Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,685)

Search Parameters:
Keywords = stirring effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2252 KB  
Article
Co-Immobilization of Clostridium carboxidivorans and Clostridium kluyveri in a Synthetic Dual-Layer Biofilm for Syngas Conversion
by Josha Herzog, Simon Gregg, Lukas Gröninger, Filippo Kastlunger, Johannes Poppe, Verena Uhlig, Yixin Wei and Dirk Weuster-Botz
Appl. Sci. 2025, 15(17), 9800; https://doi.org/10.3390/app15179800 (registering DOI) - 6 Sep 2025
Abstract
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. [...] Read more.
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. This study investigates the physiological compatibility of C. carboxidivorans with agar-based hydrogel immobilization and its co-cultivation potential with C. kluyveri in a synthetic dual-layer biofilm reactor. First, we conducted autotrophic batch fermentations using suspended and immobilized cells, proving metabolic activity similar for both. Applying different sulfur feeding rates, experiments showed best ethanol formation with C. carboxidivorans at increased sulfur feeding, enabling better conditions for chain elongation with C. kluyveri. In the synthetic dual-layer biofilm reactor, with the C. carboxidivorans biofilm in contact with the CO-containing gas phase above the C. kluyveri biofilm, the formation of 1-butyrate and 1-hexanoate was observed with product formation rates of 0.46 g L−1 d−1 1-butyrate, and 0.91 g L−1 d−1 1-hexanoate, respectively. The formation rate of 1-hexanoate in the dual-layer biofilm reactor was approximately 7.6 times higher than that reported with suspended cells in a stirred tank bioreactor. Spatial analysis revealed species-specific migration behavior and confirmed that C. carboxidivorans reduced local CO concentrations, improving the environment for C. kluyveri. Full article
Show Figures

Figure 1

16 pages, 4439 KB  
Article
Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type
by Nina Kaneva
Inorganics 2025, 13(9), 301; https://doi.org/10.3390/inorganics13090301 - 5 Sep 2025
Abstract
Mechanical energy is a plentiful, environmentally friendly, and sustainable energy source in the natural world. In this paper, ZnO tribocatalysts were synthesized using the hydrothermal and sol–gel methods. Under magnetic stirring, the catalyst particles and the polytetrafluoroethylene (PTFE)-sealed magnetic bar rub against each [...] Read more.
Mechanical energy is a plentiful, environmentally friendly, and sustainable energy source in the natural world. In this paper, ZnO tribocatalysts were synthesized using the hydrothermal and sol–gel methods. Under magnetic stirring, the catalyst particles and the polytetrafluoroethylene (PTFE)-sealed magnetic bar rub against each other, transferring electrons across the contact interface. While the PTFE absorbs the electrons, holes are left in the catalyst. The holes in the valence band of sol–gel catalysts exhibit strong oxidative ability, allowing for effective oxidation of organic pollutants. Tribocatalytic tests demonstrated that sol–gel ZnO could remove the antibiotic Cefuroxime Axetil (Axetine) more quickly when stirred magnetically in the dark. Sol–gel and hydrothermal ZnO was enhanced by varying the stirring speed (100, 300 and 500 rpm), the length (2, 2.5 and 3 cm) of magnetic rods, and the type of beaker material (glass and polytetrafluoroethylene). This work presents a viable pathway for transforming environmental mechanical energy into chemical energy, which could be utilized in sustainable energy and environmental remediation, in addition to creating a green tribocatalysis method for the oxidative purification of organic pollutants. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

