Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,874)

Search Parameters:
Keywords = stomatitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1354 KB  
Article
Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity
by Nicole Dziedzic, Miquel A. Gonzalez-Meler and Ahram Cho
Environments 2025, 12(10), 361; https://doi.org/10.3390/environments12100361 - 7 Oct 2025
Abstract
Urban expansion alters environmental conditions, influencing tree physiology and performance. Urban trees provide cooling, sequester carbon, support biodiversity, filter contaminants, and enhance human health. This study examines how two common urban trees—Norway Maple (Acer platanoides L.) and Little-leaved Linden (Tilia cordata [...] Read more.
Urban expansion alters environmental conditions, influencing tree physiology and performance. Urban trees provide cooling, sequester carbon, support biodiversity, filter contaminants, and enhance human health. This study examines how two common urban trees—Norway Maple (Acer platanoides L.) and Little-leaved Linden (Tilia cordata Mill.)—respond to urban site conditions by assessing leaf morphology, stomatal, and gas exchange traits across street and urban park sites in Chicago, IL. Street trees exhibited structural trait adjustments, including smaller leaf area, reduced specific leaf area, and increased stomatal density, potentially reflecting acclimation to more compact and impervious conditions. Norway Maple showed stable photosynthetic assimilation (A), stomatal conductance (gs), and transpiration (E) across sites, alongside higher intrinsic water-use efficiency (iWUE), indicating a conservative water-use strategy. In contrast, Little-leaved Linden maintained A and gs but showed elevated E and iWUE at street sites, suggesting adaptive shifts in water-use dynamics under street microenvironments. These findings highlight how species-specific physiological strategies and local site conditions interact to shape tree function in cities and underscore the importance of incorporating functional traits into urban forestry planning to improve ecosystem services and climate resilience. Full article
Show Figures

