Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,389)

Search Parameters:
Keywords = stress relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1985 KB  
Review
Toughening Mechanisms of Diamond-like Carbon Films via Non-Carbide Metal Doping
by Jiahao Liu, Zhifang Yang, Guangying Cui, Jiayin Lv and Xiang Yu
Lubricants 2025, 13(11), 496; https://doi.org/10.3390/lubricants13110496 - 14 Nov 2025
Viewed by 229
Abstract
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due [...] Read more.
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due to their ductile properties and compatibility with carbon matrices. This review comprehensively examines the underlying toughening mechanisms induced by non-carbide metal doping in DLC films. We systematically analyze how metal incorporation influences film microstructure, stress state, and crack behavior throughout the entire lifecycle—from deposition to mechanical testing. Five primary toughening mechanisms are identified and discussed: (I) bombardment-induced compressive stress relaxation during film growth; (II) refinement of carbon atomic clusters and enhancement of grain boundary sliding; (III) inhibition of dislocation accumulation through moderated carbon atom repulsion; (IV) plastic deformation, crack bridging, and strain field relaxation at crack tips; (V) shear-induced stress relief via soft metal particles. Among these, Mechanism IV (ductile phase toughening) is identified as the dominant contributor, and their synergistic action can lead to orders of magnitude improvement in wear resistance and a significant increase in crack propagation resistance. Furthermore, the critical role of doping content is emphasized, revealing an optimal concentration range (e.g., ~10–15 at.% for Ag and Cu) beyond which toughness may deteriorate due to excessive boundary formation or hardness loss. This work provides a mechanistic framework for designing toughened DLC films and guides future efforts in developing high-performance, durable carbon-based coatings. Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

15 pages, 4653 KB  
Article
Design, Fabrication, and Characterization of a Piezoelectric Micromachined Ultrasonic Transducer with a Suspended Cantilever Beam-like Structure with Enhanced SPL for Air Detection Applications
by Yanyuan Ba, Yiming Li and Yuanhang Zhou
Micromachines 2025, 16(11), 1280; https://doi.org/10.3390/mi16111280 - 13 Nov 2025
Viewed by 185
Abstract
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that [...] Read more.
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that relieves residual stress, relaxes edge constraints, increases the mechanical degrees of freedom, and enables larger vibration amplitudes. Additionally, this work develops an accurate air-coupling model to predict device performance and a streamlined micro-nanofabrication process for device realization. Experimental results show that under a 1 Vpp (−5 Voffset) drive, the device achieves a peak acoustic pressure of 4.004 Pa at 69.3 kHz, measured at 10 cm distance in air, corresponding to a maximum sound pressure level of 106.02 dB (re 2 × 10−5 Pa). Compared to a traditional PMUT at 98.45 dB, this represents a 7.57 dB improvement and, to our knowledge, the highest reported sound pressure level at 10 cm for a single PMUT operating near 70 kHz under a 1 Vpp excitation. These results validate the significant enhancement in transmission performance achieved by the proposed topological structure, offering a solution to overcome the common bottleneck of insufficient output in PMUTs, and indicate strong potential for broader air-coupled sensing applications. Full article
Show Figures

