Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = stripping voltammetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2514 KB  
Article
Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining
by Long Chao, Zhisong Wu, Shiqiang Qi, Aigui Xu, Zhao Huang and Dexuan Yan
Biosensors 2025, 15(10), 689; https://doi.org/10.3390/bios15100689 - 11 Oct 2025
Viewed by 411
Abstract
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) [...] Read more.
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) (PABA), Au nanoparticles (AuNPs) and glucose oxidase (GOx) are modified on a glassy carbon electrode coated with multiwalled carbon nanotubes, yielding a corresponding sandwich-type immunoelectrode. In the presence of glucose, a chemical reduction of NaAuCl4 by enzymatically generated H2O2 can precipitate a lot of gold on the Ab2-PABA-AuNPs-GOx immobilized immunoelectrode. In situ anodic stripping voltammetry (ASV) detection of gold in 8 μL 1.0 M aqueous HBr-Br2 is conducted for the antigen assay, and the ASV detection process takes approximately 6 min. This method is employed for the assay of human immunoglobulin G (IgG) and human carbohydrate antigen 125 (CA125), which demonstrates exceptional sensitivity, high selectivity and fewer required reagents/samples. The achieved limits of detection (S/N = 3) by the method are 0.25 fg mL−1 for IgG (approximately equivalent to containing 1 IgG molecule in the 1 microlitre of the analytical solution) and 0.1 nU mL−1 for CA125, which outperforms many previously reported results. Full article
(This article belongs to the Special Issue Materials and Techniques for Bioanalysis and Biosensing—2nd Edition)
Show Figures

Figure 1

14 pages, 2238 KB  
Article
Functional Biopolymer-Stabilized Silver Nanoparticles on Glassy Carbon: A Voltammetric Sensor for Trace Thallium(I) Detection
by Bożena Karbowska, Maja Giera, Anna Modrzejewska-Sikorska and Emilia Konował
Int. J. Mol. Sci. 2025, 26(19), 9658; https://doi.org/10.3390/ijms26199658 - 3 Oct 2025
Viewed by 236
Abstract
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in [...] Read more.
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in environmental systems. However, in this chemical form, thallium remains highly toxic. This study focuses on the modification of a glassy carbon electrode (GCE) with silver nanostructures stabilised by potato starch derivatives. The modified electrode (GCE/AgNPs-E1451) was used for the determination of trace amounts of thallium ions using anodic stripping voltammetry. Emphasis was placed on assessing the effect of surface modification on key electrochemical performance parameters of the electrode. Measurements were carried out in a base electrolyte (EDTA) and in a real soil sample collected from Bali. The stripping peak current of thallium exhibited linearity over the concentration range from 19 to 410 ppb (9.31 × 10−8 to 2.009 × 10−6 mol/dm3). The calculated limit of detection (LOD) was 18.8 ppb (9.21 × 10−8 mol/dm3), while the limit of quantification (LOQ), corresponded to 56.4 ppb (2.76 × 10−7 mol/dm3). The GCE/AgNPs-E1451 electrode demonstrates several significant advantages, including a wide detection range, reduced analysis time due to the elimination of time-consuming pre-concentration steps, and non-toxic operation compared to mercury-based electrodes. Full article
(This article belongs to the Special Issue New Advances in Metal Nanoparticles)
Show Figures

Figure 1

17 pages, 5739 KB  
Article
Electrochemical and Optical Experiments and DFT Calculations of 1,4,6,8-Tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene
by Cornelia Musina (Borsaru), Alina-Giorgiana Brotea, Mihaela Cristea, Gabriela Stanciu, Amalia Stefaniu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(18), 3762; https://doi.org/10.3390/molecules30183762 - 16 Sep 2025
Viewed by 502
Abstract
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and [...] Read more.
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and reduction scans were highlighted and characterized. Density functional theory (DFT) calculations were conducted to assess the chemical reactivity of this compound. UV-Vis studies of L were performed in acetonitrile to establish the optical parameters in this solvent and its complexing power towards heavy metal (HM) ions. Chemically modified electrodes (CMEs) based on L were prepared by electrooxidation of L in organic electrolytes. To evaluate the electrochemical behavior of the CMEs, they were characterized with a ferrocene redox probe. They were also tested for the analysis of synthetic samples of heavy metal ions (HM): Cd(II), Pb(II), Cu(II) and Hg(II) by anodic stripping. Specific responses were obtained for Pb(II) and Cd(II) ions. The preparation conditions have an influence on the electrochemical responses. This study is relevant for the design and further development of advanced materials based on this azulene for the analysis of HMs in water samples. Electrochemical experiments and DFT calculations recommended L as a new ligand for modifying the electrode surface for the analysis of HMs. Full article
Show Figures

