Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,115)

Search Parameters:
Keywords = stat1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 313 KB  
Review
The Evolving Role of Hematopoietic Stem Cell Transplantation in Philadelphia-like Acute Lymphoblastic Leukemia: From High-Risk Standard to Precision Strategies
by Matteo Molica, Claudia Simio, Laura De Fazio, Caterina Alati, Marco Rossi and Massimo Martino
Cancers 2025, 17(19), 3237; https://doi.org/10.3390/cancers17193237 (registering DOI) - 5 Oct 2025
Abstract
Background: Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile similar to BCR::ABL1-positive leukemia, but lacking the BCR::ABL1 fusion gene. It is frequently associated with kinase-activating alterations, such as CRLF2 rearrangements, JAK-STAT pathway [...] Read more.
Background: Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile similar to BCR::ABL1-positive leukemia, but lacking the BCR::ABL1 fusion gene. It is frequently associated with kinase-activating alterations, such as CRLF2 rearrangements, JAK-STAT pathway mutations, and ABL-class fusions. Patients with Ph-like ALL typically experience poor outcomes with conventional chemotherapy, underscoring the need for intensified and targeted therapeutic approaches. Methods: This review summarizes current evidence regarding the role of hematopoietic stem cell transplantation (HSCT) in patients with Ph-like ALL. We analyzed retrospective cohort studies, registry data, and ongoing clinical trials, focusing on transplant indications, molecular risk stratification, measurable residual disease (MRD) status, timing of transplant, and post-transplant strategies. Results: Retrospective data suggest that HSCT in first complete remission (CR1) may improve survival in patients with high-risk molecular lesions or MRD positivity at the end of induction. However, the lack of prospective data specific to Ph-like ALL limits definitive conclusions. Post-transplant relapse remains a challenge, and novel strategies, including the use of tyrosine kinase inhibitors or JAK inhibitors as post-HSCT maintenance therapy, are being explored. Emerging immunotherapies, such as chimeric antigen receptor (CAR) T cells, may reshape the therapeutic landscape and potentially alter the indications for transplantation. Conclusions: HSCT remains a crucial therapeutic option for selected patients with Ph-like ALL, particularly those with poor molecular risk features or persistent MRD. However, further prospective studies are needed to evaluate the indication for HSCT in CR1 and the potential integration of transplantation with targeted and immunotherapeutic strategies. Personalized treatment approaches based on genomic profiling and MRD assessment are essential to improve outcomes in this high-risk subset. Full article
(This article belongs to the Special Issue Hematopoietic Stem Cell Transplant in Hematological Malignancies)
28 pages, 811 KB  
Review
Effects of Janus Kinase Inhibitors on Rheumatoid Arthritis Pain: Clinical Evidence and Mechanistic Pathways
by Andrej Belančić, Seher Sener, Yusuf Ziya Sener, Almir Fajkić, Marijana Vučković, Antonio Markotić, Mirjana Stanić Benić, Ines Potočnjak, Marija Rogoznica Pavlović, Josipa Radić and Mislav Radić
Biomedicines 2025, 13(10), 2429; https://doi.org/10.3390/biomedicines13102429 (registering DOI) - 5 Oct 2025
Abstract
Pain remains one of the most burdensome symptoms in rheumatoid arthritis (RA), often persisting despite inflammatory remission and profoundly impairing quality of life. This review aimed to evaluate the clinical efficacy and mechanistic pathways by which Janus kinase (JAK) inhibitors alleviate RA-related pain. [...] Read more.
Pain remains one of the most burdensome symptoms in rheumatoid arthritis (RA), often persisting despite inflammatory remission and profoundly impairing quality of life. This review aimed to evaluate the clinical efficacy and mechanistic pathways by which Janus kinase (JAK) inhibitors alleviate RA-related pain. Evidence from randomized clinical trials demonstrates that JAK inhibitors have demonstrated rapid and significant pain relief, often exceeding that of methotrexate or biologic DMARDs. Improvements in patient-reported pain scores seem to typically emerge within 1–2 weeks and are sustained over time. Beyond anti-inflammatory effects, JAK inhibitors modulate central sensitization and nociceptive signaling by attenuating IL-6 and GM-CSF activity, reducing astrocyte and microglial activation, and downregulating nociceptor excitability in dorsal root ganglia and spinal pathways. Preclinical models further suggest that JAK inhibition interrupts neuroimmune feedback loops critical to chronic pain maintenance. Comparative and network meta-analyses consistently position JAK inhibitors among the most effective agents for pain control in RA. However, individual variability in response, partly due to differential JAK-STAT activation and cytokine receptor uncoupling, underscores the need for biomarker-guided treatment approaches. JAK inhibitors represent a mechanistically distinct and clinically impactful class of therapies that target both inflammatory and non-inflammatory pain in RA. Their integration into personalized pain management strategies offers a promising path to address one of RA’s most persistent unmet needs. Full article
(This article belongs to the Section Cell Biology and Pathology)
27 pages, 2302 KB  
Review
Crossroads of Iron Metabolism and Inflammation in Colorectal Carcinogenesis: Molecular Mechanisms and Therapeutic Perspectives
by Nahid Ahmadi, Gihani Vidanapathirana and Vinod Gopalan
Genes 2025, 16(10), 1166; https://doi.org/10.3390/genes16101166 - 1 Oct 2025
Abstract