27 pages, 8651 KB  
Article
Effect of Back-Tempering on the Wear and Corrosion Properties of Multiple-Pass Friction Stir Processed High-Speed Steel
by Quan Liu, Shiye Li, Guochong Rao, Xiaomi Chen, Kun Liu, Min Zhou, Dawei Guo, Valentino A. M. Cristino, Kin-Ho Lo, Lap-Mou Tam and Chi-Tat Kwok
Materials 2025, 18(17), 4125; https://doi.org/10.3390/ma18174125 - 2 Sep 2025
Viewed by 321
Abstract
In this study, a scalable surface modification strategy for M2 high-speed steel was applied using multiple-pass friction stir processing (FSP) with overlapping ratios of 25%, 50%, and 75%. A comprehensive investigation of the microstructure, surface hardness, wear, and corrosion resistance was conducted to [...] Read more.
In this study, a scalable surface modification strategy for M2 high-speed steel was applied using multiple-pass friction stir processing (FSP) with overlapping ratios of 25%, 50%, and 75%. A comprehensive investigation of the microstructure, surface hardness, wear, and corrosion resistance was conducted to elucidate the properties of FSPed M2 as a function of the overlapping ratio. In the single-pass FSPed M2, the major phase was martensite and the minor phases included retained austenite where refined carbides (M6C, M23C6, and MC) were detected. However, back-tempering occurred near the overlapped zone (OZ) between consecutive tracks for the multiple-pass FSPed M2. The martensite formed in the first pass was turned into tempered martensite by the thermal cycle from the subsequent pass. This back-tempering resulted in a localized decline in hardness from 900 to 650 HV0.2. Further wear tests revealed that the wear rates of the tempered zone (TZ) of the multiple-pass FSPed M2 (FSP25%: 1.40 × 10−5 mm3/N·m, FSP50%: 1.20 × 10−5 mm3/N·m and FSP75%: 1.00 × 10−5 mm3/N·m) are all higher than that of SZ of the single-pass FSPed M2 (0.75 × 10−5 mm3/N·m), indicating lower wear resistance of the TZ. Moreover, increased carbide content in the TZ led to the depletion of passivating elements near proximity of the tempered martensite, acting as the active sites for selective corrosion attack. The corrosion potential (Ecorr) and corrosion current density (Icorr) increased significantly, with values of −397.6 ± 5.6 mV and 9.5 ± 0.8 μA·cm−2 for FSP25%, −424.4 ± 6.0 mV and 14.7 ± 1.7 μA·cm−2 for FSP50%, and −440.9 ± 2.8 mV and 17.1 ± 1.9 μA·cm−2 for FSP75%. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

13 pages, 3614 KB  
Article
Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
by Xuanjing Zhang, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue and Xidong Hui
Metals 2025, 15(9), 982; https://doi.org/10.3390/met15090982 - 2 Sep 2025
Viewed by 198
Abstract
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This [...] Read more.
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This study introduces an innovative purification method combining droplet electron-beam melting (EBM) with centrifugal directional solidification. Through this advanced EBM technique, we successfully produced ultrapure DZ125 superalloy with nitrogen content reduced below 5 ppm and total O + N + S content below 10 ppm. Most significantly, the process nearly eliminated Hf oxides from the reverts, meeting the stringent purity standards for DZ125 superalloy. We conducted a comprehensive analysis of inclusion morphology and composition in three distinct regions: the top slag layer, final solidification zone, and interior section of the ingot processed at varying EBM power levels. Our findings reveal that MC-type carbides at the slag–crucible interface were formed. There are HfO2, TaC, and Al2O3 in the final solidification zone, with notable encapsulation of HfO2 particulates within Al2O3 particles; and few HfO2 and Al2O3 inclusions exist in the ingot interior. It is also found that increasing EBM power from 36 kW to 46 kW significantly improved impurity removal efficiency, as evidenced by substantial reductions in both inclusion quantity and size. This enhanced purification stems from two primary mechanisms: (1) flotation of inclusions during EBM melting, facilitated by Marangoni convection, droplet stirring effects, and centrifugal forces generated by ingot rotation; and (2) decomposition of stable oxides enabled by the high-energy density characteristic of EBM and high-vacuum processing environment. This combined approach demonstrates superior capability in overcoming the limitations of traditional refining methods, particularly for challenging Hf oxide removal, while establishing an effective pathway for superalloy revert recycling. Full article
Show Figures

Figure 1

29 pages, 2543 KB  
Article
Synergistic Extraction of Samarium(III) from Water via Emulsion Liquid Membrane Using a Low-Concentration D2EHPA–TOPO System: Operational Parameters and Salt Effects
by Ahlem Taamallah and Oualid Hamdaoui
Separations 2025, 12(9), 233; https://doi.org/10.3390/separations12090233 - 1 Sep 2025
Viewed by 230
Abstract
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. [...] Read more.
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. Among the tested extractants, a binary mixture of 0.1% (w/w) D2EHPA and 0.025% (w/w) TOPO achieved 100% samarium(III) extraction at a low loading. This mixture outperformed D2EHPA-TBP and other systems because D2EHPA strongly binds to Sm(III) ions, while TOPO increases the solubility and transport efficiency of metal complexes. Additionally, process factors that optimize performance and minimize emulsion breakage were examined. Key insights for successfully implementing the process include the following: 5 min emulsification with 0.75% Span 80 in kerosene at pH 6.7 (natural), 250 rpm stirring, a 1:1 internal/membrane phase volume ratio, a 20:200 treatment ratio, and a 0.2 N HNO3 stripping agent. These insights produced stable, fine droplets, enabling complete recovery and rapid carrier regeneration without emulsion breakdown. Extraction kinetics accelerate with temperature up to 35 °C but declined above this limit due to emulsion rupture. The activation energy was calculated to be 33.13 kJ/mol using pseudo-first-order rate constants. This suggests that the process is diffusion-controlled rather than chemically controlled. Performance decreases with Sm(III) feed concentrations greater than 200 mg/L and in high-salt matrices (Na2SO4 > NaCl > KNO3). Integrating these parameters yields a scalable, low-loading ELM framework capable of achieving complete Sm(III) separation with minimal breakage. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