Figure 1

20 pages, 318 KB  
Article
Effects of Diaphragmatic Therapy on Pelvic Floor Muscle Activity, Stress Levels, and Sexual Life Satisfaction in Polish Women
by Joanna Golec, Sara Gamrot, Monika Michalik, Iwona Sulowska-Daszyk, Monika Nowak and Joanna Balicka-Bom
Appl. Sci. 2025, 15(22), 12055; https://doi.org/10.3390/app152212055 - 13 Nov 2025
Viewed by 206
Abstract
Pelvic floor muscles (PFMs) in women play a key role, and their proper functioning depends on the coordinated interaction with other anatomical structures, particularly the diaphragm and deep abdominal muscles, which together constitute the so-called core stabilizing unit. The aim of this study [...] Read more.
Pelvic floor muscles (PFMs) in women play a key role, and their proper functioning depends on the coordinated interaction with other anatomical structures, particularly the diaphragm and deep abdominal muscles, which together constitute the so-called core stabilizing unit. The aim of this study was to evaluate the effects of diaphragmatic breathing therapy on pelvic floor muscle function and stress levels in healthy women. The randomized, controlled, parallel-group trial (allocation 1:1) included 42 women aged 21–30 years who met the inclusion and exclusion criteria. The experimental group received diaphragmatic breathing therapy. The following assessment tools were used: Surface Electromyography (sEMG), the Sexual Satisfaction Questionnaire in Close Relationships (KSS) by M. Plopa, and the Perception of Stress Questionnaire (KPS) by M. Plopa and R. Makarowski. In the experimental group, a significant reduction in resting PFM activity was observed in the final stage of the measurement protocol, along with a tendency toward decreased activity during relaxation phases. A trend toward increased amplitude during phasic and tonic contractions was also noted, more pronounced after therapy than in the control group, although not statistically significant. No significant associations between stress dimensions and sexual satisfaction were found in the control group, whereas in the experimental group, higher worry, reduced sense of meaning, low agency and pessimism correlated with lower sexual satisfaction and difficulties achieving orgasm. These findings suggest that diaphragmatic breathing therapy may reduce resting pelvic floor muscle activity and perceived emotional stress. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
16 pages, 5272 KB  
Article
Mechanical and Adhesive Properties of Hydrothermally Treated Bamboo Composites Reinforced with Phenolic Resin: Effect of Impregnation with Silica Nanoparticles
by Lionnel Frederique Bidzanga Bessala and Yanjun Li
Polymers 2025, 17(22), 2989; https://doi.org/10.3390/polym17222989 - 11 Nov 2025
Viewed by 268
Abstract
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal [...] Read more.
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal pre-treatment was found to enhance cellulose crystallinity, as confirmed through XRD analysis. Dynamic mechanical analysis (DMA) and nanoindentation tests revealed that the hybrid treatment significantly influences the viscoelastic response. Composites treated only with hot water and resin (GB-W) exhibited superior short-term creep resistance and higher elasticity, attributed to their optimized crystalline structure. In contrast, the silica-reinforced composites (GB-M) demonstrated the most viscous behavior and lowest stress relaxation, making them most effective at minimizing elastic springback. Nanoindentation further showed that GB-W had the highest nano-adherence at the fiber cell wall level. FTIR analysis indicated a stronger interaction between the phenolic resin and the hydroxyl groups of the bamboo matrix in GB-0 and GB-W compared to GB-M, where the silica layer potentially altered this interface. Microscopy confirmed a resin penetration depth of at least 1 mm, primarily into porous tissues. The results demonstrate that while silica reinforcement enhances relaxation properties, the hydrothermal pre-treatment combined with phenolic resin creates a more favorable interface, leading to better overall creep resistance and adherence. Full article
Show Figures

Figure 1

24 pages, 7854 KB  
Article
Settlement Behavior and Deformation Control of Twin Shield Tunneling Beneath an Operating Railway: A Case Study of Qingdao Metro
by Yankai Wu, Shixin Wang, Changhui Gao, Wenqiang Li, Yugang Wang and Ruiting Sun
Buildings 2025, 15(22), 4043; https://doi.org/10.3390/buildings15224043 - 10 Nov 2025
Viewed by 132
Abstract
Shield tunneling beneath existing railways remains a critical challenge in urban infrastructure development, as it risks destabilizing overlying soil structures and compromising railway safety. This study presents an integrated methodology combining physical model tests and three-dimensional numerical simulation, validated by their mutual agreement, [...] Read more.
Shield tunneling beneath existing railways remains a critical challenge in urban infrastructure development, as it risks destabilizing overlying soil structures and compromising railway safety. This study presents an integrated methodology combining physical model tests and three-dimensional numerical simulation, validated by their mutual agreement, to capture the settlement and deformation induced by twin shield tunneling beneath an operational railway under the complex geological conditions of the Qingdao Metro. A parametric study was subsequently conducted to systematically evaluate the influence of critical construction parameters, including grouting pressure, grout stiffness, and chamber pressure, on railhead settlement. Additionally, a comparative analysis assessed the effectiveness of settlement control measures, including D-type beam reinforcement, deep-hole grouting reinforcement, and their combined application. Results show that railhead deformation primarily manifests as settlement, with cumulative effects from sequential tunneling of the left and right lines. Proximity to fault zones intensifies crown subsidence, while tunneling induces significant soil stress relaxation, particularly in geologically weaker strata. Within optimal ranges, increased grouting pressure, chamber pressure, and grout stiffness effectively reduce railhead settlement; however, their efficacy diminishes beyond specific thresholds. The combined D-type beam and deep-hole grouting reinforcement scheme proved most effective in controlling settlement, ensuring railway operational safety and construction stability. These findings provide essential theoretical and practical guidance for optimizing shield tunneling strategies in complex urban environments, enhancing the safety and reliability of critical railway infrastructure. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