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and DNA damage, while inflammation driven by cytokine-regulated pathways accelerates tumourigenesis. We therefore conducted this narrative review to collate the available evidence on the link between iron homeostasis and inflammatory signalling in CRC and highlight potential diagnostic and therapeutic applications. Methods: This narrative review of preclinical and clinical studies explores the molecular and cellular pathways that connect iron regulation and inflammation to CRC. Key regulatory molecules, such as the transferrin receptor (TFRC), ferroportin (SLC40A1), ferritin (FTH/FTL), hepcidin, and IL-6, were reviewed. Additionally, we summarised the findings of transcriptomic, epigenomic, and proteomic studies. Relevant therapeutic approaches, including iron chelation, ferroptosis induction, and anti-inflammatory strategies, were also discussed. Results: Evidence suggests that CRC cells exhibit altered iron metabolism, marked by the upregulation of transferrin receptor (TFRC), downregulation of ferroportin, and dysregulated expression of ferritin. Inflammatory mediators such as IL-6 activate hepcidin and STAT3 signalling, which reinforce intracellular iron retention and oxidative stress. Increased immune evasion, epithelial proliferation, and genomic instability appear to be linked to the interaction between inflammation and iron metabolism. Other promising biomarkers include ferritin, hepcidin, and composite gene expression signatures; however, their clinical application remains limited. Although several preclinical studies support the use of targeted iron therapies and combination approaches with anti-inflammatory agents or immunotherapy, there is a lack of comprehensive clinical validation confirming their efficacy and safety in humans. Conclusion: Although preclinical studies suggest that iron metabolism and inflammatory signalling form an interconnected axis closely linked to CRC, translating this pathway into reliable clinical biomarkers and effective therapeutic strategies remains a significant challenge. Future biomarker-guided clinical trials are essential to determine the clinical relevance and to establish precision medicine strategies targeting the iron–inflammation crosstalk in CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 4725 KB  
Article
Multi-Omics Alterations in Rat Kidneys upon Chronic Glyphosate Exposure
by Favour Chukwubueze, Cristian D. Guiterrez Reyes, Jesús Chávez-Reyes, Joy Solomon, Vishal Sandilya, Sarah Sahioun, Bruno A. Marichal-Cancino and Yehia Mechref
Biomolecules 2025, 15(10), 1399; https://doi.org/10.3390/biom15101399 - 1 Oct 2025
Abstract
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s [...] Read more.
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s critical role in excretion, it is particularly susceptible to damage from xenobiotic exposure. In this study, we aim to identify N-glycomics and proteomics change in the kidney following chronic GBH exposure, to better understand the mechanisms behind glyphosate-induced kidney damage. Kidney tissues from female and male rats were analyzed using liquid chromatography–tandem mass spectrometry. The results revealed notable changes in the N-glycan composition, particularly in the fucosylated and sialofucosylated N-glycan types. The proteomic analysis revealed the activation of immune signaling and inflammatory pathways, including neutrophil degranulation, integrin signaling, and MHC class I antigen presentation. Transcription regulators, such as IL-6, STAT3, and NFE2L2, were upregulated, indicating a coordinated inflammatory and oxidative stress response. Sex-specific differences were apparent, with female rats exhibiting more pronounced alterations in both the N-glycan and protein expression profiles, suggesting a higher susceptibility to GBH-induced nephrotoxicity. These findings provide new evidence that chronic GBH exposure may trigger immune activation, inflammation, and potentially carcinogenic processes in the kidney. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 4739 KB  
Article
EC359 Enhances Trametinib Efficacy in Ras/Raf-Driven Ovarian Cancer by Suppressing LIFR Signaling
by William C. Arnold, Durga Meenakshi Panneerdoss, Baskaran Subramani, Megharani Mahajan, Behnam Ebrahimi, Paulina Ramirez, Bindu Santhamma, Suryavathi Viswanadhapalli, Edward R. Kost, Yidong Chen, Zhao Lai, Hareesh B. Nair, Ratna K. Vadlamudi and Yasmin A. Lyons
Biomolecules 2025, 15(10), 1396; https://doi.org/10.3390/biom15101396 - 30 Sep 2025
Abstract
Ovarian cancer (OCa) remains the most lethal gynecologic malignancy in the United States, with low-grade serous and mucinous subtypes frequently driven by KRAS mutations. These mutations activate downstream MAPK and PI3K/AKT signaling pathways, contributing to tumor progression and resistance to therapy. Although the [...] Read more.
Ovarian cancer (OCa) remains the most lethal gynecologic malignancy in the United States, with low-grade serous and mucinous subtypes frequently driven by KRAS mutations. These mutations activate downstream MAPK and PI3K/AKT signaling pathways, contributing to tumor progression and resistance to therapy. Although the MEK inhibitor trametinib is used to target these pathways, its efficacy is limited in KRAS-mutant OCa due to compensatory activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) axis. In this study, we evaluated the therapeutic potential of combining trametinib with EC359, a selective LIFR inhibitor, in Ras/Raf-driven OCa models. EC359 significantly reduced cell viability, clonogenic survival, and induced cell death via ferroptosis in vitro. Mechanistic studies revealed that EC359 suppressed trametinib-induced activation of LIFR downstream signaling. RNA-seq analysis showed that combination therapy downregulated mitochondrial translation and MYC target genes while upregulating apoptosis-related genes. In vivo, EC359 and trametinib co-treatment significantly reduced tumor growth in xenograft and PDX models without inducing toxicity. Our studies identify LIFR signaling as a critical vulnerability in Ras/Raf-mutant and low grade serous OCa. Further, it provides strong preclinical rationale for EC359 and trametinib combination therapy as a new therapeutic strategy for treating Ras/Raf-driven OCa and low-grade serous OCa. Full article
Show Figures