Figure 1

22 pages, 2854 KB  
Article
Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors
by Michael C. Leopold, Charles W. Sheppard, Joyce E. Stern, Arielle Vinnikov, Ann H. Wemple and Ben H. Edelman
Sensors 2025, 25(17), 5312; https://doi.org/10.3390/s25175312 - 26 Aug 2025
Viewed by 1040
Abstract
Xylazine (XYL), an FDA-approved veterinary tranquilizer, is being abused both as an opioid adulterant in a street-drug known as “Tranq-dope” and as a date rape drug. Given its now nearly ubiquitous use with fentanyl and fentanyl derivatives across the globe, XYL has become [...] Read more.
Xylazine (XYL), an FDA-approved veterinary tranquilizer, is being abused both as an opioid adulterant in a street-drug known as “Tranq-dope” and as a date rape drug. Given its now nearly ubiquitous use with fentanyl and fentanyl derivatives across the globe, XYL has become a primary target for researchers seeking to develop portable and cost-effective sensors for its detection. Electrochemical sensors based on the oxidation of XYL, while useful, have limitations due to certain interferents and inherent electrode fouling that render the approach less reliable, especially in certain sample matrices. In this work, modified electrode platforms incorporating layers of multi-walled carbon nanotubes for sensitivity along with semi-permeable polyurethane (PU) layers and host–guest chemistry using β-cyclodextrin for selectivity are deployed for XYL detection using complementary adsorptive cathodic stripping analysis. The modified electrode sensors are optimized to minimize high potentials and maintain fouling resistant capabilities and investigated to better understand the function of the PU layer. The use of adsorptive cathodic stripping differential pulse voltammetry indirectly indicates the presence and concentration of XYL within complex sample media (beverages and synthetic urine). When used in this manner, the modified electrodes exhibited an overall average sensitivity of ~35 (±9) nA/μM toward XYL with a limit of quantification of <10 ppm, while also offering adaptability for the analysis of XYL in different types of samples. By expanding the capability of these XYL sensors, this study represents another facet of tool development for use by medical professionals, first-responders, forensic investigators, and drug-users to limit exposure and help stem the dangerous and illegal use of XYL. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Electrochemical Sensors Based on Track-Etched Membranes for Rare Earth Metal Ion Detection
by Nurdaulet Zhumanazar, Arman B. Yeszhanov, Galina B. Melnikova, Ainash T. Zhumazhanova, Sergei A. Chizhik and Ilya V. Korolkov
ChemEngineering 2025, 9(4), 88; https://doi.org/10.3390/chemengineering9040088 - 15 Aug 2025
Cited by 1 | Viewed by 580
Abstract
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and [...] Read more.
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, gas permeability measurements and contact angle analysis. Optimal membrane modification was achieved using C = 10% (N-VFA), 60 min of UV irradiation and a UV lamp distance of 10 cm. Furthermore, the modified membranes were implemented in a two-electrode configuration for the determination of Eu3+, Gd3+, La3+ and Ce3+ ions via square-wave anodic stripping voltammetry (SW-ASV). The sensors exhibited a linear detection range from 10−7 M to 10−3 M, with limits of detection of 1.0 × 10−6 M (Eu3+), 6.0 × 10−6 M (Gd3+), 2.0 × 10−4 M (La3+) and 2.5 × 10−5 M (Ce3+). The results demonstrated a significant enhancement in electrochemical response due to the grafted PET TeMs-g-N-PVFA-TMPTMA structure, and the sensor showed practical applicability and consistent performance in detecting rare earth ions in tap water. Full article
Show Figures