26 pages, 10447 KB  
Article
Mechanisms and Mitigation of Injection-Induced Microseismicity: The Critical Role of Fracture Orientation in Shear Reactivation
by Yilong Yuan, Wei Wang, Jiawei Tang and Zixu Hu
Appl. Sci. 2025, 15(22), 11919; https://doi.org/10.3390/app152211919 - 9 Nov 2025
Viewed by 311
Abstract
Hot dry rock (HDR) is a promising renewable energy resource whose vast reserves and wide distribution have attracted extensive attention in recent years. However, exploiting HDR resources requires hydraulic stimulation, which is typically accompanied by substantial microseismic activity, posing significant risks to project [...] Read more.
Hot dry rock (HDR) is a promising renewable energy resource whose vast reserves and wide distribution have attracted extensive attention in recent years. However, exploiting HDR resources requires hydraulic stimulation, which is typically accompanied by substantial microseismic activity, posing significant risks to project safety and public acceptance. Current understanding of microseismic mechanisms, particularly the role of fracture geometry under varying injection schemes, remains inadequate. This study employs a three-dimensional block-based discrete element method to construct a fluid–mechanics coupled model founded on a discrete fracture network, aimed at investigating the mechanical behavior of fractures and the spatial distribution of microseismicity during hydraulic stimulation. Our results quantitatively demonstrate that fractures oriented at 45° to the maximum principal stress are most susceptible to shear reactivation and microseismic clustering, with event magnitudes strongly correlated to both fracture orientation and intra-fracture fluid pressure. Consequently, preventing critically high fluid pressures in natural fractures near the injection well, particularly those at approximately 45° to the maximum principal stress direction, is essential for risk mitigation. Cyclic injection can shear more fractures and slightly reduce magnitudes via staged pressure relaxation, but its effectiveness in controlling microseismic magnitude is limited. Therefore, it is recommended to implement measures to control the entry of fracturing fluid into these high-risk fissures, such as segmented fracturing or temporary plugging techniques. This strategy is expected to enhance seismic risk mitigation, thereby contributing to the safe and efficient exploitation of deep geothermal resources. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 779 KB  
Review
Impaired Hemostasis and the Role of Oxidative Stress-Induced Signaling in Thrombotic Disorders—Where We Stand Today
by Sofia K. Georgiou-Siafis and Paraskevi Kotsi
Receptors 2025, 4(4), 21; https://doi.org/10.3390/receptors4040021 - 31 Oct 2025
Viewed by 353
Abstract
Both primary and secondary hemostasis consist of finely regulated pathways, forming a blood clot to stop bleeding. These orchestrated mechanisms involve multiple plasma- and platelet/endothelial-derived receptors, factors, enzymes, and proteins, such as the von Willebrand factor (vWF), fibrinogen, and thrombin. Over-activation or improper [...] Read more.
Both primary and secondary hemostasis consist of finely regulated pathways, forming a blood clot to stop bleeding. These orchestrated mechanisms involve multiple plasma- and platelet/endothelial-derived receptors, factors, enzymes, and proteins, such as the von Willebrand factor (vWF), fibrinogen, and thrombin. Over-activation or improper resolution of the coagulation cascade leads to severe pathological disorders, arterial and venous. Despite the fact that the genetic etiology of thrombophilia has gained the main research interest, there is growing evidence that the disturbed redox network of key hemostatic pathways signals thrombus formation. Oxidized LDL in dyslipidemias and many endogenous and exogenous compounds act as pro-oxidant stimuli that lead to post-translational modifications of proteins, such as sulfenylation, nitrosation, disulfide formation, glutathionylation, etc. Oxidation of cysteine and methionine residues of vWF, fibrinogen, and thrombomodulin has been detected at thrombotic episodes. Increased homocysteine levels due to, but not restricted to, methylenetetrahydrofolate reductase gene (MTHFR) mutations have been incriminated as a causative factor for oxidative stress, leading to a pro-thrombotic phenotype. Alterations in the vascular architecture, impaired vascular relaxation through decreased bioavailability of NO, accumulation of Nε-homocysteinylated proteins, ER stress, and endothelial cells’ apoptosis are among the pro-oxidant mechanisms of homocysteine. This review article focuses on describing key concepts on the oxidant-based molecular pathways that contribute to thrombotic episodes, with emphasis on the endogenous compound, homocysteine, aiming to promote further molecular, clinical, and pharmacological research in this field. Full article
Show Figures