Figure 1

34 pages, 4740 KB  
Article
In Silico Design and Computational Elucidation of Hypothetical Resveratrol–Curcumin Hybrids as Potential Cancer Pathway Modulators
by Nil Sazlı and Deniz Karataş
Pharmaceuticals 2025, 18(10), 1473; https://doi.org/10.3390/ph18101473 - 30 Sep 2025
Abstract
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), [...] Read more.
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), and Signal Transducer and Activator of Transcription 3 (STAT3). Although curcumin and resveratrol exhibit anticancer properties and affect these pathways, their pharmacokinetic limitations, including poor bioavailability and low solubility, restrict their clinical application. The aim of our study was to evaluate the synergistic anticancer potential of curcumin and resveratrol through hybrid molecules rationally designed from these compounds to mitigate their pharmacokinetic limitations. Furthermore, we analyzed the multi-target anticancer effects of these hybrids on the AKT serine/threonine kinase 1 (AKT1), MAPK, and STAT3 pathways using in silico molecular modeling approaches. Methods: Three hybrid molecules, including a long-chain (ELRC-LC) and a short-chain (ELRC-SC) hybrid, an ester-linked hybrid, and an ether-linked hybrid (EtLRC), were designed using the Avogadro software (v1.2.0), and their geometry optimization was carried out using Density Functional Theory (DFT). The electronic properties of the structures were characterized through Frontier Molecular Orbital (FMO), Molecular Electrostatic Potential (MEP), and Fourier Transform Infrared (FTIR) analyses. The binding energies of the hybrid molecules, curcumin, resveratrol, their analogs, and the reference inhibitor were calculated against the AKT1, MAPK, and STAT3 receptors using molecular docking. The stabilities of the best-fitting complexes were evaluated through 100 ns molecular dynamics (MD) simulations, and their binding free energies were estimated using the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Results: DFT analyses demonstrated stable electronic characteristics for the hybrids. Molecular docking analyses revealed that the hybrids exhibited stronger binding compared to curcumin and resveratrol. The binding energy of −11.4 kcal/mol obtained for the ELRC-LC hybrid against AKT1 was particularly remarkable. Analysis of 100 ns MD simulations confirmed the conformational stability of the hybrids. Conclusions: Hybrid molecules have been shown to exert multi-target mechanisms of action on the AKT1, MAPK, and STAT3 pathways, and to represent potential anticancer candidates capable of overcoming pharmacokinetic limitations. Our in silico-based study provides data that will guide future in vitro and in vivo studies. These rationally designed hybrid molecules, owing to their receptor affinity, may serve as de novo hybrid inhibitors. Full article
Show Figures

