Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,263)

Search Parameters:
Keywords = structured porous materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2698 KB  
Review
Biochar for Mitigating Nitrate Leaching in Agricultural Soils: Mechanisms, Challenges, and Future Directions
by Lan Luo, Jie Li, Zihan Xing, Tao Jing, Xinrui Wang and Guilong Zhang
Water 2025, 17(17), 2590; https://doi.org/10.3390/w17172590 - 1 Sep 2025
Abstract
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged [...] Read more.
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged as a promising amendment for nitrate mitigation. This review summarizes recent advances in understanding the roles of biochar in nitrate retention and transformation in soils, including both direct mechanisms—such as surface adsorption, ion exchange, and pore entrapment—and indirect mechanisms—such as enhanced microbial activity, soil structure improvement, and root system development. Field and laboratory evidence shows that biochar can reduce NO3-N leaching by 15–70%, depending on its properties, soil conditions, and application context. However, inconsistencies in performance due to differences in biochar types, soil conditions, and environmental factors remain a major barrier to widespread adoption. This review also suggests current knowledge gaps and research needs, including long-term field validation, biochar material optimization, and integration of biochar into precision nutrient management. Overall, biochar presents a multifunctional strategy for reducing nitrate leaching and promoting sustainable nitrogen management in agroecosystems. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
21 pages, 4773 KB  
Article
Effect of Short-Chain Polymer Binders on the Mechanical and Electrochemical Performance of Silicon Anodes
by Fei Sun, L. Zurita-Garcia and Dean R. Wheeler
Batteries 2025, 11(9), 329; https://doi.org/10.3390/batteries11090329 - 1 Sep 2025
Abstract
Polymer binders are crucial components in providing both mechanical support and chemical stability to the structure of porous Li-ion electrodes. Particularly in silicon anodes, the active material undergoes substantial volume expansion of up to 275%. Due to the mechanical constraint of the current [...] Read more.
Polymer binders are crucial components in providing both mechanical support and chemical stability to the structure of porous Li-ion electrodes. Particularly in silicon anodes, the active material undergoes substantial volume expansion of up to 275%. Due to the mechanical constraint of the current collector, these silicon materials tend to expand in the normal direction while exhibiting substantial particle rearrangement and plastic deformation. Conventional rigid binders such as polyacrylic acid (PAA) and polyimide (PI), while providing satisfactory initial capacity, do not eliminate diminished long-term performance. Our research attempts to develop binder formulations that can accommodate sufficient flexibility for the substantial volume changes of silicon particles. Specifically, we explore the use of short-chain polymer binders and a strategic blend of binders with different molecular weights. Experiments have demonstrated that cells combining both long- and short-chain PAA binders delivered an initial capacity of 2200 mAh/g at a 0.1C rate, compared to 1700 mAh/g for pristine PAA cells. Initial work indicated that shorter polymer chains might compromise the adhesion to the current collector, so we developed a multilayer anode (MLA) structure to mitigate this issue. Nevertheless, at this early stage of development, there was no observed increase in cycling performance for the MLA electrodes. Full article
Show Figures

Figure 1

34 pages, 3105 KB  
Review
Synthesis and Applications of Zeolite-Encapsulated Metal Catalysts
by Teng Zhu, Tianwei Zhang, Lei Xiao, Cunwei Zhang and Yuming Li
Catalysts 2025, 15(9), 836; https://doi.org/10.3390/catal15090836 (registering DOI) - 1 Sep 2025
Abstract
Supported metal catalysts are extensively applied in the heterogeneous catalysis field. However, metal species are prone to migration and aggregation during catalytic reactions due to their high surface energy, which leads to deactivation. In recent years, the use of porous materials, particularly zeolites, [...] Read more.
Supported metal catalysts are extensively applied in the heterogeneous catalysis field. However, metal species are prone to migration and aggregation during catalytic reactions due to their high surface energy, which leads to deactivation. In recent years, the use of porous materials, particularly zeolites, to anchor metal species has gained significant attention. By confining metal single atoms, subnanometer metal clusters, and nanoparticles within the pores or nanocavities of these materials, the dispersion and stability of the metal species can be greatly enhanced, thereby improving the catalytic performance. This review systematically discussed the synthesis principles and diverse methodologies to fabricate zeolite-encapsulated metal catalysts. It further outlined their catalytic applications across various catalysis fields, emphasizing enhanced stability and selectivity enabled by confinement effects. Finally, the review provided critical perspectives on future developments, addressing challenges in precise structural control and scalability for industrial implementation. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Figure 1