Figure 1

14 pages, 1057 KB  
Article
Electrochemically Activated Screen-Printed Graphene Electrochemical Sensor for Daidzein Determination in Edible Peanut Oils
by Matias Alberto Cárdenas, Rubén Darío Alaníz, Robert D. Crapnell, Sebastian Noel Robledo, Héctor Fernández, Fernando Javier Arévalo, Adrian Marcelo Granero, Craig E. Banks and Gastón Darío Pierini
Chemosensors 2025, 13(8), 304; https://doi.org/10.3390/chemosensors13080304 - 13 Aug 2025
Viewed by 1005
Abstract
In this work, we designed a novel and simple electrochemical approach for the determination of daidzein antioxidant (Dz) in peanut oil samples. The Dz determination was based on anodic stripping linear voltammetry using screen-printed graphene electrodes (SPGEs) activated in acidic media, where a [...] Read more.
In this work, we designed a novel and simple electrochemical approach for the determination of daidzein antioxidant (Dz) in peanut oil samples. The Dz determination was based on anodic stripping linear voltammetry using screen-printed graphene electrodes (SPGEs) activated in acidic media, where a strong adsorption of Dz on activated graphene was obtained. In this regard, electroanalytical parameters such as the scan rate, supporting electrolyte, pH, and accumulation step were optimized to ensure the best conditions for the selective and sensitive Dz quantification. The electrochemical method developed for the determination of Dz exhibits a linear behavior of the anodic peak current in the concentration range from 0.05 to 1 μM, with a limit of detection of 0.012 μM. The electrochemical sensor demonstrated to the capacity to quantify Dz in peanut oil samples at low concentrations without the necessity of an extensive sample pretreatment. Therefore, the electrochemical method proposed can be used as a new portable analytical tool for the in situ quality control of peanut oil samples. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Figure 1

23 pages, 3226 KB  
Article
Advanced Flow Detection Cell for SPEs for Enhancing In Situ Water Monitoring of Trace Levels of Cadmium
by Giulia Mossotti, Davide Girelli, Matilde Aronne, Giulio Galfré, Andrea Piscitelli, Luciano Scaltrito, Sergio Ferrero and Valentina Bertana
Water 2025, 17(16), 2384; https://doi.org/10.3390/w17162384 - 12 Aug 2025
Viewed by 3036
Abstract
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely [...] Read more.
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely intervention to safeguard public health and environmental safety. The rationale behind this work is to address the critical need for an in situ monitoring system for cadmium (Cd) in freshwater sources, particularly those adjacent to agricultural fields. Cd(II) is a highly toxic heavy metal that poses a significant threat to agricultural ecosystems and human health due to its rapid bioaccumulation in plants and subsequent entry into the food chain. The developed analytic device is composed of a commercial mercury salt-modified graphite screen-printed electrode (SPE) with a custom-designed innovative polydimethylsiloxane (PDMS) flow detection cell. The flow cell was prototyped using 3D printing and replica moulding, with its design and performance validated through COMSOL Multiphysics simulations to optimize inflow conditions and ensure maximum analyte dispersion on the working electrode surface. Chemical detection was performed using square wave voltammetry, demonstrating a linear response for Cd(II) concentrations of 0 to 20 µg/L. The system exhibited robust analytical performance, enabling 25–30 daily analyses with consistent sensitivity within the Limit of Detection (LoD) set by the law of 3 µg/L. Full article
Show Figures