Figure 1

13 pages, 1650 KB  
Article
4D-DIA Proteomic Analysis of IPEC-J2 Cells Infected with Porcine Group A Rotavirus G9P[23] Strain
by Zhendong Zhang, Yubo Li, Xingyu Zhou, Duo Li, Muyao Li, Xueyang Wang, Qinghai Ren and Xiaowen Li
Vet. Sci. 2025, 12(10), 946; https://doi.org/10.3390/vetsci12100946 - 30 Sep 2025
Abstract
Porcine rotavirus (PoRV) is one of the most devastating enteric pathogens causing gastroenteritis in pigs, particularly the sudden occurrence in recent years in China. To elucidate host–pathogen interactions and molecular mechanisms underlying PoRV pathogenesis, four-dimensional (4D) data-independent acquisition (DIA) proteomic (4D-DIA) analysis was [...] Read more.
Porcine rotavirus (PoRV) is one of the most devastating enteric pathogens causing gastroenteritis in pigs, particularly the sudden occurrence in recent years in China. To elucidate host–pathogen interactions and molecular mechanisms underlying PoRV pathogenesis, four-dimensional (4D) data-independent acquisition (DIA) proteomic (4D-DIA) analysis was performed to comprehensively quantify the differentially abundant proteins (DAPs) in PoRV-infected IPEC-J2 cells. A total of 8725 cellular proteins were identified with 279 more abundant and 356 down abundant proteins. A Western blot showed that the abundance of SA100A8, DAPK2, and FTL were in accordance with the acquired proteomic data using 4D-DIA analysis. Bioinformatics analyses of GO and KEGG demonstrated that various DAPs are involved in crucial biological processes and signaling pathways, such as immune response, signal transduction, metabolic pathways, autophagy, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, inflammatory features of host response upon PoRV infection were highlighted, with RT-qPCR confirming the significant upregulation of IL-1α, IL-6, IL-8, TNF-α, STAT1, and IRF9 transcript levels during infection. Altogether, our preliminary findings advance our understanding of PoRV pathogenesis and may shed light on identifying potential targets for the prevention and control of PoRV-associated gastroenteritis. Full article
(This article belongs to the Special Issue Exploring Innovative Approaches in Veterinary Health)
Show Figures