18 pages, 2331 KB  
Article
Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis
by Sourabh Chakraborty, Nazlim Aktay, Fikret Muge Alptekin, Melih Soner Celiktas and Nurhan Turgut Dunford
Biomass 2025, 5(3), 52; https://doi.org/10.3390/biomass5030052 (registering DOI) - 1 Sep 2025
Abstract
Porous carbon from renewable resources like biomass is a key material utilized in many applications ranging from environmental remediation to energy storage. There are limited reports in the literature on the effects of biomass pretreatment, production process parameters, and downstream processing on the [...] Read more.
Porous carbon from renewable resources like biomass is a key material utilized in many applications ranging from environmental remediation to energy storage. There are limited reports in the literature on the effects of biomass pretreatment, production process parameters, and downstream processing on the final product properties. This is the first study aimed at closing the latter research gap. Six different types of underutilized biomass were examined: eastern red cedar wood, pecan shells, hazelnut shells, algal biomass, miscanthus, and sludge produced at municipal wastewater treatment facilities. Although pretreatment of biomass with KOH or ZnCl2 enhanced formation of micro- and mesopores, carbon yield was lower (15.3–32.5%) than that obtained via non-catalytic pyrolysis (28.3–48%). An optimization study performed using response surface methodology and cedar wood has shown the significant effects (p < 0.05) of temperature and catalyst/biomass ratio on total BET pore volume and surface area. Additionally, catalyst/biomass ratio had a significant effect on the crystal structure and pore size distribution in the carbon produced by pyrolysis. Hence, optimization of process temperature, hold time, and activation ratio is capable of yielding porous carbon from cedar wood pyrolysis with desirable properties. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

28 pages, 10014 KB  
Article
Nanomaterial Functionalized Carbon Fiber-Reinforced Composites with Energy Storage Capabilities
by Venkatesh Gangipamula, Karamat Subhani, Peter J. Mahon and Nisa Salim
Nanomaterials 2025, 15(17), 1325; https://doi.org/10.3390/nano15171325 - 28 Aug 2025
Viewed by 294
Abstract
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy [...] Read more.
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy storage capacitance for the development of structural supercapacitors. The dual coating on carbon fibers enabled a near 210-fold improvement in surface area, surpassing that of pristine carbon fibers. This formed a highly porous graphene network with activated carbon, resulting in a well-connected fiber–graphene-activated carbon network on carbon fibers. The electrochemical supercapacitor, fabricated from surface-functionalized carbon fibers, provides the best performance, with a specific capacitance of 172 F g−1 in an aqueous electrolyte. Furthermore, the symmetrical structural supercapacitor (SSSC) device delivered a specific capacitance of 227 mF g−1 across a wide potential window of 6 V. The electrochemical stability of the SSSC device was validated by a high capacitance retention of 97.3% over 10,000 cycles. Additionally, the study showcased the practical application of this technology by successfully illuminating an LED using the proof-of-concept SSSC device with G-aC/CF electrodes. Overall, the findings of this study highlight the potential of carbon fiber composites as a promising hybrid material, offering both structural integrity and a functional performance suitable for aerospace and automobile applications. Full article
(This article belongs to the Special Issue Fabrication and Applications of Polymer Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 3325 KB  
Review
A Minireview on Multiscale Structural Inheritance and Mechanical Performance Regulation of SiC Wood-Derived Ceramics via Reactive Sintering and Hot-Pressing
by Shuying Ji, Yixuan Sun and Haiyang Zhang
Forests 2025, 16(9), 1383; https://doi.org/10.3390/f16091383 - 28 Aug 2025
Viewed by 222
Abstract
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant [...] Read more.
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant sintering routes—reactive infiltration sintering and hot-press sintering—and elucidates their effects on the resulting microstructure and mechanical properties. This review leverages the intrinsic anisotropic vascular network and multiscale porosity and mechanical strength, achieving ultralightweight yet mechanically robust ceramics with tunable anisotropy and dynamic energy dissipation capabilities. Critical process–structure–property relationships are highlighted, including the role of ceramic reinforcement phases, interfacial engineering, and multiscale toughening mechanisms. The review further explores emerging applications spanning extreme protection (e.g., ballistic armor and aerospace thermal shields), multifunctional devices (such as electromagnetic shielding and tribological components), and architectural innovations including seismic-resistant composites and energy-efficient building materials. Finally, key challenges such as sintering-induced deformation, interfacial bonding limitations, and scalability are discussed alongside future prospects involving low-temperature sintering, nanoscale interface reinforcement, and additive manufacturing. This mini overview provides essential insights into the design and optimization of wood-derived ceramics, advancing their transition from sustainable biomimetic materials to next-generation high-performance structural components. This review synthesizes data from over 50 recent studies (2011–2025) indexed in Scopus and Web of Science, highlighting three key advancements: (1) bio-templated anisotropy breaking the porosity–strength trade-off, (2) reactive vs. hot-press sintering mechanisms, and (3) multifunctional applications in extreme environments. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Graphical abstract

34 pages, 6768 KB  
Article
Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds
by Nika Kučuk, Mateja Primožič, Željko Knez and Maja Leitgeb
Polymers 2025, 17(17), 2334; https://doi.org/10.3390/polym17172334 - 28 Aug 2025
Viewed by 143
Abstract
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize [...] Read more.
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize growth and promote the formation of micellar membranes with high water-absorption capacity. Optimal growth conditions were achieved at an alkaline pH in a medium containing malt extract for G. lucidum, while for P. ostreatus, these were in a glucose-enriched medium. The hydrophilic underside of the micellar membranes led to a high-water uptake capacity. These membranes exhibited a broad spectrum of functional groups, thermal stability with decomposition temperatures above 260 °C, and a fibrous and porous structure. The micellar membranes from both mushrooms were additionally functionalized with mango peel extract (MPE), resulting in a uniform and gradual release profile, which is an important novelty. They also showed successful antimicrobial activity against Escherichia coli and Staphylococcus aureus growth. MPE-functionalized micellar membranes are, therefore, innovative biocomposites suitable for various biomedical applications. As they mimic the extracellular matrix of the skin, they are a promising material for tissue engineering, wound healing, and advanced skin materials applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

