Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,673)

Search Parameters:
Keywords = stochastic models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 978 KB  
Article
Three-Phase Probabilistic Power Flow Calculation Method Based on Improved Semi-Invariant Method for Low-Voltage Network
by Ke Liu, Xuebin Wang, Han Guo, Wenqian Zhang, Yutong Liu, Cong Zhou and Hongbo Zou
Processes 2025, 13(9), 2710; https://doi.org/10.3390/pr13092710 (registering DOI) - 25 Aug 2025
Abstract
Power flow analysis of low-voltage network (LVN) is one of the most crucial methods for achieving refined management of such networks. To accurately calculate the three-phase (TP) probabilistic power flow (PPF) distribution in LVN, this paper first draws on the injection-type Newton method; [...] Read more.
Power flow analysis of low-voltage network (LVN) is one of the most crucial methods for achieving refined management of such networks. To accurately calculate the three-phase (TP) probabilistic power flow (PPF) distribution in LVN, this paper first draws on the injection-type Newton method; by leveraging TP power measurements relative to the neutral point obtained from smart meters, the injected power is expressed in terms of injected current equations, thereby establishing TP power flow models for various components within the low-voltage distribution transformer area grid. Subsequently, addressing the stochastic fluctuation models of load power and photovoltaic output, this paper employs conventional numerical methods and an improved Latin hypercube sampling technique. Utilizing linearized power flow equations and based on the improved semi-invariant method (SIM) and Gram–Charlier (GC) series fitting, a calculation method for three-phase PPF in low-voltage distribution transformer area grids using the improved semi-invariant is proposed. Finally, simulations of the proposed three-phase PPF method are conducted using the IEEE-13 node distribution system. The simulation results demonstrate that the proposed method can effectively perform three-phase PPF calculations for the distribution transformer area grid and accurately obtain probabilistic distribution information of the TP power flow within the grid. Full article
(This article belongs to the Special Issue Smart Optimization Techniques for Microgrid Management)
33 pages, 17334 KB  
Review
Scheduling in Remanufacturing Systems: A Bibliometric and Systematic Review
by Yufan Zheng, Wenkang Zhang, Runjing Wang and Rafiq Ahmad
Machines 2025, 13(9), 762; https://doi.org/10.3390/machines13090762 (registering DOI) - 25 Aug 2025
Abstract
Global ambitions for net-zero emissions and resource circularity are propelling industry from linear “make-use-dispose”models toward closed-loop value creation. Remanufacturing, which aims to restore end-of-life products to a “like-new” condition, plays a central role in this transition. However, its stochastic inputs and complex, multi-stage [...] Read more.
Global ambitions for net-zero emissions and resource circularity are propelling industry from linear “make-use-dispose”models toward closed-loop value creation. Remanufacturing, which aims to restore end-of-life products to a “like-new” condition, plays a central role in this transition. However, its stochastic inputs and complex, multi-stage processes pose significant challenges to traditional production planning methods. This study delivers an integrated overview of remanufacturing scheduling by combining a systematic bibliometric review of 190 publications (2005–2025) with a critical synthesis of modelling approaches and enabling technologies. The bibliometric results reveal five thematic clusters and a 14% annual growth rate, highlighting a shift from deterministic, shop-floor-focused models to uncertainty-aware, sustainability-oriented frameworks. The scheduling problems are formalised to capture features arising from variable core quality, multi-phase precedence, and carbon reduction goals, in both centralised and cloud-based systems. Advances in human–robot disassembly, vision-based inspection, hybrid repair, and digital testing demonstrate feedback-rich environments that increasingly integrate planning and execution. A comparative analysis shows that, while mixed-integer programming and metaheuristics perform well in small static settings, dynamic and large-scale contexts benefit from reinforcement learning and hybrid decomposition models. Finally, future directions for dynamic, collaborative, carbon-conscious, and digital-twin-driven scheduling are outlined and investigated. Full article
Show Figures