Figure 1

15 pages, 1389 KB  
Article
A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II)
by Mieczyslaw Korolczuk, Iwona Gęca and Paulina Mrózek
Molecules 2025, 30(13), 2743; https://doi.org/10.3390/molecules30132743 - 26 Jun 2025
Viewed by 2729
Abstract
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm [...] Read more.
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm filled with metallic bismuth and packed in one casing. The proposed sensor is reusable thanks to its distinctive design. The microelectrode properties of the proposed working electrodes were confirmed by comparing the analytical signals of cadmium and lead recorded from stirred and unstirred solutions during the deposition step. The practical application of the solid bismuth microelectrode array is presented by detailing the procedure for the simultaneous determination of Pb and Cd by anodic stripping voltammetry. The calibration graphs were linear from 5 × 10−9 to 2 × 10−7 mol L−1 and 2 × 10−9 to 2 × 10−7 mol L−1 for Cd(II) and Pb(II), respectively (deposition time of 60 s). The detection limits for Cd(II) and Pb(II) were equal to 2.3 × 10−9 mol L−1 and 8.9 × 10−10 mol L−1, respectively. Potential interferences were investigated. The developed procedure was successfully used for the analysis of certified water reference material and environmental water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 3259 KB  
Article
Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights
by Ruhua Peng, Kai Tao, Baixiong Liu, Jiayu Chen, Yunhang Zhang, Yuxiang Tan, Fuqiang Zuo, Caihua Song and Xingyu He
Materials 2025, 18(12), 2828; https://doi.org/10.3390/ma18122828 - 16 Jun 2025
Viewed by 571
Abstract
Lead (Pb) and cadmium (Cd) ions have serious negative impacts on human health and the ecological environment due to toxicity, persistence and nonbiodegradability. Among various trace Pb and Cd ions detection technologies, electrochemical analysis is considered as one of the most promising methods. [...] Read more.
Lead (Pb) and cadmium (Cd) ions have serious negative impacts on human health and the ecological environment due to toxicity, persistence and nonbiodegradability. Among various trace Pb and Cd ions detection technologies, electrochemical analysis is considered as one of the most promising methods. The deposition of Bi nanoparticles on delaminated Ti3C2Tx (DL-Ti3C2Tx) develops a sensor with good conductivity and performance. Square wave anodic stripping voltammetry (SWASV) technology was applied to simultaneously deposit Bi on DL-Ti3C2Tx/GCE and achieve the rapid detection of Pb and Cd ions. The Bi nanoparticles effectively improved the sensitivity of Bi/DL-Ti3C2Tx/GCE sensors to detect Pb and Cd ions. The preparation conditions of the Bi/DL-Ti3C2Tx/GCE were optimized, including DL-Ti3C2Tx droplet amount, solution pH, Bi3+ concentration, deposition time and deposition potential, to improve the detection ability. The Bi/DL-Ti3C2Tx/GCE sensor has detection limits of 1.73 and 1.06 μg/L for Pb and Cd ions, respectively (S/N > 3). This electrochemical sensor is easy, sensitive and selective to apply in actual water samples for trace Pb and Cd ions detection. Full article
(This article belongs to the Special Issue Adsorptive and Catalytic Materials Used in Environmental Treatment)
Show Figures

Graphical abstract

13 pages, 2562 KB  
Article
An Activated Glassy Carbon Electrode for Rapid, Simple, and Sensitive Voltammetric Analysis of Diclofenac in Tablets
by Katarzyna Tyszczuk-Rotko, Aleksy Keller and Aleksandra Liwak
Molecules 2025, 30(12), 2530; https://doi.org/10.3390/molecules30122530 - 10 Jun 2025
Viewed by 850
Abstract
This paper proposes an environmentally friendly sensor for determining trace amounts of diclofenac (DCF)—an activated glassy carbon electrode (aGCE). Such a sensor was achieved by simple surface activation of a glassy carbon electrode to perform five cyclic voltammetric scans from −1.5 to 2.5 [...] Read more.
This paper proposes an environmentally friendly sensor for determining trace amounts of diclofenac (DCF)—an activated glassy carbon electrode (aGCE). Such a sensor was achieved by simple surface activation of a glassy carbon electrode to perform five cyclic voltammetric scans from −1.5 to 2.5 V at a scan rate (υ) of 100 mV/s in 0.1 M NaOH. This type of activation results in the formation of surface functional groups, which provide several advantages such as the creation of new active sites, the improvement of electron transfer dynamics, and sensor electrocatalytic activity. The electrode prepared in this way was used to develop a new differential pulse adsorptive stripping voltammetric procedure (DPAdSV) for rapid, simple, and sensitive DCF analysis. Thanks to this procedure, the following calibration curve range was obtained: 1–100 nM with low detection and quantification limits of 0.25 and 0.83 nM, respectively. To show the practical application of the method, DCF was successfully determined in commercially available pharmaceutical preparations with the standard addition method. Full article
(This article belongs to the Special Issue The Influence of Organic Compounds on Electrode Processes)
Show Figures