13 pages, 2992 KB  
Article
Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys
by Éva Kócsák, András Roósz, Arnold Rónaföldi and Zsolt Veres
Crystals 2025, 15(9), 778; https://doi.org/10.3390/cryst15090778 - 30 Aug 2025
Viewed by 213
Abstract
This study focuses on the detailed investigation of the eutectic Aluminium Silicon (Al-12.6 wt% Si) alloy, which was solidified without and with a 10 mT induction rotating magnetic field (RMF). The experiments were conducted as part of the MICAST Hungary project, as the [...] Read more.
This study focuses on the detailed investigation of the eutectic Aluminium Silicon (Al-12.6 wt% Si) alloy, which was solidified without and with a 10 mT induction rotating magnetic field (RMF). The experiments were conducted as part of the MICAST Hungary project, as the mirror experiments were solidified in the Solidification and Quenching Furnace (SQF) at the International Space Station (ISS). The mirror samples were solidified using solidification parameters similar to the ISS experiments. This study examined the meso-structure of the samples and the eutectic microstructure in both stirred (RMF-applied) and non-stirred (RMF-free) samples. Special attention was given to the influence of magnetic stirring on key microstructural features, such as the eutectic lamellae distance, the length of the lamellae, and the spatial orientation of the lamellae were investigated. Measuring and analysing these parameters gives us an overall picture of the microstructure of the eutectics. The 10 mT low-intensity RMF used in the experiment has a demonstrable effect on the formation of the eutectic structure; short aluminium dendrites concentrate at both edges of the stirred sample, and their proportion decreases as the sample approaches its end. In contrast, in the non-stirred sample, long, elongated Al dendrites solidify parallel to the direction of heat removal, and their proportion and size continuously increase as the sample progresses. Furthermore, a possible relationship was found between the decrease in the eutectic lamella length and the lamellae’s average distance. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

23 pages, 4458 KB  
Article
Ultrasonic Pulp Conditioning-Induced Nanoparticles: A Critical Driver for Sonication-Assisted Ultrafine Smithsonite Flotation
by Weiguang Zhou, Weiwei Cao, Chenwei Li, Yaoli Peng, Yanru Cui and Liuyang Dong
Minerals 2025, 15(9), 927; https://doi.org/10.3390/min15090927 - 30 Aug 2025
Viewed by 240
Abstract
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale [...] Read more.
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale gas nuclei) mediate these effects, their role in the flotation of ultrafine smithsonite after collector addition has not yet been systematically examined. To fill this gap, we compared the flotation response of ultrafine smithsonite under conventional stirring (SC) and ultrasonic conditioning (UC), using sodium oleate (NaOL) as the collector, and dissected the governing mechanisms across three pillars, mineral–NaOL interaction, particle aggregation, and frothability, with particular attention paid to how nanoparticles modulate each dimension. The flotation results show that flotation performance under UC is dictated by NaOL concentration. At low NaOL levels (i.e., below 4 × 10−4 M), UC depresses both recovery and kinetics relative to SC, while at high NaOL levels, the trend reverses and UC outperforms SC. Mechanistic analysis reveals that sonication erodes mineral surfaces and generates cavitation, flooding the pulp with various nanoparticles. When NaOL is scarce, zinc-containing components and zinc-rich nanosolids sequester the collector through non-selective adsorption and precipitation, leaving smithsonite poorly hydrophobized. Consequently, particle aggregation and pulp frothability are markedly inferior to those in the SC system, so the flotation recovery and kinetics remain lower. As the NaOL concentration rises, smithsonite becomes adequately hydrophobized, and the pulp fills with hydrophobic zinc-rich nanosolids, along with cavitation-induced gas nuclei or tiny bubbles. These nanoparticles now act as bridges, accelerating the aggregation of ultrafine smithsonite once sonication stops and agitation begins, while simultaneously improving frothability. Although the strong dispersive action of ultrasound still suppresses initial flotation kinetics, cumulative recovery ultimately surpasses that of SC. The findings delineate a nanoparticle-regulated flotation paradigm and establish a critical NaOL concentration window for effective UC in ultrafine smithsonite flotation. This framework is readily transferable to the beneficiation of other ultrafine, soluble oxidized minerals (rhodochrosite, dolomite, etc.). Full article
Show Figures