Graphical abstract

27 pages, 1721 KB  
Article
Handling Multi-Source Uncertainty in Accelerated Degradation Through a Wiener-Based Robust Modeling Scheme
by Hua Tu, Xiuli Wang and Yang Li
Sensors 2025, 25(21), 6654; https://doi.org/10.3390/s25216654 - 31 Oct 2025
Viewed by 496
Abstract
Uncertainty from heterogeneous degradation paths, limited experimental samples, and exogenous perturbations often complicates accelerated lifetime modeling and prediction. To confront these intertwined challenges, a Wiener process-based robust framework is developed. The proposed approach incorporates random-effect structures to capture unit-to-unit variability, adopts interval-based inference [...] Read more.
Uncertainty from heterogeneous degradation paths, limited experimental samples, and exogenous perturbations often complicates accelerated lifetime modeling and prediction. To confront these intertwined challenges, a Wiener process-based robust framework is developed. The proposed approach incorporates random-effect structures to capture unit-to-unit variability, adopts interval-based inference to reflect sampling limitations, and employs a hybrid estimator, combining Huber-type loss with a Metropolis–Hastings algorithm, to suppress the influence of external disturbances. In addition, a quantitative stress–parameter linkage is established under the accelerated factor principle, supporting consistent transfer from accelerated testing to normal conditions. Validation on contact stress relaxation data of connectors confirms that this methodology achieves more stable parameter inference and improves the reliability of lifetime predictions. Full article
Show Figures

Figure 1

9 pages, 3928 KB  
Communication
Microstructural and Residual Stress Homogenization of Titanium Sputtering Targets for OLED 6G Applications Through Controlled Rolling and Heat Treatment
by Leeseung Kang
Materials 2025, 18(21), 4965; https://doi.org/10.3390/ma18214965 - 30 Oct 2025
Viewed by 283
Abstract
The optimization of the microstructural homogeneity and residual stress distribution in Ti sputtering targets for OLED 6G applications is essential for improving dimensional stability, durability, and deposition performance. Herein, 3N Ti plates were hot-rolled at 730 °C and then annealed at 600 °C [...] Read more.
The optimization of the microstructural homogeneity and residual stress distribution in Ti sputtering targets for OLED 6G applications is essential for improving dimensional stability, durability, and deposition performance. Herein, 3N Ti plates were hot-rolled at 730 °C and then annealed at 600 °C and 700 °C for different durations to investigate the effects of annealing parameters on microstructural evolution and stress relaxation. X-ray diffraction analysis revealed that hexagonal α-Ti with progressive development of the (002) orientation was produced during annealing under all the conditions. Electron backscatter diffraction analyses showed that short-time annealing at 600 °C (≤30 min) generated heterogeneous grains, high dislocation density, and mixed grain boundary character, whereas extended annealing (≥60 min) produced a more uniform microstructure. However, residual stress differences between the plate center and edge remained significant under this condition. Conversely, annealing at 700 °C promoted progressive recrystallization, as indicated by increased high-angle grain boundary fractions and decreased kernel average misorientation values, and facilitated grain growth stabilization across the plate. Prolonged annealing improved microstructural and residual stress uniformity significantly, and near-complete homogenization was achieved after 5 h. These findings demonstrate that annealing at 700 °C for sufficient time is optimal for producing homogeneous microstructures and uniform residual stress distributions, providing valuable guidelines for Ti sputtering target processing. Full article
Show Figures