Figure 1

13 pages, 2521 KB  
Article
Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles
by Katarzyna Tyszczuk-Rotko, Aleksandra Liwak and Aleksy Keller
Molecules 2025, 30(10), 2219; https://doi.org/10.3390/molecules30102219 - 20 May 2025
Cited by 1 | Viewed by 829
Abstract
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode [...] Read more.
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode was electrochemically modified with bismuth film (BiF) during in situ analysis. The Nafion@Fe3O4/BiF modification of the BDDE contributes to the acquisition of the highest differential-pulse adsorptive stripping voltammetric (DPAdSV) signals of caffeine (CAF) due to the improvement of electron transfer and the increase in the number of active sites on which CAF can be adsorbed. The DPAdSV signals exhibited a linearly varied oxidation peak with the CAF concentration range between 0.5 and 10,000 nM, leading to the 0.043 and 0.14 nM detection and quantification limits, respectively. The practical applicability of the DPAdSV procedure using the BDDE/Nafion@Fe3O4/BiF was positively confirmed with commercially available energy drinks. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

19 pages, 2105 KB  
Article
Ionic Speciation of Ecotoxic Lead (2+), Cadmium (2+), and Naturally Occurring Ions with Dissolved Organic Matter in Seawater from the Bay of Bengal by Differential Pulse Anodic Stripping Voltammetry, Continuous Binding Model, and Computational Chemical Equilibria: Effect of Global Warming
by Mahmudun Nabi, Abul Hussam and Amir H. Khan
Water 2025, 17(10), 1470; https://doi.org/10.3390/w17101470 - 13 May 2025
Viewed by 684
Abstract
An experimental and computational methodology was developed for ionic speciation of Pb2+ and Cd2+ with dissolved organic matter (DOM) in surface seawater (SSW) from the Bay of Bengal (BoB) in eastern Bangladesh. Differential pulse anodic stripping voltammetry (DPASV) with a thin [...] Read more.
An experimental and computational methodology was developed for ionic speciation of Pb2+ and Cd2+ with dissolved organic matter (DOM) in surface seawater (SSW) from the Bay of Bengal (BoB) in eastern Bangladesh. Differential pulse anodic stripping voltammetry (DPASV) with a thin mercury film glassy carbon electrode (TMFGC) was used to measure free and DOM-bound Pb2+ and Cd2+. A continuous binding model was used to calculate the binding constants for metal ions with experimentally found complex ligands like DOM in the BoB. The ionic speciation and distribution of all major naturally occurring ions and toxic Pb2+, Cd2+, and DOM were calculated using a computational chemical equilibrium model, MINTEQA. We found that the change in pH with increasing dissolved carbon dioxide due to global warming will cause drastic changes in the bioavailability of Pb2+ by the year 2050. Full article
Show Figures

Graphical abstract

16 pages, 2277 KB  
Article
Simultaneous Trace Analysis of Lead and Cadmium in Drinking Water, Milk, and Honey Samples Through Modified Screen-Printed Electrode
by Fei Wang, Xiao Peng, Ziqian Xiao, Ying Ge, Bilin Tao, Zhaoyong Shou, Yifei Feng, Jing Yuan and Liang Xiao
Biosensors 2025, 15(5), 267; https://doi.org/10.3390/bios15050267 - 23 Apr 2025
Viewed by 964
Abstract
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby [...] Read more.
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby enhancing N-rGO@ppy’s redox properties. Firstly, a glassy carbon electrode (GCE) modified with N-rGO@ppy (N-rGO@ppy/GCE) was used in combination with a bismuth film and square-wave anodic stripping voltammetry (SWASV) for the simultaneous trace analysis of Pb2+ and Cd2+. N-rGO@ppy/GCE exhibited distinct stripping peaks for Pb2+ and Cd2+, with a linear range of 1 to 500 μg L−1. The limits of detection (LODs) were found to be 0.080 μg L−1 for Pb2+ and 0.029 μg L−1 for Cd2+, both of which are significantly below the standards set by the World Health Organization (WHO). Subsequently, the same electrochemical sensing strategy was adapted to a more portable screen-printed electrode (SPE) to accommodate the demand for in situ detection. The performance of N-rGO@ppy/SPE for analyzing Pb2+ and Cd2+ in actual samples, such as drinking water, milk, and honey, showed results consistent with those obtained from conventional graphite furnace atomic absorption spectrometry (GFAAS). Full article
Show Figures