Figure 1

19 pages, 1564 KB  
Article
Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization
by Tao Chen, Xin Li, Dengjie Luo, Jiao Pan, Muzammal Rehman and Peng Chen
Agronomy 2025, 15(10), 2337; https://doi.org/10.3390/agronomy15102337 - 4 Oct 2025
Abstract
Polyploidization is a rapid breeding strategy for producing new varieties with superior agronomic traits. Kenaf (Hibiscus cannabinus L.), an important fiber crop, exhibits high adaptability to diverse stress conditions. However, comprehensive studies on polyploid induction, screening, and genetic identification in kenaf remain [...] Read more.
Polyploidization is a rapid breeding strategy for producing new varieties with superior agronomic traits. Kenaf (Hibiscus cannabinus L.), an important fiber crop, exhibits high adaptability to diverse stress conditions. However, comprehensive studies on polyploid induction, screening, and genetic identification in kenaf remain unreported. This study first established an optimal tetraploid induction system for diploid kenaf seeds using colchicine. The results showed that a 4-h treatment with 0.3% colchicine yielded the highest tetraploid induction rate of 37.59%. Compared with diploids, tetraploid plants displayed distinct phenotypic and physiological characteristics: dwarfism with shortened internodal distance, increased stem thickness, larger and thicker leaves with deeper green color and serration, as well as enlarged flowers, capsules, and seeds. Physiologically, tetraploid leaves featured increased chloroplast numbers in guard cells, reduced stomatal density, and larger pollen grains, elevated chlorophyll content. Further analyses revealed that tetraploid kenaf had elevated contents of various trace elements, enhanced photosynthetic efficiency, prolonged growth duration, and superior agronomic traits with higher biomass (54.54% higher fresh weight, 79.17% higher dry weight). These findings confirm the effectiveness of colchicine-induced polyploidization in kenaf, and the obtained tetraploid germplasm provides valuable resources for accelerating the breeding of elite kenaf varieties with improved yield and quality. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 963 KB  
Article
Phytoremediation of Meta-Cresol by Sunflower: Tolerance of Plant and Removal of M-Cresol
by Hui Li, Shuai Su, Yujia Jiang, Hong Chen, Liudong Zhang, Yi Li, Shengguo Ma, Jiaxin Liu, Haitao Li, Degang Fu, Kun Li and Huicheng Xie
Toxics 2025, 13(10), 845; https://doi.org/10.3390/toxics13100845 - 3 Oct 2025
Abstract
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus [...] Read more.
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus annuus L. as the test subject to analyze its tolerance and the wastewater purification efficiency under different m-cresol concentrations. The results showed that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and light energy utilization efficiency (LUE) of Helianthus annuus L. exhibited an overall decreasing trend, while the intercellular CO2 concentration (Cᵢ) initially increased and subsequently decreased with increasing m-cresol concentration. When m-cresol concentration reached or exceeded 60 mg·L−1, the net photosynthetic rate and intercellular CO2 concentration in the leaves showed opposite trends with further increases in m-cresol stress. The inhibition of net photosynthesis in sunflowers by m-cresol was mainly attributed to non-stomatal factors. The maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), PSII excitation energy partition coefficient (α), and the fraction of absorbed light energy used for photochemistry (P) all decreased with increasing m-cresol concentration. In contrast, non-photochemical quenching (NPQ), the quantum yield of regulated energy dissipation [Y(NPQ)], and the fraction of energy dissipated as heat through the antenna (D) first increased and then decreased. Under low-concentration m-cresol stress, sunflowers protected their photosynthetic system by dissipating excess light energy as heat as a stress response. However, high concentrations of m-cresol caused irreversible damage to Photosystem II (PSII) in sunflowers. Under m-cresol stress, chlorophyll a exhibited strong stability with minimal degradation. As the m-cresol concentration increased from 30 to 180 mg·L−1, the removal rate decreased from 84.91% to 11.84%. In conclusion, sunflowers show good remediation potential for wastewater contaminated with low concentrations of m-cresol and can be used for treating m-cresol wastewater with concentrations ≤ 51.9 mg·L−1. Full article
19 pages, 2745 KB  
Article
Mechanistic Insights into Silicon-Enhanced Cadmium Detoxification in Rice: A Spatiotemporal Perspective
by Hongmei Lin, Miaohua Jiang, Shaofei Jin and Songbiao Chen
Agronomy 2025, 15(10), 2331; https://doi.org/10.3390/agronomy15102331 - 2 Oct 2025
Abstract
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice [...] Read more.
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice roots, with the most pronounced reductions in ion flux observed under moderate Cd stress (Cd50, 50 μmol·L−1), reaching 35.57% at 7 days and 42.30% at 14 days. Cd accumulation in roots decreased by 34.03%, more substantially than the 28.27% reduction observed in leaves. (2) Si application enhanced photosynthetic performance, as evidenced by a 14.21% increase in net photosynthetic rate (Pn), a 32.14% increase in stomatal conductance (Gs), and a marked restoration of Rubisco activity. (3) Si mitigated oxidative damage, with malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels reduced by 11.29–21.88%, through the upregulation of antioxidant enzyme activities (SOD, APX, CAT increased by 15.34–38.33%) and glutathione metabolism (GST activity and GSH content increased by 60.78% and 51.35%, respectively). (4) The mitigation effects of Si were found to be spatiotemporally specific, with stronger responses under Cd50 than Cd100 (100 μmol·L−1), at 7 days (d) compared to 14 d, and in roots relative to leaves. Our study reveals a coordinated mechanism by which Si modulates Cd uptake, enhances photosynthetic capacity, and strengthens antioxidant defenses to alleviate Cd toxicity in rice. These findings provide a scientific basis for the application of Si in mitigating heavy metal stress in agricultural systems. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