Figure 1

38 pages, 5163 KB  
Article
A Coordinated Adaptive Signal Control Method Based on Queue Evolution and Delay Modeling Approach
by Ruochen Hao, Yongjia Wang, Ziyu Wang, Lide Yang and Tuo Sun
Appl. Sci. 2025, 15(17), 9294; https://doi.org/10.3390/app15179294 - 24 Aug 2025
Abstract
Coordinated adaptive signal control is a proven strategy for improving traffic efficiency and minimizing vehicular delays. First, we develop a Queue Evolution and Delay Model (QEDM) that establishes the relationship between detector-measured queue lengths and model parameters. QEDM accurately characterizes residual queue dynamics [...] Read more.
Coordinated adaptive signal control is a proven strategy for improving traffic efficiency and minimizing vehicular delays. First, we develop a Queue Evolution and Delay Model (QEDM) that establishes the relationship between detector-measured queue lengths and model parameters. QEDM accurately characterizes residual queue dynamics (accumulation and dissipation), significantly enhancing delay estimation accuracy under oversaturated conditions. Secondly, we propose a novel intersection-level signal optimization method that addresses key practical challenges: (1) pedestrian stages, overlap phases; (2) coupling effects between signal cycle and queue length; and (3) stochastic vehicle arrivals in undersaturated conditions. Unlike conventional approaches, this method proactively shortens signal cycles to reduce queues while avoiding suboptimal solutions that artificially “dilute” delays by extending cycles. Thirdly, we introduce an adaptive coordination control framework that maintains arterial-level green-band progression while maximizing intersection-level adaptive optimization flexibility. To bridge theory and practice, we design a cloud–edge–terminal collaborative deployment architecture for scalable signal control implementation and validate the framework through a hardware-in-the-loop simulation platform. Case studies in real-world scenarios demonstrate that the proposed method outperforms existing benchmarks in delay estimation accuracy, average vehicle delay, and travel time in coordinated directions. Additionally, we analyze the influence of coordination constraint update intervals on system performance, providing actionable insights for adaptive control systems. Full article
23 pages, 3619 KB  
Article
Towards Smarter Infrastructure Investment: A Comprehensive Data-Driven Decision Support Model for Asset Lifecycle Optimisation Using Stochastic Dynamic Programming
by Neda Gorjian Jolfaei, Leon van der Linden, Christopher W. K. Chow, Nima Gorjian, Bo Jin and Indra Gunawan
Infrastructures 2025, 10(9), 225; https://doi.org/10.3390/infrastructures10090225 - 23 Aug 2025
Viewed by 56
Abstract
Equipment renewal and replacement strategy as well as smart capital investment is a vital focus in engineering asset management, particularly for water utilities aiming to improve asset reliability, water quality, service continuity and affordability. This study presents a novel decision support model that [...] Read more.
Equipment renewal and replacement strategy as well as smart capital investment is a vital focus in engineering asset management, particularly for water utilities aiming to improve asset reliability, water quality, service continuity and affordability. This study presents a novel decision support model that integrates whole-life costing principles across all asset lifecycle phases—from capital delivery and daily operations to long-term maintenance. The proposed model uniquely combines asset degradation and failure patterns, operating and maintenance costs, and the impact of technological advancements to provide a holistic and comprehensive asset management decision-making tool. These dimensions are jointly analysed using a hybrid approach that combines optimisation with stochastic dynamic programming, allowing for the determination of optimal asset renewal and replacement timing. The model’s performance was validated using historical data from eight critical wastewater pump stations within a township’s sewerage network. This was performed by comparing the model’s cost-saving results to those achieved by the water utility’s current strategy. Results revealed that the proposed model achieved an average cost saving of 12%, demonstrating its effectiveness in supporting sustainable and cost-efficient asset renewal decisions. Full article
(This article belongs to the Section Smart Infrastructures)
Show Figures