Figure 1

19 pages, 7006 KB  
Article
Dynamic Reprogramming of Immune-Related Signaling During Progression to Enzalutamide Resistance in Prostate Cancer
by Pengfei Xu, Huan Qu, Joy C. Yang, Fan Wei, Junwei Zhao, Menghuan Tang, Leyi Wang, Christopher Nip, Henson Li, Allen C. Gao, Kit Lam, Marc Dall'Era, Yuanpei Li and Chengfei Liu
Cancers 2025, 17(19), 3187; https://doi.org/10.3390/cancers17193187 - 30 Sep 2025
Abstract
Background: Treatment with androgen receptor (AR) signaling inhibitors, such as enzalutamide, can induce neural lineage plasticity in prostate cancer, potentially progressing to t-NEPC. However, the molecular mechanisms underlying this enzalutamide-driven plasticity, particularly the contribution of immune signaling pathways, remain poorly understood. Methods: We [...] Read more.
Background: Treatment with androgen receptor (AR) signaling inhibitors, such as enzalutamide, can induce neural lineage plasticity in prostate cancer, potentially progressing to t-NEPC. However, the molecular mechanisms underlying this enzalutamide-driven plasticity, particularly the contribution of immune signaling pathways, remain poorly understood. Methods: We analyzed transcriptomic profiles of patient samples and prostate cancer cell lines to investigate changes in immune signaling pathways. Interferon gamma (IFNγ), interferon alpha (IFNα), and interleukin 6 (IL6)-Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling were assessed in enzalutamide-sensitive and -resistant prostate cancer cells. Functional assays were conducted to examine cell responsiveness to cytokine stimulation and susceptibility to STAT1 inhibition using fludarabine. Results: Immune-related pathways, including IFNγ, IFNα, IL6-JAK-STAT3, and inflammatory responses, were significantly suppressed in NEPC patient samples compared to those with castration-resistant prostate cancer (CRPC). Enzalutamide-resistant and NEPC cells exhibited markedly impaired IFNγ and IL6 signaling. In contrast, early-stage enzalutamide treatment paradoxically enhanced IFNγ and IL6 responsiveness. Transcriptomic profiling revealed coordinated upregulation of E2F target genes and activation of IFNα/IFNγ and JAK/STAT signaling pathways during early treatment. Importantly, these early-stage cells remained highly sensitive to IFNγ and IL6 stimulation and showed increased susceptibility to STAT1 inhibition by fludarabine, a sensitivity that was lost in resistant cells. Conclusions: Early enzalutamide treatment enhances immune responsiveness, while the development of resistance is associated with suppressed immune signaling and increased lineage plasticity. These results suggest a therapeutic window where combining enzalutamide with STAT inhibitors may delay or prevent lineage plasticity and resistance. Full article
Show Figures

Figure 1

16 pages, 3569 KB  
Article
Boosting Probiotic Biomass of Lactobacillus acidophilus CCFM137 Through pH-Stat Morphological Control and Medium Optimization
by Shao-Quan Yan, Yang-Yang Shi, Rui Yang, Rui Li, Feng Hang and Hao Zhang
Fermentation 2025, 11(10), 564; https://doi.org/10.3390/fermentation11100564 - 30 Sep 2025
Abstract
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization [...] Read more.
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization of both culture medium and environmental parameters, thereby enabling high-yield industrial-scale production of this strain. An optimized medium was developed, consisting of glucose (30 g/L), YEP FM503 (35 g/L), sodium acetate (5 g/L), ammonium citrate (2 g/L), K2HPO4 (2 g/L), MgSO4·7H2O (0.1 g/L), MnSO4·H2O (0.05 g/L), L-cysteine hydrochloride (0.5 g/L), and Tween 80 (1 mL/L), to achieve a viable cell count of 1.95 × 109 CFU/mL, representing a 9.42-fold increase over that of standard MRS broth. Subsequent pH-stat fermentation trials in a 100 L fermenter using the optimized medium revealed morphological and growth characteristics of the strain in variable pH-stat environments. Optimal performance was observed under pH-stat 4.5 rather than the more commonly used 5.7, achieving maximum viable cell counts of 3.37 × 109 CFU/mL, accompanied by a transformation of cell morphology toward shorter rod-shaped structures, as well as an increase in substrate utilization rate, cell recovery rate and lyophilization survival rate. The fermentation performance and cellular morphology of L. acidophilus CCFM137 were enhanced by both nutrient composition and pH environment. These results showed that this strategy has potential for application in high cell density fermentation of L. acidophilus CCFM137. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