22 pages, 3046 KB  
Article
Ecophysiological Adaptations of Musa haekkinenii to Light Intensity and Water Quality
by Milagros Ninoska Munoz-Salas, Adam B. Roddy, Arezoo Dastpak, Bárbara Nogueira Souza Costa and Amir Ali Khoddamzadeh
Horticulturae 2025, 11(10), 1188; https://doi.org/10.3390/horticulturae11101188 - 2 Oct 2025
Abstract
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to [...] Read more.
Musa haekkinenii is a compact wild banana species with emerging value in ornamental horticulture, yet its adaptive responses to environmental factors remain underexplored. This study investigated the morpho-physiological and anatomical responses of M. haekkinenii to contrasting light regimes and irrigation water qualities to identify optimal cultivation conditions. A 210-day factorial experiment was conducted under subtropical greenhouse conditions using a split-plot design, with light intensity (full sun vs. shade) and irrigation water quality (reverse osmosis vs. well water) as treatment factors. Plants grown under shaded conditions and irrigated with reverse osmosis water exhibited significant increases in plant height, pseudostem diameter, leaf number, and sucker production, alongside enhanced pigment accumulation and photosynthetic performance. In contrast, full-sun plants irrigated with well water showed reduced growth, lower photosynthetic efficiency, and increased substrate salinity, indicating additive effects of light and osmotic stress. Leaf anatomical analysis revealed greater stomatal size and density under shade, particularly when combined with high-quality irrigation. Multivariate analysis further supported the association of favorable trait expression with shaded conditions and reverse osmosis water. These findings highlight the importance of microenvironmental management in enhancing the physiological stability and ornamental quality of M. haekkinenii, supporting its potential application in sustainable urban landscaping. Full article
(This article belongs to the Special Issue Management of Artificial Light in Horticultural Crops)
Show Figures

Graphical abstract

25 pages, 5895 KB  
Article
Oral Gel Formulation of Cotinus coggygria Scop. Stem Bark Extract: Development, Characterization, and Therapeutic Efficacy in a Rat Model of Aphthous Stomatitis
by Jovana Bradic, Miona Vuletic, Vladimir Jakovljevic, Jasmina Sretenovic, Suzana Zivanovic, Marina Tomovic, Jelena Zivkovic, Aleksandar Kocovic and Nina Dragicevic
Pharmaceutics 2025, 17(10), 1293; https://doi.org/10.3390/pharmaceutics17101293 - 2 Oct 2025
Abstract
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria [...] Read more.
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria stem bark extract. Methods: A thermosensitive gel was formulated using Carbopol® 974P NF and poloxamer 407, enriched with 5% C. coggygria extract (CC gel), and characterized for its organoleptic properties, pH, electrical conductivity, and storage stability over six months. Therapeutic efficacy was assessed in a Wistar albino rat model of chemically induced oral ulcers. Animals were divided into three groups: untreated controls (CTRL), rats treated with gel base (GB), and those treated with CC gel over a 10-day period. Healing progression was monitored macroscopically (ulcer size reduction), biochemically (oxidative stress markers in plasma and tissue), and histologically. Results: The CC gel demonstrated satisfactory physicochemical stability and mucosal compatibility. Moreover, it significantly accelerated ulcer contraction and achieved complete re-epithelialization by day 6. Biochemical analyses revealed reduced TBARS and increased SOD, CAT, and GSH levels in ulcer tissue, indicating enhanced local antioxidant defense. Histological evaluation confirmed early resolution of inflammation, pronounced fibroblast activity, capillary proliferation, and full epithelial regeneration in the CC group, in contrast to delayed healing and persistent inflammatory infiltration in the GB and CTRL groups. Conclusions: These findings indicate that the CC gel has potential as a natural, topical formulation with antioxidant and regenerative properties for RAS, although further studies, including clinical evaluation, are required to confirm its overall efficacy and long-term safety. Full article
Show Figures