Figure 1

30 pages, 1456 KB  
Article
Adaptive Stochastic GERT Modeling of UAV Video Transmission for Urban Monitoring Systems
by Serhii Semenov, Magdalena Krupska-Klimczak, Michał Frontczak, Jian Yu, Jiang He and Olena Chernykh
Appl. Sci. 2025, 15(17), 9277; https://doi.org/10.3390/app15179277 - 23 Aug 2025
Viewed by 50
Abstract
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and [...] Read more.
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and unstable video delivery. This paper presents a novel approach based on the Graphical Evaluation and Review Technique (GERT) for modeling the transmission of video frames from UAVs over uncertain network paths with probabilistic feedback loops and lognormally distributed delays. The proposed model enables both analytical and numerical evaluation of key Quality-of-Service (QoS) metrics, including mean transmission time and jitter, under varying levels of channel variability. Additionally, the structure of the GERT-based framework allows integration with artificial intelligence mechanisms, particularly for adaptive routing and delay prediction in urban conditions. Spectral analysis of the system’s characteristic function is also performed to identify instability zones and guide buffer design. The results demonstrate that the approach supports flexible, parameterized modeling of UAV video transmission and can be extended to intelligent, learning-based control strategies in complex smart city environments. This makes it suitable for a wide range of applications, including traffic monitoring, infrastructure inspection, and emergency response. Beyond QoS optimization, the framework explicitly accommodates security and privacy preserving operations (e.g., encryption, authentication, on-board redaction), enabling secure UAV video transmission in urban networks. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 932 KB  
Article
Probabilistic Kolmogorov–Arnold Network: An Approach for Stochastic Modelling Using Divisive Data Re-Sorting
by Andrew Polar and Michael Poluektov
Modelling 2025, 6(3), 88; https://doi.org/10.3390/modelling6030088 - 22 Aug 2025
Viewed by 359
Abstract
The Kolmogorov–Arnold network (KAN) is a regression model that is based on a representation of an arbitrary continuous multivariate function by a composition of functions of a single variable. Experimentally obtained datasets for regression models typically include uncertainties, which in some cases, cannot [...] Read more.
The Kolmogorov–Arnold network (KAN) is a regression model that is based on a representation of an arbitrary continuous multivariate function by a composition of functions of a single variable. Experimentally obtained datasets for regression models typically include uncertainties, which in some cases, cannot be neglected. The conventional way to account for the latter is to model confidence intervals of the systems’ outputs in addition to the expected values of the outputs. However, such information may be insufficient, and in some cases, researchers aim to obtain probability distributions of the outputs. The present paper proposes a method for estimating probability distributions of the outputs by constructing an ensemble of models. The suggested approach covers input-dependent probability distributions of the outputs and is capable of capturing the multi-modality, as well as the variation of the distribution type with the inputs. Although the method is applicable to any regression model, the present paper combines it with KANs, since their specific structure leads to the construction of computationally efficient models. The source codes are available online. Full article
Show Figures

Figure 1

28 pages, 795 KB  
Article
On the Multi-Periodic Threshold Strategy for the Spectrally Negative Lévy Risk Model
by Sijia Shen, Zijing Yu and Zhang Liu
Risks 2025, 13(9), 162; https://doi.org/10.3390/risks13090162 - 22 Aug 2025
Viewed by 77
Abstract
As a crucial modeling tool for stochastic financial markets, the Lévy risk model effectively characterizes the evolution of risks during enterprise operations. Through dynamic evaluation and quantitative analysis of risk indicators under specific dividend- distribution strategies, this model can provide theoretical foundations for [...] Read more.
As a crucial modeling tool for stochastic financial markets, the Lévy risk model effectively characterizes the evolution of risks during enterprise operations. Through dynamic evaluation and quantitative analysis of risk indicators under specific dividend- distribution strategies, this model can provide theoretical foundations for optimizing corporate capital allocation. Addressing the inadequate adaptability of traditional single-period threshold strategies in time-varying market environments, this paper proposes a dividend strategy based on multiperiod dynamic threshold adjustments. By implementing periodic modifications of threshold parameters, this strategy enhances the risk model’s dynamic responsiveness to market fluctuations and temporal variations. Within the framework of the spectrally negative Lévy risk model, this paper constructs a stochastic control model for multiperiod threshold dividend strategies. We derive the integro-differential equations for the expected present value of aggregate dividend payments before ruin and the Gerber–Shiu function, respectively. Combining the methodologies of the discounted increment density, the operator introduced by Dickson and Hipp, and the inverse Laplace transforms, we derive the explicit solutions to these integro-differential equations. Finally, numerical simulations of the related results are conducted using given examples, thereby demonstrating the feasibility of the analytical method proposed in this paper. Full article
27 pages, 4595 KB  
Article
The Unit Inverse Maxwell–Boltzmann Distribution: A Novel Single-Parameter Model for Unit-Interval Data
by Murat Genç and Ömer Özbilen
Axioms 2025, 14(8), 647; https://doi.org/10.3390/axioms14080647 - 21 Aug 2025
Viewed by 90
Abstract
The Unit Inverse Maxwell–Boltzmann (UIMB) distribution is introduced as a novel single-parameter model for data constrained within the unit interval (0,1), derived through an exponential transformation of the Inverse Maxwell–Boltzmann distribution. Designed to address the limitations of traditional unit-interval [...] Read more.
The Unit Inverse Maxwell–Boltzmann (UIMB) distribution is introduced as a novel single-parameter model for data constrained within the unit interval (0,1), derived through an exponential transformation of the Inverse Maxwell–Boltzmann distribution. Designed to address the limitations of traditional unit-interval distributions, the UIMB model exhibits flexible density shapes and hazard rate behaviors, including right-skewed, left-skewed, unimodal, and bathtub-shaped patterns, making it suitable for applications in reliability engineering, environmental science, and health studies. This study derives the statistical properties of the UIMB distribution, including moments, quantiles, survival, and hazard functions, as well as stochastic ordering, entropy measures, and the moment-generating function, and evaluates its performance through simulation studies and real-data applications. Various estimation methods, including maximum likelihood, Anderson–Darling, maximum product spacing, least-squares, and Cramér–von Mises, are assessed, with maximum likelihood demonstrating superior accuracy. Simulation studies confirm the model’s robustness under normal and outlier-contaminated scenarios, with MLE showing resilience across varying skewness levels. Applications to manufacturing and environmental datasets reveal the UIMB distribution’s exceptional fit compared to competing models, as evidenced by lower information criteria and goodness-of-fit statistics. The UIMB distribution’s computational efficiency and adaptability position it as a robust tool for modeling complex unit-interval data, with potential for further extensions in diverse domains. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