Figure 1

28 pages, 6992 KB  
Article
Analysis of Thermally Induced Residual Stress in Resistance Welded PC/CF Composite to Aluminum
by Marcin Praski, Piotr Kowalczyk, Karolina Stankiewicz, Radosław Szumowski, Piotr Synaszko and Andrzej Leski
Materials 2025, 18(21), 4962; https://doi.org/10.3390/ma18214962 - 30 Oct 2025
Viewed by 455
Abstract
Thermoplastic composites are growing in popularity in the aerospace and automotive industries; they enable weldable and recyclable structures. Resistance welded hybrid thermoplastic and metal joints are attractive for rapid assembly, but the thermal mismatch between metals and polymers introduces residual stresses, which can [...] Read more.
Thermoplastic composites are growing in popularity in the aerospace and automotive industries; they enable weldable and recyclable structures. Resistance welded hybrid thermoplastic and metal joints are attractive for rapid assembly, but the thermal mismatch between metals and polymers introduces residual stresses, which can drive edge debonding and compromise durability. This study presents fabricated single-lap PC/CF–Al7075 coupons with measured mid-span bow resulting from welding, evaluated bond quality by step-heating thermography, and an evaluated framework for residual stress prediction using Ansys complemented by a bimetal analytical check. Three thermal cycles were examined with different temperature gradients (200, 220, 240 °C): the measured bow was 16.5 mm and remained constant, whereas analytical calculation increased with ΔT similarly to the FEM prediction. The current FEM under predicted the bow (Mean Absolute Percentage Error is 21%), showing stress contours that decay with distance from the bond and revealing pronounced peaks in both σxx and σzz components at weld edges, consistent with shear-lag theory. FEM returned edge-peaked peel rising from 43 to −64 MPa and σxx was up to 12% more compressive than analytical calculation; an effective CF/PC CTE of 1.5 × 10−6 K−1 reconciled curvature with test better than catalogue values. The temperature insensitive bow is attributed to polycarbonate flow/viscoelastic relaxation above Tg and hot relaxation in aluminum, with effects not represented in the elastic models. Edge peel and shear govern initiation risk. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

30 pages, 8278 KB  
Article
Integrating Orientation Optimization and Thermal Distortion Prediction in LPBF: A Validated Framework for Sustainable Additive Manufacturing
by Nikoletta Sargioti, Elias P. Koumoulos and Evangelia K. Karaxi
Micromachines 2025, 16(11), 1230; https://doi.org/10.3390/mi16111230 - 29 Oct 2025
Viewed by 315
Abstract
This study investigates the impact of build orientation on thermal distortion, residual stress behaviour, and process efficiency in LPBF. Four orientation strategies, optimized for surface area, support volume, print time, and overheating, were generated in Siemens NX and evaluated using Atlas 3D to [...] Read more.
This study investigates the impact of build orientation on thermal distortion, residual stress behaviour, and process efficiency in LPBF. Four orientation strategies, optimized for surface area, support volume, print time, and overheating, were generated in Siemens NX and evaluated using Atlas 3D to predict build-stage and post-support removal distortion. Experimental validation through 3D scanning enabled detailed surface deviation comparisons with simulation outputs. Results showed that support volume and print time optimizations led to the lowest in-process distortion but exhibited higher deformation after support removal, driven by residual stress relaxation. In contrast, the surface area-optimized orientation displayed greater distortion during printing but more stable post-processing behaviour. The overheating-optimized build resulted in the largest total distortion. Atlas 3D predictions aligned closely with scan data, particularly in identifying critical zones on sloped and unsupported surfaces. Sustainability and cost analysis revealed that the surface area strategy had the highest impact in reducing CO2 emissions and production costs (~€832 and ~900 g CO2/part), while support volume and print time orientations reduced cost by more than 20% and halved emissions. Energy consumption followed the same trend, with support volume and print time optimisations requiring only ~2 kWh/part compared to nearly 5 kWh/part for surface area, and overheating minimisation. These findings underscore the importance of integrating distortion simulation, cost, and environmental criteria into orientation selection to achieve balanced, high-performance LPBF manufacturing. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Additive Manufacturing 2025)
Show Figures