Figure 1

16 pages, 3632 KB  
Article
Impact of Nitrogen on Downy Mildew Infection and Its Effects on Growth and Physiological Traits in Early Growth Stages of Cucumber
by Yafei Wang, Qiang Shi, Xiaoxue Du, Tianhua Chen and Mohamed Farag Taha
Horticulturae 2025, 11(10), 1182; https://doi.org/10.3390/horticulturae11101182 - 2 Oct 2025
Abstract
Nitrogen is a critical nutrient that influences plant growth and resistance to pathogens; however, its impact on disease dynamics, particularly downy mildew infection, and the associated physiological responses in cucumber during early growth stages remains poorly understood. To evaluate the combined effects of [...] Read more.
Nitrogen is a critical nutrient that influences plant growth and resistance to pathogens; however, its impact on disease dynamics, particularly downy mildew infection, and the associated physiological responses in cucumber during early growth stages remains poorly understood. To evaluate the combined effects of downy mildew (caused by Pseudoperonospora cubensis) infection and nitrogen application on cucumber growth and physiological traits during the seedling and vine development stages, two downy mildew treatments— infected (B0) and non-infected(B1)—and three nitrogen levels—T1 (N-50%), T2 (N-100%), and T3 (N-150%)—were applied. Significant differences were observed between all treatments (p < 0.05). Among them, the B1T3 treatment had the most pronounced stimulatory effect, particularly on growth parameters (such as plant height, stem diameter, and leaf area). Without any disease infection (B1), the B1T2 treatment showed an increasing trend in photosynthetic rate and a more notable rise in stomatal conductance. In contrast, with downy mildew infection (B0), photosynthetic rates declined under B0T1 and B0T2. Moreover, with downy mildew infection (B0), the intracellular CO2 concentration, stomatal conductance, and transpiration rate of cucumber leaves decreased in the B0T1, B0T2, and B0T3 treatments. Plant height, stem diameter, and leaf area responded variably to nitrogen levels and downy mildew infection. The total root length, root surface area, average root diameter, total root volume, and total root tips of cucumber plants were significantly different under different experimental conditions (p < 0.05). Consequently, this study provides a theoretical basis for stress-resistant cucumber cultivation in greenhouses and has practical implications for advancing the sustainable development of the greenhouse cucumber industry. Full article
Show Figures

Figure 1

19 pages, 21171 KB  
Article
Structural, Physiological, and Biochemical Responses of Oreorchis patens (Lindl.) Leaves Under Cold Stress
by Lan Yu, Na Cui, Yuyan Zhang, Yufeng Xu, Qing Miao, Xuhui Chen, Meini Shao and Bo Qu
Horticulturae 2025, 11(10), 1178; https://doi.org/10.3390/horticulturae11101178 - 2 Oct 2025
Abstract
Cold stress significantly impairs plant growth and development, making the study of cold resistance mechanisms a critical research focus. Oreorchis patens (Lindl.) exhibits strong cold hardiness, yet its molecular and physiological adaptations to cold stress remain unclear. This study utilized microscopy, physiological assays, [...] Read more.
Cold stress significantly impairs plant growth and development, making the study of cold resistance mechanisms a critical research focus. Oreorchis patens (Lindl.) exhibits strong cold hardiness, yet its molecular and physiological adaptations to cold stress remain unclear. This study utilized microscopy, physiological assays, and RNA sequencing to comprehensively investigate O. patens’s responses to cold stress. The results reveal that cold stress altered leaf anatomy, leading to irregular mesophyll cells, deformed chloroplasts, and variable epidermal thickness. Physiologically, SOD and POD activities peaked at 5 °C/−10 °C, while CAT activity declined; osmotic regulators (soluble sugars, proline) increased with decreasing temperatures. Compared to the reference plants (e.g., Erigeron canadensis, Allium fistulosum), O. patens exhibited lower SOD and POD but markedly higher CAT activities, alongside reduced MDA, soluble sugars, proline, and proteins, underscoring its distinctive tolerance strategy. Low temperature stress (≤10 °C/5 °C) significantly decreased the SPAD index; the net photosynthetic rate (Pn) initially increased and then approached zero within the temperature range from 30 °C/25 °C to 25 °C/20 °C; transpiration rate (Tr) and stomatal conductance (Gs) changed synchronously, accompanied by an increase in intercellular CO2 concentration (Ci). RNA sequencing identified 1139 cold-responsive differentially expressed genes, which were primarily enriched in flavonoid/lignin biosynthesis, jasmonic acid synthesis, and ROS scavenging pathways. qRT-PCR analysis revealed the role of secondary metabolites in O. patens response to cold stress. This study was the first to discuss the physiological, biochemical, and molecular regulatory mechanisms of O. patens resistance to cold stress, which provides foundational insights into its overwintering mechanisms and informs breeding strategies for cold-hardy horticultural crops in northern China. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