19 pages, 4737 KB  
Article
Myeloid-Specific STAT3 Deletion Aggravates Liver Fibrosis in Mice Fed a Methionine- and Choline-Deficient Diet via Upregulation of Hepatocyte-Derived Lipocalin-2
by Kyung Eun Kim, Hyun Joo Shin, Hyeong Seok An, Eun Ae Jeong, Yundong Sun, Jiwon Oh, Jiwoo Park, Jaewoong Lee, Seung-Soon Im and Gu Seob Roh
Cells 2025, 14(19), 1522; https://doi.org/10.3390/cells14191522 - 29 Sep 2025
Abstract
The signal transducer and activator of transcription 3 (STAT3) in myeloid cells suppresses proinflammatory cytokine production and reduces collagen deposition. However, its role in methionine- and choline-deficient (MCD) diet-fed mice remains unclear. This study investigates the effects of myeloid-specific STAT3 deficiency on hepatic [...] Read more.
The signal transducer and activator of transcription 3 (STAT3) in myeloid cells suppresses proinflammatory cytokine production and reduces collagen deposition. However, its role in methionine- and choline-deficient (MCD) diet-fed mice remains unclear. This study investigates the effects of myeloid-specific STAT3 deficiency on hepatic inflammation and fibrosis in MCD diet-fed mice. Myeloid-specific STAT3 knockout (mSTAT3KO) mice were fed the MCD diet for four weeks to induce metabolic dysfunction-associated steatohepatitis (MASH). MCD diet-fed mice displayed MASH-like pathological phenotypes, including hepatic steatosis, inflammation, and fibrosis. Compared with MCD diet-fed WT mice, mSTAT3KO mice fed the MCD diet exhibited reduced hepatic lipid accumulation but increased fibrosis. Notably, mSTAT3KO mice showed elevated hepatic STAT3 and lipocalin-2 (LCN2) protein levels in hepatocytes. Some proinflammatory cytokines were increased by the MCD diet in mSTAT3KO mice, which also exhibited increased hepatocyte apoptosis. Conversely, MCD diet-induced CD36, perilipin-2, acyl-CoA thioesterase 2, and 4-hydroxynonenal proteins were reduced by mSTAT3KO. Myeloid-specific STAT3 deficiency may induce a compensatory STAT3/LCN2 axis in hepatocytes, thereby exacerbating MASH progression. Full article
Show Figures

Figure 1

25 pages, 23310 KB  
Article
Embedment of 3D Printed Self-Sensing Composites for Smart Cementitious Components
by Han Liu, Israel Sousa, Simon Laflamme, Shelby E. Doyle, Antonella D’Alessandro and Filippo Ubertini
Sensors 2025, 25(19), 6005; https://doi.org/10.3390/s25196005 - 29 Sep 2025
Abstract
The automation of concrete constructions through 3D printing (3DP) has been increasingly developed and adopted in civil engineering due to its promising advantages over traditional construction methods. However, widespread implementation is hindered by uncertainties in quality control, homogeneity, and interlayer bonding, as well [...] Read more.
The automation of concrete constructions through 3D printing (3DP) has been increasingly developed and adopted in civil engineering due to its promising advantages over traditional construction methods. However, widespread implementation is hindered by uncertainties in quality control, homogeneity, and interlayer bonding, as well as the uniqueness of each printed component. Building upon our prior work in developing 3D-printable self-sensing cementitious materials by incorporating graphite powder and carbon microfibers into a cementitious matrix to enhance its piezoresistive properties, this study aims at enabling condition assessment of cementitious 3DP by integrating the self-sensing materials as sensing nodes within conventional components. Three different 3D-printed strip patterns, consisting of one, two, and three strip lines that mimic the pattern used in fabricating foil strain gauges were investigated as conductive electrode designs to impart strain sensing capabilities, and characterized from a series of quasi-static and dynamic tests. Results demonstrate that the three-strip design yielded the highest sensitivity (λstat of 669, λdyn of 630), whereas the two-strip design produced the highest signal quality (SNRstat = 9.5 dB, SNRdyn = 10.8 dB). These findings confirm the feasibility of integrating 3D-printed self-sensing cementitious materials through hybrid manufacturing, enabling monitoring of print quality, detection of load path changes, and identification of potential defects. Full article
Show Figures