Figure 1

18 pages, 8555 KB  
Article
AgNPs@CeO2/Nafion Nanocomposite-Modified Electrode for the Sensitive Detection of Trace Lead (II) in Water Samples
by Zhengying Guo, Peng Xu, Shiqing Zhou and Ruoxi Wu
Sensors 2025, 25(9), 2655; https://doi.org/10.3390/s25092655 - 23 Apr 2025
Viewed by 1094
Abstract
Excessive levels of heavy metal pollutants in the environment pose significant threats to human health and ecosystem stability. Consequently, the accurate and rapid detection of heavy metal ions is critically important. A AgNPs@CeO2/Nafion composite was prepared by dispersing nano-ceria (CeO2 [...] Read more.
Excessive levels of heavy metal pollutants in the environment pose significant threats to human health and ecosystem stability. Consequently, the accurate and rapid detection of heavy metal ions is critically important. A AgNPs@CeO2/Nafion composite was prepared by dispersing nano-ceria (CeO2) in a Nafion solution and incorporating silver nanoparticles (AgNPs). The morphology, microstructure, and electrochemical properties of the modified electrode materials were systematically characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and cyclic voltammetry (CV). By leveraging the oxygen vacancies and high electron transfer efficiency of CeO2, the strong adsorption capacity of Nafion, and the superior conductivity of AgNPs, an AgNPs@CeO2/Nafion/GCE electrochemical sensor was developed. Under optimized conditions, trace Pb2+ in water was detected using square wave anodic stripping voltammetry (SWASV). The sensor demonstrated a linear response for Pb2+ within the concentration range of 1–100 μg·L−1, with a detection limit of 0.17 μg·L−1 (S/N = 3). When applied to real water samples, the method achieved recovery rates between 93.7% and 110.3%, validating its reliability and practical applicability. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 12270 KB  
Article
Sulfonate Thiacalixarene-Modified Polydiacetylene Vesicles as Colorimetric Sensors for Lead Ion Detection
by Angelina A. Fedoseeva, Indira Yespanova, Elza D. Sultanova, Bulat Kh. Gafiatullin, Regina R. Ibragimova, Klara Kh. Darmagambet, Marina A. Il’ina, Egor O. Chibirev, Vladimir G. Evtugyn, Nurbol O. Appazov, Vladimir A. Burilov, Svetlana E. Solovieva and Igor S. Antipin
Colloids Interfaces 2025, 9(2), 20; https://doi.org/10.3390/colloids9020020 - 28 Mar 2025
Cited by 1 | Viewed by 879
Abstract
We report the first synthesis of zwitterionic thiacalixarenes featuring imidazolium and sulfonate groups on the upper rim and alkyl (butyl or octyl) fragments on the lower rim of the platform. Despite their amphiphilic structure, these macrocycles exhibit limited water solubility. However, dynamic light [...] Read more.
We report the first synthesis of zwitterionic thiacalixarenes featuring imidazolium and sulfonate groups on the upper rim and alkyl (butyl or octyl) fragments on the lower rim of the platform. Despite their amphiphilic structure, these macrocycles exhibit limited water solubility. However, dynamic light scattering detected the formation of associates for derivatives with octyl moieties at a concentration of 0.1 mM. To develop stable materials for aqueous environments and to investigate the functionality of zwitterionic sulfonate-imidazolium groups along with the thiacalixarene platform, mixed organo-organic systems based on polydiacetylene polymer were created. Characterization of the modified polydiacetylene systems through various analytical methods revealed a significant colorimetric response to lead ions in aqueous media, surpassing that of the unmodified polydiacetylene polymer. Additionally, the modified polymers demonstrated efficacy in purifying aqueous media from lead ions, as evidenced by anodic stripping voltammetry (ASV) and microwave plasma atomic emission spectroscopy (MP AES). Full article
Show Figures

Graphical abstract

Back to TopTop