25 pages, 2657 KB  
Article
Hydro-Functional Strategies of Sixteen Tree Species in a Mexican Karstic Seasonally Dry Tropical Forest
by Jorge Palomo-Kumul, Mirna Valdez-Hernández, Gerald A. Islebe, Edith Osorio-de-la-Rosa, Gabriela Cruz-Piñon, Francisco López-Huerta and Raúl Juárez-Aguirre
Forests 2025, 16(10), 1535; https://doi.org/10.3390/f16101535 - 1 Oct 2025
Abstract
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under [...] Read more.
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under climate change. In the Yucatán Peninsula, we characterized sixteen tree species along a spatial and seasonal precipitation gradient, quantifying wood density, predawn and midday water potential, saturated and relative water content, and specific leaf area. Across sites, diameter classes, and seasons, we measured ≈4 individuals per species (n = 319), ensuring replication despite natural heterogeneity. Using a principal component analysis (PCA) based on individual-level data collected during the dry season, we identified five functional groups spanning a continuum from conservative hard-wood species, with high hydraulic safety and access to deep water sources, to acquisitive light-wood species that rely on stem water storage and drought avoidance. Intermediate-density species diverged into subgroups that employed contrasting strategies such as anisohydric tolerance, high leaf area efficiency, or strict stomatal regulation to maintain performance during the dry season. Functional traits were strongly associated with precipitation regimes, with wood density emerging as a key predictor of water storage capacity and specific leaf area responding plastically to spatial and seasonal variability. These findings refine functional group classifications in heterogeneous karst landscapes and highlight the value of trait-based approaches for predicting drought resilience and informing restoration strategies under climate change. Full article
24 pages, 14847 KB  
Article
Exploring Functional Trait Dynamics and Responses in New Olive Crossbreeds: Implications for Climate Resilience Strategies
by Jalal Kassout, Houda Souali, Asma Zahiri, Hajar El Hilali, Hayat Zaher, Vladimiro Andrea Boselli, Rachid Hadria and Sara Oulbi
Ecologies 2025, 6(4), 66; https://doi.org/10.3390/ecologies6040066 - 1 Oct 2025
Abstract
Climate change poses serious challenges to Mediterranean crops such as the olive tree (Olea europaea L. subsp. europaea), underscoring the need for cultivars with improved drought tolerance and disease resistance. This study investigates variability in leaf and wood traits among Moroccan [...] Read more.
Climate change poses serious challenges to Mediterranean crops such as the olive tree (Olea europaea L. subsp. europaea), underscoring the need for cultivars with improved drought tolerance and disease resistance. This study investigates variability in leaf and wood traits among Moroccan and introduced olive cultivars and their crossbreed genotypes grown under similar conditions. Specifically, we assessed (1) variation in key functional traits, (2) the effects of crossbreeding combinations, and (3) trait syndromes shaped by selection. Results showed substantial intraspecific variation in leaf traits, including specific leaf area (SLA), specific leaf water content (SLWC), stomatal size (SS), and density (SD), indicating diverse strategies for resource use and plasticity. Crossbreed genotypes generally displayed higher SLWC and lower SLA, reflecting adaptation to water stress. Wood traits, particularly vessel size (SVS) and number (NVS), also varied, revealing trade-offs between hydraulic efficiency and safety. Notably, an increase in vessel size and hydraulic conductivity was correlated with oil content (OC%), while OC% increased with higher vessel and stomatal densities. Larger stomata increased conductance and fruit growth, while lower SLA was linked to higher yield. Multivariate analysis distinguished two genotype groups, consistent with parental combinations. Overall, crossbreeding generated novel functional diversity that may enhance adaptive potential. These findings highlight the value of integrating functional and anatomical traits into olive breeding programs to improve resilience and productivity under climate change. Full article
Show Figures