43 pages, 5207 KB  
Article
Noise-Induced Transitions in Nonlinear Oscillators: From Quasi-Periodic Stability to Stochastic Chaos
by Adil Jhangeer and Atef Abdelkader
Fractal Fract. 2025, 9(8), 550; https://doi.org/10.3390/fractalfract9080550 - 21 Aug 2025
Viewed by 139
Abstract
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, [...] Read more.
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, chaos, and stochastic disorder. The study reveals that quasi-periodic attractors exhibit robust topological structure under moderate noise but progressively disintegrate as stochastic intensity increases, leading to high-dimensional chaotic-like behavior. Recurrence quantification and Lyapunov spectra validate the transition from coherent dynamics to noise-dominated regimes. Poincaré maps and sensitivity analysis expose multistability and intricate basin geometries, while the Fokker–Planck formalism uncovers non-equilibrium steady states characterized by circulating probability currents. Together, these results provide a unified framework for understanding the geometry, statistics, and stability of noisy nonlinear systems. The findings have broad implications for systems ranging from mechanical oscillators to biological rhythms and offer a roadmap for future investigations into fractional dynamics, topological analysis, and data-driven modeling. Full article
Show Figures

Figure 1

34 pages, 1278 KB  
Article
The Coordination of Monetary and Local Government Fiscal Policies and Local Fiscal Sustainability in China
by Hanlin Xia and Lin Zhang
Sustainability 2025, 17(16), 7555; https://doi.org/10.3390/su17167555 - 21 Aug 2025
Viewed by 208
Abstract
The growing importance of local governments, alongside the swift development of their bond markets, provides a novel framework for examining the coordination of monetary and local government fiscal policies in China. This investigation contributes a new viewpoint on local fiscal sustainability by emphasizing [...] Read more.
The growing importance of local governments, alongside the swift development of their bond markets, provides a novel framework for examining the coordination of monetary and local government fiscal policies in China. This investigation contributes a new viewpoint on local fiscal sustainability by emphasizing the role of policy coordination. Empirical evidence derived from regression models and proxy structural vector autoregression (Proxy SVAR) analyses conducted in this study substantiates the presence of coordination between monetary and local government fiscal policies in China; nevertheless, such coordination may pose risks to long-term local fiscal sustainability. Drawing on empirical data, this study utilizes a dynamic stochastic general equilibrium (DSGE) model that integrates key features characteristic of the Chinese economy to investigate the coordination of monetary and local government fiscal policies, as well as the effects of this coordination on local fiscal sustainability. The results derived from the baseline model indicate that although monetary and local fiscal policies in China are coordinated, such coordination facilitates the accumulation of local government debt, which ultimately compromises long-term local fiscal sustainability. Furthermore, the baseline model is extended and examined through multiple analytical approaches. When local government competition is introduced, monetary policy and local government fiscal policy become disconnected, which undermines local fiscal sustainability. Conversely, when local government cooperation is introduced, monetary policy and local government fiscal policy become more coordinated, which in turn improves local fiscal sustainability. Moreover, a higher steady-state debt level among local governments promotes greater coordination between monetary and fiscal policies, resulting in stronger fiscal sustainability. However, the imposition of debt constraints on local governments diminishes this coordination and adversely affects local fiscal sustainability. Additionally, in the absence of local financial friction, monetary and local fiscal policies exhibit increased coordination; however, this may potentially undermine long-term local fiscal sustainability. It is therefore imperative for the central government of China to prioritize the harmonization of monetary and local fiscal policies and to consider their implications for local fiscal sustainability, while simultaneously encouraging intergovernmental cooperation and the establishment of an integrated large-scale market. Full article
(This article belongs to the Special Issue Regional Economics, Policies and Sustainable Development)
Show Figures