Figure 1

5 pages, 175 KB  
Perspective
Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery
by Chang Hyung Lee and Sang-Han Lee
Biomolecules 2025, 15(10), 1384; https://doi.org/10.3390/biom15101384 - 29 Sep 2025
Abstract
Aging results from the combined effects of oxidative stress, chronic low-grade inflammation, mitochondrial decline, and cellular senescence, which together drive age-related disorders. Natural products ranging from polyphenols and terpenoids to alkaloids, polysaccharides, peptides, and marine metabolites can influence central pathways such as Nrf2/ARE, [...] Read more.
Aging results from the combined effects of oxidative stress, chronic low-grade inflammation, mitochondrial decline, and cellular senescence, which together drive age-related disorders. Natural products ranging from polyphenols and terpenoids to alkaloids, polysaccharides, peptides, and marine metabolites can influence central pathways such as Nrf2/ARE, NF-κB, MAPK, JAK/STAT, AMPK/PGC1-α, mTOR, and SIRT1/FOXO. By doing so, they strengthen antioxidant defenses, temper inflammation, preserve mitochondrial balance, and regulate autophagy. Increasing attention is also being given to synergy, where combinations of bioactives can achieve stronger and more balanced effects than single agents alone. Advances in artificial intelligence are accelerating this discovery process, while greener extraction and smarter delivery systems such as deep eutectic solvents and nanostructured carriers are improving bioavailability and consistency. Together, these developments underscore the promise of natural product-based strategies for healthy aging. Grounded in rigor and reproducibility, this Special Issue aims to inspire translational advances toward healthier and more graceful aging. Full article
(This article belongs to the Special Issue Research Progress on Anti-Aging with Natural Products)
23 pages, 6991 KB  
Article
Effects of Tributyrin on Antioxidant Capacity, Immune Function, and Liver Macrophage Polarization in Weaned Piglets Under LPS Challenge
by Meng Yuan, Shuai Ning, Dongming Yu, Fei Long, Weite Li, Jun Qi, Yaxu Liang, Changming Hong, Yingzhang Tang, Chunxue Liu, Gaiqin Wang, Bencheng Wu and Xiang Zhong
Animals 2025, 15(19), 2842; https://doi.org/10.3390/ani15192842 - 29 Sep 2025
Abstract
Under intensive farming systems and the global ban on antibiotic growth promoters (AGPs), early-weaned piglets exhibit incomplete physiological development, increasing their susceptibility to stress-related liver dysfunction and growth performance impairments. This study first investigated the effects of dietary supplementation with 0.2% tributyrin on [...] Read more.
Under intensive farming systems and the global ban on antibiotic growth promoters (AGPs), early-weaned piglets exhibit incomplete physiological development, increasing their susceptibility to stress-related liver dysfunction and growth performance impairments. This study first investigated the effects of dietary supplementation with 0.2% tributyrin on the growth performance of 21-day-old weaned piglets over a 28-day period. Subsequently, on the final day, we examined its influence on antioxidant capacity, immune responses, and liver macrophage polarization using a 2 × 2 factorial challenge model, with the factors being diet (basal or tributyrin-supplemented) and immunological challenge (saline or lipopolysaccharide). The experimental results indicated that tributyrin had a significant enhancement on the average daily gain (ADG) of weaned piglets within the 0–14-day period (p < 0.05). Under lipopolysaccharide (LPS) challenge, tributyrin significantly increased the levels of catalase (CAT) and interleukin-10 (IL-10) while reducing the levels of malondialdehyde (MDA) and interleukin-6 (IL-6) in both serum and liver. Additionally, it significantly increased glutathione peroxidase (GSH-pX) activity in the serum and reduced glutathione (GSH) levels in the liver, and also decreased the serum level of interleukin-1β (IL-1β). Tributyrin downregulated pro-inflammatory cytokine gene expression while upregulating anti-inflammatory cytokine expression (p < 0.05). Furthermore, tributyrin significantly inhibited the expression of M1 macrophage polarization markers while enhancing those of M2 polarization (p < 0.05). Additionally, tributyrin suppressed SIRT1/NF-κB signaling pathway activation and promoted JAK2/STAT6 signaling pathway activation (p < 0.05). These findings exhibit that tributyrin alters the polarization of liver macrophages by regulating the SIRT1/NF-κB and JAK2/STAT6 signaling pathways, enhances antioxidant and immune functions, reduces LPS-induced liver inflammatory damage, and improves the growth performance of weaned piglets. Full article
Show Figures