Graphical abstract

22 pages, 8042 KB  
Article
WSF: A Transformer-Based Framework for Microphenotyping and Genetic Analyzing of Wheat Stomatal Traits
by Honghao Zhou, Haijiang Min, Shaowei Liang, Bingxi Qin, Qi Sun, Zijun Pei, Qiuxiao Pan, Xiao Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Mei Huang, Dong Jiang, Jiawei Chen and Qing Li
Plants 2025, 14(19), 3016; https://doi.org/10.3390/plants14193016 - 29 Sep 2025
Abstract
Stomata on the leaves of wheat serve as important gateways for gas exchange with the external environment. Their morphological characteristics, such as size and density, are closely related to physiological processes like photosynthesis and transpiration. However, due to the limitations of existing analysis [...] Read more.
Stomata on the leaves of wheat serve as important gateways for gas exchange with the external environment. Their morphological characteristics, such as size and density, are closely related to physiological processes like photosynthesis and transpiration. However, due to the limitations of existing analysis methods, the efficiency of analyzing and mining stomatal phenotypes and their associated genes still requires improvement. To enhance the accuracy and efficiency of stomatal phenotype traits analysis and to uncover the related key genes, this study selected 210 wheat varieties. A novel semantic segmentation model based on transformer for wheat stomata, called Wheat Stoma Former (WSF), was proposed. This model enables fully automated and highly efficient stomatal mask extraction and accurately analyzes phenotypic traits such as the length, width, area, and number of stomata on both the adaxial (Ad) and abaxial (Ab) surfaces of wheat leaves based on the mask images. The model evaluation results indicate that coefficients of determination (R2) between the predicted values and the actual measurements for stomatal length, width, area, and number were 0.88, 0.86, 0.81, and 0.93, respectively, demonstrating the model’s high precision and effectiveness in stomatal phenotypic trait analysis. The phenotypic data were combined with sequencing data from the wheat 660 K SNP chip and subjected to a genome-wide association study (GWAS) to analyze the genetic basis of stomatal traits, including length, width, and number, on both adaxial and abaxial surfaces. A total of 36 SNP peak loci significantly associated with stomatal traits were identified. Through candidate gene identification and functional analysis, two genes—TraesCS2B02G178000 (on chromosome 2B, related to stomatal number on the abaxial surface) and TraesCS6A02G290600 (on chromosome 6A, related to stomatal length on the adaxial surface)—were found to be associated with stomatal traits involved in regulating stomatal movement and closure, respectively. In conclusion, our WSF model demonstrates valuable advances in accurate and efficient stomatal phenotyping for locating genes related to stomatal traits in wheat and provides breeders with accurate phenotypic data for the selection and breeding of water-efficient wheat varieties. Full article
(This article belongs to the Special Issue Machine Learning for Plant Phenotyping in Wheat)
Show Figures

Figure 1

20 pages, 4907 KB  
Article
Brown Algae Extracts Increase the Tolerance of Tomato Plants to High Temperatures by Improving Morphological, Physiological, Metabolomic, and Transcriptional Parameters
by Oscar Sariñana-Aldaco, Rosa M. Rodríguez-Jasso, Adalberto Benavides-Mendoza, Armando Robledo-Olivo, Pablo Preciado-Rangel, Antonio Juárez-Maldonado and Susana González-Morales
Plants 2025, 14(19), 2996; https://doi.org/10.3390/plants14192996 - 28 Sep 2025
Abstract
Currently, biostimulants in the horticultural sector are a tool that is being used to improve the yield and quality of vegetables under optimal and stressful growth conditions. In the present study, we evaluate the effects of foliar application of a hydroethanolic extract of [...] Read more.
Currently, biostimulants in the horticultural sector are a tool that is being used to improve the yield and quality of vegetables under optimal and stressful growth conditions. In the present study, we evaluate the effects of foliar application of a hydroethanolic extract of Sargassum spp., a commercial extract based on Ascophyllum nodosum, and a control with distilled water on growth and biomass, stomatal conductance, photosynthetic pigments, enzymatic and non-enzymatic antioxidants, protein content, and the expression of defense genes in tomato plants (Solanum lycopersicum L.) without stress and with high-temperature stress (45 °C). The results showed that Sargassum spp. extract only increased the height of tomato plants under stress-free conditions (2.71%) in the last evaluation. The aboveground and total dry biomass of the plants were increased by Sargassum spp. extract under stress-free conditions by 9.56 and 8.58%, respectively. Under stress conditions, aboveground dry biomass was increased by 6.66% by Sargassum spp. extract. Stomatal conductance, photosynthetic pigments, protein content, enzymatic and non-enzymatic antioxidants, and defense gene expression of tomato plants were positively modified with the use of Sargassum spp. and A. nodosum extract under high-temperature stress conditions. Under stress-free conditions, the described variables were positively modified except for gene expression, where some genes were expressed and others were repressed. The results indicate that extracts of Sargassum spp. and A. nodosum are effective in mitigating high-temperature stress, making their use a promising alternative for inducing resistance in plants to the daily adversities of climate change. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