Figure 1

15 pages, 3290 KB  
Article
Dynamic Modelling of Building Thermostatically Controlled Loads as a Stochastic Battery for Grid Stability in Wind-Integrated Power Systems
by Zahid Ullah, Giambattista Gruosso, Kaleem Ullah and Alda Scacciante
Appl. Sci. 2025, 15(16), 9203; https://doi.org/10.3390/app15169203 - 21 Aug 2025
Viewed by 280
Abstract
Integrating renewable energy, particularly wind power, into modern power systems introduces challenges concerning stability and reliability. These issues require enhanced regulation to balance power supply with load demand. Flexible loads and energy storage provide viable solutions to stabilize the grid without relying on [...] Read more.
Integrating renewable energy, particularly wind power, into modern power systems introduces challenges concerning stability and reliability. These issues require enhanced regulation to balance power supply with load demand. Flexible loads and energy storage provide viable solutions to stabilize the grid without relying on new resources. This paper proposes building thermostatically controlled loads (BTLs), such as heating, ventilation, and air conditioning (HVAC) systems, as flexible demand-side management tools to address the challenges of intermittent energy sources. A new concept is introduced, portraying BTLs as a stochastic battery with losses, offering a compact representation of their dynamics. BTLs’ thermal characteristics, user-defined set points, and ambient temperature changes determine the power limits and energy capacity of this stochastic battery. The model is simulated using DIgSILENT Power Factory, which includes thermal power plants, gas turbines, wind power plants, and BTLs. A dynamic dispatch strategy optimizes power generation while utilizing BTLs to balance grid fluctuations caused by variable wind energy. Performance analysis shows that integrating BTLs with conventional thermal plants can reduce variability and improve grid stability. The study highlights the dual role of simulating overall flexibility and applying dynamic dispatch strategies to enhance power systems with high renewable energy integration. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

26 pages, 9294 KB  
Article
Bayesian Analysis of Bitcoin Volatility Using Minute-by-Minute Data and Flexible Stochastic Volatility Models
by Makoto Nakakita, Tomoki Toyabe and Teruo Nakatsuma
Mathematics 2025, 13(16), 2691; https://doi.org/10.3390/math13162691 - 21 Aug 2025
Viewed by 230
Abstract
This study analyzes the volatility of Bitcoin using stochastic volatility models fitted to one-minute transaction data for the BTC/USDT pair between 1 April 2023, and 31 March 2024. Bernstein polynomial terms were introduced to accommodate intraday and intraweek seasonality, and flexible return distributions [...] Read more.
This study analyzes the volatility of Bitcoin using stochastic volatility models fitted to one-minute transaction data for the BTC/USDT pair between 1 April 2023, and 31 March 2024. Bernstein polynomial terms were introduced to accommodate intraday and intraweek seasonality, and flexible return distributions were used to capture distributional characteristics. Seven return distributions—normal, Student-t, skew-t, Laplace, asymmetric Laplace (AL), variance gamma, and skew variance gamma—were considered. We further incorporated explanatory variables derived from the trading volume and price changes to assess the effects of order flow. Our results reveal structural market changes, including a clear regime shift around October 2023, when the asymmetric Laplace distribution became the dominant model. Regression coefficients suggest a weakening of the volume–volatility relationship after September and the presence of non-persistent leverage effects. These findings highlight the need for flexible, distribution-aware modeling in 24/7 digital asset markets, with implications for market monitoring, volatility forecasting, and crypto risk management. Full article
Show Figures