Figure 1

14 pages, 5173 KB  
Article
Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance
by Sami Ur Rahman, Shehna Farooq, Narasimharao Kitchamsetti, Muhammad Sajid, Salma Gul, Fahad Farooq, Muhammad Rafiq, Irum Fatima and Humaira Razzaq
Nanoenergy Adv. 2025, 5(3), 11; https://doi.org/10.3390/nanoenergyadv5030011 - 29 Aug 2025
Viewed by 571
Abstract
Polyaniline (PANI) nanofibers (NFs) were synthesized via two chemical oxidative polymerization approaches: a rapid mixing process and a conventional stirred tank method. PANI is a promising electrode material for supercapacitors due to its conductivity, stability, and pseudocapacitive redox behavior. The rapid mixing route [...] Read more.
Polyaniline (PANI) nanofibers (NFs) were synthesized via two chemical oxidative polymerization approaches: a rapid mixing process and a conventional stirred tank method. PANI is a promising electrode material for supercapacitors due to its conductivity, stability, and pseudocapacitive redox behavior. The rapid mixing route proved especially effective, as fast polymerization promoted homogeneous nucleation and yielded thin, uniform, and interconnected NFs, whereas conventional stirring produced thicker, irregular fibers through heterogeneous nucleation. Structural characterization (FTIR, UV-Vis, XRD, XPS, TGA) confirmed that both samples retained the typical emeraldine form of PANI, but morphological analyses (SEM, BET) revealed that only the rapid process preserved nanofiber uniformity and porosity. This morphological control proved decisive for electrochemical behavior: symmetric supercapacitor devices fabricated from rapidly synthesized NFs delivered higher specific capacitances (378.8 F g−1 at 1 A g−1), improved rate capability, and superior cycling stability (90.33% retention after 3000 cycles) compared to devices based on conventionally prepared NFs. These findings demonstrate that rapid polymerization offers a simple and scalable route to morphology-engineered PANI electrodes with enhanced performance. Full article
Show Figures

Graphical abstract

25 pages, 4797 KB  
Article
Investigation of Removing Basic Yellow 28 and Basic Blue 3 Dyes from Water Using Mulberry Leaves (Morus nigra L.) and Assessment of Ultrasonic Effects
by Adella Myori Hardieka and Türkan Börklü Budak
Molecules 2025, 30(17), 3539; https://doi.org/10.3390/molecules30173539 - 29 Aug 2025
Viewed by 355
Abstract
Many industries release untreated synthetic dye effluents into water bodies, harming ecosystems and human health. Therefore, an economical and sustainable solution for treating dye-contaminated water must be developed. In this study, mulberry leaves (Morus nigra L.), as a cost-effective and sustainable adsorbent, [...] Read more.
Many industries release untreated synthetic dye effluents into water bodies, harming ecosystems and human health. Therefore, an economical and sustainable solution for treating dye-contaminated water must be developed. In this study, mulberry leaves (Morus nigra L.), as a cost-effective and sustainable adsorbent, were prepared to remove Basic Yellow 28 (BY28) and Basic Blue 3 (BB3) cationic dyes from industrial dye wastewater using adsorption. Batch experiments with key variables such as initial dye concentration, adsorbent dosage, contact time, temperature, stirring speed, and pH were conducted to find optimal conditions. The effectiveness of mulberry leaves as an adsorbent after multiple regeneration cycles was examined. The adsorbent was characterized through various instrumental methods, including FTIR, SEM, XRD, and BET analysis. Adsorption performance was analyzed using the Langmuir and Freundlich isotherm models. The results showed that the mulberry leaf adsorbent best fits the Langmuir model, with R2 values of 0.999 for BY28 and 0.973 for BB3. The maximum adsorption capacities were 0.15 mg/g for BY28 and 7.19 mg/g for BB3, indicating their upper limits for dye uptake. The optimal conditions achieving removal efficiencies of over 99% were 1.5 g, 50 mL, 15 min, 180 rpm, and 10 mg/L at 30 °C for BY28 in neutral pH (7) and 1.5 g, 50 mL, 45 min, 100 rpm, and 30 mg/L at 40 °C for BB3 in basic pH (10). The regeneration of mulberry leaves as an adsorbent through acid treatment with 0.1 M HCl and 0.1 M CH3COOH solutions maintained a high performance, achieving up to 98% dye removal efficiency after two regeneration cycles. It has been observed that successful results can be achieved in terms of reusability. Additionally, the removals of BB3 and BY28 performed in an ultrasonic-bath-assisted environment successfully achieved removal efficiencies of 84.87% and 75.41%, respectively. According to the results, mulberry leaves can effectively be used in wastewater treatment to remove dyes, can be reused multiple times, and thus serve as an environmentally friendly and sustainable adsorbent. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