14 pages, 2429 KB  
Article
Multi-Walled Carbon Nanotube Application Alters Stomatal Behavior in Boreal Shrubs Under Drought Conditions
by Sahari Inoue, Binyam Tedla, Jean-Marie Sobze and Raymond Thomas
Appl. Nano 2025, 6(4), 20; https://doi.org/10.3390/applnano6040020 - 28 Sep 2025
Abstract
Seedling establishment on reclaimed boreal sites is frequently constrained by drought and other abiotic stresses. Carbon nanomaterials have been shown to influence stress physiology in crops, but their effects on native boreal species are poorly understood. We tested whether carboxylic acid-functionalized multi-walled carbon [...] Read more.
Seedling establishment on reclaimed boreal sites is frequently constrained by drought and other abiotic stresses. Carbon nanomaterials have been shown to influence stress physiology in crops, but their effects on native boreal species are poorly understood. We tested whether carboxylic acid-functionalized multi-walled carbon nanotubes (MWCNTs) alter drought responses in three shrubs widely used in reclamation: Shepherdia canadensis (L.) Nutt, Cornus sericea L., and Viburnum edule. Seedlings received two irrigations with MWCNTs suspensions (0 (control), 10, or 30 mg L−1) before exposure to well-watered or drought conditions in a greenhouse. Drought reduced photosynthesis, stomatal conductance, and transpiration and increased Ci/Ca across species, consistent with declining leaf water potential. MWCNTs did not broadly modify these responses, but the highest concentration (30 mg L−1) further suppressed stomatal conductance in C. sericea and V. edule during mid- to late drought. S. canadensis showed little responsiveness. These effects suggest that MWCNT-associated stomatal closure may limit water loss under stress but also constrain CO2 uptake, offering no clear photosynthetic benefit. MWCNT impacts were subtle, species- and dose-dependent, and centered on stomatal regulation. Application in reclamation should therefore be approached cautiously, balancing potential water-saving benefits against possible reductions in carbon assimilation and growth. Full article
Show Figures