Figure 1

40 pages, 725 KB  
Article
Upper and Lower Bounds of Performance Metrics in Hybrid Systems with Setup Time
by Ken’ichi Kawanishi and Yuki Ino
Mathematics 2025, 13(16), 2685; https://doi.org/10.3390/math13162685 - 20 Aug 2025
Viewed by 130
Abstract
To address the increasing demand for computational and communication resources, modern networked systems often rely on heterogeneous servers, including those requiring setup times, such as virtual machines or servers, and others that are always active. In this paper, we model and analyze the [...] Read more.
To address the increasing demand for computational and communication resources, modern networked systems often rely on heterogeneous servers, including those requiring setup times, such as virtual machines or servers, and others that are always active. In this paper, we model and analyze the performance of such hybrid systems using a level-dependent quasi-birth-and-death (LDQBD) process. Building upon an existing queueing model, we extend the analysis by considering scalable approximation methods. Since matrix analytic methods become computationally expensive in large-scale settings, we propose a stochastic bounding approach that derives upper and lower bounds for the stationary distribution, thereby significantly reducing computational cost. This approach further provides bounds on the performance metrics of the hybrid system. Full article
(This article belongs to the Special Issue Recent Research in Queuing Theory and Stochastic Models, 2nd Edition)
Show Figures

Figure 1

16 pages, 274 KB  
Article
Revisiting Black–Scholes: A Smooth Wiener Approach to Derivation and a Self-Contained Solution
by Alessandro Saccal and Andrey Artemenkov
Mathematics 2025, 13(16), 2670; https://doi.org/10.3390/math13162670 - 19 Aug 2025
Viewed by 243
Abstract
This study presents a self-contained derivation and solution of the Black and Scholes partial differential equation (PDE), replacing the standard Wiener process with a smoothed Wiener process, which is a differentiable stochastic process constructed via normal kernel smoothing. By presenting a self-contained, Itô-free [...] Read more.
This study presents a self-contained derivation and solution of the Black and Scholes partial differential equation (PDE), replacing the standard Wiener process with a smoothed Wiener process, which is a differentiable stochastic process constructed via normal kernel smoothing. By presenting a self-contained, Itô-free derivation, this study bridges the gap between heuristic financial reasoning and rigorous mathematics, bringing forth fresh insights into one of the most influential models in quantitative finance. The smoothed Wiener process does not merely simplify the technical machinery but further reaffirms the robustness of the Black and Scholes framework under alternative mathematical formulations. This approach is particularly valuable for instructors, apprentices, and practitioners who may seek a deeper understanding of derivative pricing without relying on the full machinery of stochastic calculus. The derivation underscores the universality of the Black and Scholes PDE, irrespective of the specific stochastic process adopted, under the condition that the essential properties of stochasticity, volatility, and of no arbitrage may be preserved. Full article
24 pages, 11770 KB  
Article
Secure Communication and Resource Allocation in Double-RIS Cooperative-Aided UAV-MEC Networks
by Xi Hu, Hongchao Zhao, Dongyang He and Wujie Zhang
Drones 2025, 9(8), 587; https://doi.org/10.3390/drones9080587 - 19 Aug 2025
Viewed by 267
Abstract
In complex urban wireless environments, unmanned aerial vehicle–mobile edge computing (UAV-MEC) systems face challenges like link blockage and single-antenna eavesdropping threats. The traditional single reconfigurable intelligent surface (RIS), limited in collaboration, struggles to address these issues. This paper proposes a double-RIS cooperative UAV-MEC [...] Read more.
In complex urban wireless environments, unmanned aerial vehicle–mobile edge computing (UAV-MEC) systems face challenges like link blockage and single-antenna eavesdropping threats. The traditional single reconfigurable intelligent surface (RIS), limited in collaboration, struggles to address these issues. This paper proposes a double-RIS cooperative UAV-MEC optimization scheme, leveraging their joint reflection to build multi-dimensional signal paths, boosting legitimate link gains while suppressing eavesdropping channels. It considers double-RIS phase shifts, ground user (GU) transmission power, UAV trajectories, resource allocation, and receiving beamforming, aiming to maximize secure energy efficiency (EE) while ensuring long-term stability of GU and UAV task queues. Given random task arrivals and high-dimensional variable coupling, a dynamic model integrating queue stability and secure transmission constraints is built using Lyapunov optimization, transforming long-term stochastic optimization into slot-by-slot deterministic decisions via the drift-plus-penalty method. To handle high-dimensional continuous spaces, an end-to-end proximal policy optimization (PPO) framework is designed for online learning of multi-dimensional resource allocation and direct acquisition of joint optimization strategies. Simulation results show that compared with benchmark schemes (e.g., single RIS, non-cooperative double RIS) and reinforcement learning algorithms (e.g., advantage actor–critic (A2C), deep deterministic policy gradient (DDPG), deep Q-network (DQN)), the proposed scheme achieves significant improvements in secure EE and queue stability, with faster convergence and better optimization effects, fully verifying its superiority and robustness in complex scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Back to TopTop