstract
Calcium microcapsules were developed by spray-drying using mannoproteins (MPs) extracted from brewer’s spent yeast, xanthan gum (XG), and maltodextrin as encapsulating materials. The formulas included 11 g of calcium, 24 g of MP, and 0, 2, 4, or 8 g of XG 100 [...] Read more.
Calcium microcapsules were developed by spray-drying using mannoproteins (MPs) extracted from brewer’s spent yeast, xanthan gum (XG), and maltodextrin as encapsulating materials. The formulas included 11 g of calcium, 24 g of MP, and 0, 2, 4, or 8 g of XG 100 g−1 solids, obtaining C1, C2, C3, and C4 microcapsules, respectively. Maltodextrin was added to complete 100 g of solids. Calcium intestinal (IB), colonic (CB), and total bioaccessibility (TB) were estimated after a simulated gastrointestinal digestion followed by in vitro colonic fermentation. The macromolecules of microcapsules interacted by ionic and hydrophobic forces. Microcapsules C1 and C2 showed a spherical shape. However, the addition of XG to the formulation contributed to the formation of concavities in the microcapsules. All microcapsules had higher IB than the control (CaCl2), probably due to the calcium-chelating peptides dialyzed from MP. Moreover, C1 and C2 showed the highest IB values (≈23%). However, C3 and C4 showed the highest CB values (≈11%), attributing this effect to the short-chain fatty acids produced during colonic fermentation. Finally, C1 and C2 showed the highest TB (31.8 ± 0.1 and 32.0 ± 0.4%, respectively). The use of MP allowed for obtaining a supplement with high calcium bioaccessibility. Full article
Show Figures

Graphical abstract

31 pages, 5261 KB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 1696
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

13 pages, 3189 KB  
Article
Synthesis of Thermo-Responsive Hydrogel Stabilizer and Its Impact on the Performance of Ecological Soil
by Xiaoyan Zhou, Weihao Zhang, Peng Yuan, Zhao Liu, Jiaqiang Zhao, Yue Gu and Hongqiang Chu
Appl. Sci. 2025, 15(15), 8279; https://doi.org/10.3390/app15158279 - 25 Jul 2025
Viewed by 300
Abstract
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and [...] Read more.
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and applied it to ecological soil. The effects of HSZ on the rheological, mechanical, and vegetation performance of ecological soil were investigated, and the mechanism of the responsive carrier in the stabilizer was explored. The experimental results show that the ecological soil containing HSZ has high flowability before response, but its flowability rapidly decreases and consistency sharply increases after response. After the addition of HSZ, the 7 d unconfined compressive strength of the ecological soil reaches 1.55 MPa. The pH value of the ecological soil generally ranges from 6.5 to 8.0, and plant growth in a simulated vegetation box is favorable. Conductivity and viscosity tests demonstrate that the core–shell microcarriers, upon thermal response, release crosslinking components from the carrier, which rapidly react with the precursor solution components to form a curing system. This study provides a novel method for regulating ecological soil using a responsive stabilizer, further expanding its capacity to adapt to various complex scenarios. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

Back to TopTop