Figure 1

16 pages, 2357 KB  
Article
Ecological Composite Materials Based on Polylactide (PLA) and Organic Fillers: Coffee Grounds and Hen Eggshells Produced by the FDM Method: Mechanical, Thermal Properties, Stress Relaxation and Creep
by Anna Gaweł, Kinga Setlak, Damian Szubartowski, Dariusz Mierzwiński and Aneta Liber-Kneć
Materials 2025, 18(21), 4918; https://doi.org/10.3390/ma18214918 - 28 Oct 2025
Viewed by 364
Abstract
In this article, an ecological composite based on a neat polylactide with 50 and 75% degrees of coffee particles and eggshells as an infill and organic filler, was developed. It has been shown that the content of fillers used reduced the mechanical properties, [...] Read more.
In this article, an ecological composite based on a neat polylactide with 50 and 75% degrees of coffee particles and eggshells as an infill and organic filler, was developed. It has been shown that the content of fillers used reduced the mechanical properties, increasing the possibility of environmental degradation and accelerating the biodegradation process. During the additive production of polylactide with 10% of coffee grounds as a filler, it was possible to reduce the additive manufacturing temperature, which reduced the process time, energy costs, carbon dioxide emissions and the amount of polymer that may affect the environment. The structure of polylactide enriched with hen eggshells is characterized by roan and irregular shapes, which can cause a high tendency to form a concentration of cracks in these areas. Based on the results obtained from the stress relaxation test, the Zener model was used to describe a creep model of the produced ecological composites. The polymer composition of coffee grounds and eggshells shows a tendency to creep faster than pure polylactide and with different degrees of infill. Voids reduce the strength of composite materials, which increases the creep potential of samples with incomplete degrees of infill. Full article
Show Figures

Figure 1

27 pages, 36375 KB  
Article
Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications
by Nicklas Fiedler, Thomas Kleine, Stefan Oschatz, Selina Schultz, Niels Grabow and Kerstin Lebahn
Polymers 2025, 17(21), 2863; https://doi.org/10.3390/polym17212863 - 27 Oct 2025
Viewed by 365
Abstract
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines [...] Read more.
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines a methodology for FEA validation related to stent development-related FEA validation using injection-molded planar 2D substructures from a stent design with two types of polymers: poly(l-lactide) (PLLA) and poly(glycolide-co-trimethylene carbonate) (PGA-co-TMC). Specimens underwent quasi-static and cyclic testing, including loading, stress relaxation, unloading, and strain recovery. The material model coefficients for FEA were calibrated for three different constitutive models: linear elastic–plastic (LEP), Parallel Rheological Framework (PRF), and Three-Network (TN) model. The validation of planar stent segment expansion (PSSE) showed strong agreement with the experiments in deformation patterns, with varying force–displacement responses. The PRF and TN models provided better fits for behavioral predictions, with the PRF model being especially favorable for PLLA, while all models exhibited limitations for PGA-co-TMC. This study proposes a robust approach for the material modeling in stent development, enabling efficient material screening and stent design optimization through a simplified 2D validation setup. Material model accuracy depends strongly on calibration–load case congruence, while phenomenological approaches (PRF) show enhanced model robustness against load case variations compared to physically coupled models (TN). Full article
Show Figures