Figure 1

14 pages, 1254 KB  
Article
Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures
by Ana Isabel Moreno-Florez, Claudia Maria Bedoya-Correa, Claudia Garcia and Alejandro Pelaez-Vargas
Pathogens 2025, 14(10), 982; https://doi.org/10.3390/pathogens14100982 - 27 Sep 2025
Abstract
Oral diseases such as dental caries, stomatitis, and periodontitis are closely associated with biofilms that are resistant to conventional therapeutic approaches. Streptococcus sanguinis and Streptococcus mutans play a key role as primary and secondary colonizers of oral surfaces, respectively, and interact synergistically with [...] Read more.
Oral diseases such as dental caries, stomatitis, and periodontitis are closely associated with biofilms that are resistant to conventional therapeutic approaches. Streptococcus sanguinis and Streptococcus mutans play a key role as primary and secondary colonizers of oral surfaces, respectively, and interact synergistically with other species, including Candida albicans, to promote the establishment and progression of infection. Objective: To evaluate the antimicrobial activity of ethanolic extracts of propolis from Tame (Arauca) on biofilms formed in co-cultures from reference strains and co-cultures with clinical isolates of oral pathogens. Methodology: Propolis was collected from Apis mellifera hives placed in rural Tame (Arauca), located in the foothills of the Eastern Andes (Colombia). Ethanolic extracts of propolis (EEP) were prepared in a 0.07 g/mL concentration and biological characterization was performed on single and complex co-cultures of S. mutans (serotype c), S. sanguinis, and C. albicans using disc diffusion test, determination of MIC and BMC, growth curves and biofilm formation. The cell viability and metabolic activity of primary cell cultures derived from a dental pulp explant were evaluated using the MTT assay. Results: EEP exhibited higher inhibition zones than chlorhexidine against S. mutans and C. albicans and lower efficacy against S. sanguinis. Among the microorganisms evaluated, S. mutans showed the lowest MIC and BCM values, followed by C. albicans and S. sanguinis. Growth curves and biofilm formation assays revealed higher inhibition in co-cultures of reference strains (S. mutans + C. albicans), while multi-species cultures (S. mutans + S. sanguinis + C. albicans), or clinical strains (S. mutans clinical isolated + S. sanguinis + C. albicans), showed higher resistance. Cell viability assays revealed low cytotoxicity (<30%) in primary cell cultures. Conclusions: EEPs exhibited antimicrobial activity against relevant oral pathogens, especially in simple co-cultures, supporting their potential as natural therapeutic alternatives. However, their efficacy decreases in the presence of clinical strains and complex co-cultures, highlighting the importance of considering these variables in the development of oral treatments. Full article
(This article belongs to the Special Issue Candida albicans Virulence and Therapeutic Strategies)
Show Figures

Figure 1

25 pages, 6078 KB  
Article
Stoma Detection in Soybean Leaves and Rust Resistance Analysis
by Jiarui Feng, Shichao Wu, Rong Mu, Huanliang Xu, Zhaoyu Zhai and Bin Hu
Plants 2025, 14(19), 2994; https://doi.org/10.3390/plants14192994 - 27 Sep 2025
Abstract
Stomata play a crucial role in plant immune responses, with their morphological characteristics closely linked to disease resistance. Accurate detection and analysis of stomatal phenotypic parameters are essential for soybean disease resistance research and variety breeding. However, traditional stoma detection methods are challenged [...] Read more.
Stomata play a crucial role in plant immune responses, with their morphological characteristics closely linked to disease resistance. Accurate detection and analysis of stomatal phenotypic parameters are essential for soybean disease resistance research and variety breeding. However, traditional stoma detection methods are challenged by complex backgrounds and leaf vein structures in soybean images. To address these issues, we proposed a Soybean Stoma-YOLO (You Only Look Once) model (SS-YOLO) by incorporating large separable kernel attention (LSKA) in the Spatial Pyramid Pooling-Fast (SPPF) module of YOLOv8 and Deformable Large Kernel Attention (DLKA) in the Neck part. These architectural modifications enhanced YOLOV8′s ability to extract multi-scale and irregular stomatal features, thus improving detection accuracy. Experimental results showed that SS-YOLO achieved a detection accuracy of 98.7%. SS-YOLO can effectively extract the stomatal features (e.g., length, width, area, and orientation) and calculate related indices (e.g., density, area ratio, variance, and distribution). Across different soybean rust disease stages, the variety Dandou21 (DD21) exhibited less variation in length, width, area, and orientation compared with Fudou9 (FD9) and Huaixian5 (HX5). Furthermore, DD21 demonstrated greater uniformity in stomatal distribution (SEve: 1.02–1.08) and a stable stomatal area ratio (0.06–0.09). The analysis results indicate that DD21 maintained stable stomatal morphology with rust disease resistance. This study demonstrates that SS-YOLO significantly improved stoma detection and provided valuable insights into the relationship between stomatal characteristics and soybean disease resistance, offering a novel approach for breeding and plant disease resistance research. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

Back to TopTop