11 pages, 604 KB  
Article
Olive Leaf Powder as a Potential Functional Component of Food Innovation: An In Vitro Study Evaluating Its Total Antioxidant Capacity and Phenolic Content
by Kalliopi Almpounioti, Olga Papagianni, Panagiota Michaloudi, Sofia Konstantina Tsermoula, Panagiota Potsaki, Charalampia Dimou and Antonios E. Koutelidakis
Appl. Sci. 2025, 15(17), 9462; https://doi.org/10.3390/app15179462 - 28 Aug 2025
Viewed by 341
Abstract
Olive leaves (Olea europaea) are the most abundant agricultural by-product of olive tree cultivation, generating substantial waste each year. Their disposal is deemed an environmental challenge, particularly in Mediterranean countries that dominate the olive oil sector, yet their rich bioactive profile [...] Read more.
Olive leaves (Olea europaea) are the most abundant agricultural by-product of olive tree cultivation, generating substantial waste each year. Their disposal is deemed an environmental challenge, particularly in Mediterranean countries that dominate the olive oil sector, yet their rich bioactive profile makes them promising candidates for functional food development. This study aimed to determine the total antioxidant capacity (TAC) and total phenolic content (TPC) of olive leaf powder extracts using different extraction solvents and methods to identify the most efficient strategy for possible incorporation into functional food systems. Extractions were performed with distilled water, 70% ethanol, 80% methanol, and 50% acetone using three methods: stirring, soaking, and ultrasound-assisted extraction (UAE). TAC and TPC were quantified using the FRAP and Folin–Ciocalteu assays, respectively. Among solvents, acetone consistently yielded the highest values across most methods (TAC: 19.02 mmol Fe2+/L, TPC: 1289.95 mg GA/L), while ethanol also showed strong extraction performance (TAC: 15.35 mmol Fe2+/L; TPC: 1214.76 mg GA/L), offering a safer and more scalable option for food applications. Method-wise, UAE achieved the greatest phenolic recovery, while both UAE and stirring proved effective for antioxidant extraction. Overall, these findings provide quantitative evidence supporting possible incorporation of olive leaf powder as a valuable ingredient in functional foods and other sustainable applications, while also contributing to the circular economy through the sustainable valorization of agricultural waste. Full article
Show Figures

Figure 1

20 pages, 2741 KB  
Article
Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment
by Jakob Young, Maliea Nipko, Spencer Butterfield and Zachary Aanderud
BioTech 2025, 14(3), 67; https://doi.org/10.3390/biotech14030067 - 28 Aug 2025
Viewed by 371
Abstract
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system [...] Read more.
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system with three reactor types: (1) EBP tanks at 70–72 °C; (2) mesophilic Continuously Stirred Tank Reactors (CSTRs); (3) mesophilic Induced Bed Reactors (IBRs) receiving combined CSTR and EBP effluent. All reactors had a two-day hydraulic retention time. Samples were collected weekly for 60 days. pH, volatile fatty acid and bicarbonate concentrations, COD, and methane yield were measured to assess tank environmental conditions. Microbial community compositions were obtained via 16S rRNA gene sequencing. EBP pretreatment increased acetate availability but led to a decline in the relative abundance of acetoclastic Methanosarcina species in downstream IBRs. Rather, syntrophic methanogens, e.g., members of Methanobacteriaceae, increased in relative abundance and became central to microbial co-occurrence networks, particularly in association with hydrogen-producing bacteria. Network analysis also demonstrated that these syntrophic relationships were tightly coordinated in pretreated digestate but absent in the untreated CSTRs. By promoting syntrophic methanogenesis while increasing acetate concentrations, EBP pretreatment requires system configurations that enable acetoclast retention to prevent acetate underutilization and maximize methane yields. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