Graphical abstract

18 pages, 6178 KB  
Article
Strain Rate Impact into the Stress and Strain Values at Break of the PA6 GF30-Reinforced Polyamides
by Adrian Marius Pascu and Nicolae Stefanoaea
Appl. Sci. 2025, 15(21), 11454; https://doi.org/10.3390/app152111454 - 27 Oct 2025
Viewed by 330
Abstract
The study of the strain rate effects on the PA6 glass fiber-reinforced polyamide, in this specific case, PA6 GF30 (30% reinforced glass fiber), is critical due to composites widely used in automotive applications where the velocity of loading can vary significantly. Some insights [...] Read more.
The study of the strain rate effects on the PA6 glass fiber-reinforced polyamide, in this specific case, PA6 GF30 (30% reinforced glass fiber), is critical due to composites widely used in automotive applications where the velocity of loading can vary significantly. Some insights into material safety under high quasistatic strain rate regime are given by understanding tensile behavior with focus on strain and stress at break. For this, using injection molding, dog bone samples were subjected to tensile tests at different strain rates, using a precise displacement control and extensometer to record the engineering stress–strain. The results demonstrate that higher strain rates increased the stiffness and strength of the specimen, shifting the stress–strain behavior to higher stress at break due to the reduced time for the polymer relaxation. However, the strain at break decreases under rapid movement, indicating the fact that the specimens exhibited reduced ductility. The results indicate a pronounced strain rate sensitivity that needs to be evaluated and considered for the design and failure mechanism of the components made of PA6 GF30, highlighting the necessity of strain rate specific mechanical characterization for accurate evaluation of performance under high quasistatic strain rate load cases, leading to a more safe and reliable design. Full article
Show Figures

Figure 1

13 pages, 3486 KB  
Article
Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy
by Arasappan Rajesh Kannan, Hafiz Muhammad Rehan Tariq, Muhammad Ishtiaq, Ha-Seong Baek, Umer Masood Chaudhry and Tea-Sung Jun
Materials 2025, 18(21), 4897; https://doi.org/10.3390/ma18214897 - 26 Oct 2025
Viewed by 434
Abstract
Lightweight magnesium alloys are gaining increasing attention as potential structural materials for automotive and aerospace applications due to their high specific strength and excellent recyclability. However, their formability and mechanical performance are often limited by strong basal texture and limited recrystallization during thermomechanical [...] Read more.
Lightweight magnesium alloys are gaining increasing attention as potential structural materials for automotive and aerospace applications due to their high specific strength and excellent recyclability. However, their formability and mechanical performance are often limited by strong basal texture and limited recrystallization during thermomechanical processing. In this context, the present study systematically investigates the effect of post-annealing treatment on the microstructural evolution, recrystallization behavior, and mechanical response of a hot-rolled Mg-3Al-1Zn-1Ca alloy. Detailed microstructural characterization revealed that Al2Ca precipitates were uniformly distributed along grain boundaries in the as-received (AR) condition, where they contributed to significant pinning of boundary migration. Post-annealing treatment (350 °C, furnace cooling) resulted in non-uniform grain coarsening, driven by the interplay of precipitate pinning and differential stored strain energy, while also facilitating particle-stimulated nucleation (PSN) and recrystallization. Electron backscatter diffraction (EBSD) analysis confirmed a substantial increase in the fraction of high-angle grain boundaries and recrystallized grains in the heat-treated (HT) state, with kernel average misorientation (KAM) and grain orientation spread (GOS) analyses indicating pronounced recovery of lattice distortions. Mechanical testing demonstrated a significant decrease in yield strength (263 MPa to 187.4 MPa) and hardness (65.7 to 54.1 HV) due to dislocation annihilation and stress relaxation, while ultimate tensile strength remained nearly unchanged (~338 MPa) and ductility improved markedly (12.6% to 16.4%). These findings highlight the dual role of Al2Ca precipitates in promoting recrystallization through PSN while simultaneously restricting excessive grain growth through Zener pinning. Full article
Show Figures

Figure 1

Back to TopTop