Figure 1

13 pages, 7434 KB  
Article
Ipriflavone Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection via RIG-I/IRF3-Mediated Interferon Signaling
by Yafei Chang, Zhaopeng Li, Kanglei Pei, Mengqi Wang and Xiaobo Chang
Animals 2025, 15(19), 2840; https://doi.org/10.3390/ani15192840 - 29 Sep 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most important pathogens, resulting in huge economic losses to the global pig industry. Ipriflavone is an isoflavone derivative involved in various biological processes, showing anti-inflammatory, anti-apoptotic, antioxidant, and neuroprotective effects. However, the [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most important pathogens, resulting in huge economic losses to the global pig industry. Ipriflavone is an isoflavone derivative involved in various biological processes, showing anti-inflammatory, anti-apoptotic, antioxidant, and neuroprotective effects. However, the role of ipriflavone in antiviral immune response to PRRSV is unknown. In this study, we discovered that ipriflavone could significantly inhibit PRRSV replication. Moreover, ipriflavone inhibited PRRSV replication regardless of whether ipriflavone was added pre-, co-, or post-PRRSV infection, and ipriflavone mainly inhibited virus replication and assembly stages. Importantly, ipriflavone had the capacity to upregulate the expression levels of IFN-β and ISG56. Additionally, ipriflavone promoted the expression of RIG-I and MAVS, and induced phosphorylation of IRF3 and STAT1, while reducing PRRSV replication. Collectively, ipriflavone could enhance the RIG-I/IRF3 signaling pathway, thereby inhibiting PRRSV replication. These findings will provide an important theoretical basis for the development of therapeutic agents against PRRSV infection. Full article
Show Figures

Figure 1

71 pages, 4535 KB  
Review
Integrating Inflammatory and Epigenetic Signatures in IBD-Associated Colorectal Carcinogenesis: Models, Mechanisms, and Clinical Implications
by Kostas A. Triantaphyllopoulos, Nikolia D. Ragia, Maria-Chara E. Panagiotopoulou and Thomae G. Sourlingas
Int. J. Mol. Sci. 2025, 26(19), 9498; https://doi.org/10.3390/ijms26199498 - 28 Sep 2025
Abstract
The rising global prevalence of inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, is paralleled by an increased risk of colitis-associated colorectal cancer. Persistent intestinal inflammation promotes genetic instability and epigenetic reprogramming within epithelial and immune cells, driving the multistep transition from [...] Read more.
The rising global prevalence of inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, is paralleled by an increased risk of colitis-associated colorectal cancer. Persistent intestinal inflammation promotes genetic instability and epigenetic reprogramming within epithelial and immune cells, driving the multistep transition from inflammation to neoplasia. This review integrates human and preclinical model evidence with literature mining and bioinformatic analyses of genetic, epigenetic, and ncRNA data to dissect molecular mechanisms driving colitis-associated colorectal cancer from chronic inflammation. We highlight how pro-inflammatory cytokines (e.g., TNF-α, IL-6), oxidative stress, and microbial dysbiosis converge on key transcriptional regulators such as NF-κB and STAT3, inducing DNA methylation and histone modifications (e.g., H3K27me3); altering chromatin dynamics, gene expression, and non-coding RNA networks (e.g., miR-21, MALAT1, CRNDE); ultimately reshaping pathways involved in proliferation, apoptosis, and immune evasion. This review updates new potential associations of entities with these diseases, in their networks of interaction, summarizing major aspects of genetic and chromatin-level regulatory mechanisms in inflammatory bowel disease and colorectal cancer, and emphasizing how these interactions drive the inflammatory-to-neoplastic transition. By underscoring the reversibility of epigenetic changes, we explore their translational potential in early detection, surveillance, and precision epigenetic therapy. Understanding the interplay between genetic mutations and chromatin remodeling provides a roadmap for improving diagnostics and personalized treatments in inflammatory bowel disease-associated colorectal carcinogenesis. Full article
Show Figures

Graphical abstract

Back to TopTop