37 pages, 8995 KB  
Article
Process Analysis of Waste Animal Fat Pyrolysis and Fractional Distillation in Semi-Batch Reactors: Influence of Temperature and Reaction Time
by Alex Lopes Valente, Marcelo Figueiredo Massulo Aguiar, Ana Claudia Fonseca Baia, Lauro Henrique Hamoy Guerreiro, Renan Marcelo Pereira Silva, Lucas Sabino do Vale Scaff, Dilson Nazareno Pereira Cardoso, Hugo Fernando Meiguins da Silva, Davi do Socorro Barros Brasil, Neyson Martins Mendonça, Sergio Duvoisin Junior, Douglas Alberto Rocha de Castro, Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Energies 2025, 18(17), 4517; https://doi.org/10.3390/en18174517 - 26 Aug 2025
Viewed by 877
Abstract
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 [...] Read more.
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 mg KOH/g, impeding its direct use as biofuels without considerable purification of its distillates. Fractional distillation can be applied for the purification of bio-oil, but only a few studies accurately describe the process. The purpose of this study was to evaluate the effect of temperature in the conversion of waste animal fat into fuel-like fractions by pyrolysis and fractional distillation in a semi-batch stirred bed reactor (2 L) according to reaction time. Waste animal fat was extracted (rendering) from disposed meat cuts obtained from butcher shops and pyrolyzed in a stainless-steel stirred bed reactor operating in semi-batch mode at 400–500 °C. The obtained liquid fraction was separated according to reaction time. The pyrolysis bio-oil at 400 °C was separated into four distinct fractions (gasoline, kerosene, diesel, and heavy phase) by fractional distillation with reflux. The bio-oil and distillate fractions were analyzed by density, kinematic viscosity, acid value, and chemical composition by gas chromatography coupled to mass spectra (GC-MS). The results show that, for semi-batch reactors with no inert gas flow, higher temperature is associated with low residence time, reducing the conversion of fatty acids to hydrocarbons. The distillate fractions were tested in a common application not sensible to the fatty acid concentration as a diluent in the preparation of diluted asphalt cutback for the priming of base pavements in road construction. Kerosene and diesel fractions can be successfully applied in the preparation of asphalt cutbacks, even with a high acid value. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 - 25 Aug 2025
Viewed by 440
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Viewed by 499
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

13 pages, 5805 KB  
Article
Study on the Effect of the Plunging Depth of Stirring Pin on the Performance of 6061-T6 Aluminum Alloy Refill Friction Stir Spot Welded Zone
by Di Jiang, Igor Kolupaev, Hongfeng Wang and Xiaole Ge
Materials 2025, 18(16), 3921; https://doi.org/10.3390/ma18163921 - 21 Aug 2025
Viewed by 460
Abstract
In this study, under varying PDSP (plunging depths of stirring pin) and process parameters, refill friction stir spot welding tests were performed on 6061-T6 aluminum alloy, relying on a stirring tool with a 12 mm sleeve diameter and an 8 mm stirring pin [...] Read more.
In this study, under varying PDSP (plunging depths of stirring pin) and process parameters, refill friction stir spot welding tests were performed on 6061-T6 aluminum alloy, relying on a stirring tool with a 12 mm sleeve diameter and an 8 mm stirring pin diameter. The results manifested the internal defects in the weld zone when PDSP was 0, notwithstanding the alterations in process parameters. However, these flaws disappeared when PDSP was 0.5 mm and 1 mm. In the weld zone, PDSP exerted a dramatic effect on the internal metal flow state, particularly the curvature of the “Hook” shape and the width of the bonding ligament. It changed the downward bending of the ‘Hook’ into an upward one, influencing the fracture behavior of the weld zone and elevating the ULSF (ultimate lap shear force) by up to 20% (PDSP = 0.5 mm, welding speed = 30 mm/min, rotation speed is 1200 rpm). Besides, the PDSP intensified the PAZ (pin affected zone) pressure, induced more metal flowing into the SAZ (sleeve affected zone), thus reinforced the SAZ-TMAZ(thermomechanically affected zone) bonding strength, and upgraded the region’s microhardness. In summary, the PDSP is commendable for bolstering the weld zone’s performance, but excessively large PDSP values incur drastic indentations in the PAZ, which diminish the ULSF. Full article
Show Figures

Figure 1

Back to TopTop