26 pages, 1692 KB  
Review
Comparative Assessment and Deployment of Zeolites, MOFs, and Activated Carbons for CO2 Capture and Geological Sequestration Applications
by Mohamadou Hamadama Mouctar, Mohamed G Hassan, Nuno Bimbo, Syed Zaheer Abbas and Ihab Shigidi
Inventions 2025, 10(5), 78; https://doi.org/10.3390/inventions10050078 - 28 Aug 2025
Viewed by 177
Abstract
The rising level of atmospheric carbon dioxide (CO2) is a major driver of climate change, highlighting the need to develop carbon capture and storage (CCS) technologies quickly. This paper offers a comparative review of three main groups of porous adsorbent materials—zeolites, [...] Read more.
The rising level of atmospheric carbon dioxide (CO2) is a major driver of climate change, highlighting the need to develop carbon capture and storage (CCS) technologies quickly. This paper offers a comparative review of three main groups of porous adsorbent materials—zeolites, metal–organic frameworks (MOFs), and activated carbons—for their roles in CO2 capture and long-term storage. By examining their structural features, adsorption capacities, moisture stability, and economic viability, the strengths and weaknesses of each material are assessed. Additionally, five different methods for delivering these materials into depleted oil and gas reservoirs are discussed: direct suspension injection, polymer-assisted transport, foam-assisted delivery, encapsulation with controlled release, and preformed particle gels. The potential of hybrid systems, such as MOF–carbon composites and polymer-functionalized materials, is also examined for improved selectivity and durability in underground environments. This research aims to connect materials science with subsurface engineering, helping guide the selection and use of adsorbent materials in real-world CCS applications. The findings support the optimization of CCS deployment and contribute to broader climate change efforts and the goal of achieving net-zero emissions. Key findings include CO2 adsorption capacities of 3.5–8.0 mmol/g and surface areas up to 7000 m2/g, with MOFs demonstrating the highest uptake and activated carbons offering cost-effective performance. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

26 pages, 4438 KB  
Review
Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications
by Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K. H. Leung, Yizhen Zhang and Keda Chen
Gels 2025, 11(9), 685; https://doi.org/10.3390/gels11090685 - 27 Aug 2025
Viewed by 143
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor [...] Read more.
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels—three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity—represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol–gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

15 pages, 2859 KB  
Article
Corrosion Performance in 0.5 mol/L HF Solution of Cr-Cu-Mo-Ni Porous Alloys with Varying Cr Contents
by Jiefeng Wang, Yulong Feng, Xide Li, Junsheng Yang and Wenkai Jiang
Materials 2025, 18(17), 4012; https://doi.org/10.3390/ma18174012 - 27 Aug 2025
Viewed by 203
Abstract
An activation reaction sintering process was utilized to produce Cr-Cu-Mo-Ni porous alloys. Subsequently, weight loss measurements and electrochemical methods were applied to investigate the effect of Cr content ranging from 10wt% to 30wt% on the corrosive properties of Cr-Cu-Mo-Ni alloys in a 0.5 [...] Read more.
An activation reaction sintering process was utilized to produce Cr-Cu-Mo-Ni porous alloys. Subsequently, weight loss measurements and electrochemical methods were applied to investigate the effect of Cr content ranging from 10wt% to 30wt% on the corrosive properties of Cr-Cu-Mo-Ni alloys in a 0.5 mol/L HF solution. Scanning electron microscopy (SEM) and X-ray diffraction analyses (XRD) were performed to assess the structural morphology and phase composition. As the results illustrated, Cr-Cu-Mo-Ni porous alloys possess good corrosion resistance, which is significantly higher than that of dense Ni and Cu alloys. The anti-corrosion performance of porous alloys is not proportional to the Cr content when the Cr concentration is gradually increased. When the chromium content is 20%, it exhibits the best corrosion resistance. Electrochemical measurements yielded similar results to weight loss measurements. With an increasing Cr content, double capacitive loops in electrochemical impedance spectroscopy (EIS) tests for Cr-Cu-Mo-Ni porous alloys first increased and then decreased, indicating that the corrosion process can be regulated by an electrochemical reaction. Meanwhile, after analysis, the results show that the corrosion products on the material surface adhere to the inner surface of the pores, thus improving the corrosion resistance. Full article
Show Figures

Figure 1

14 pages, 2613 KB  
Article
Synergistic Enhancement of Sludge Deep Dewatering via Tea Waste and Sludge-Derived Biochars Coupled with Polyaluminum Chloride
by Qiang-Ying Zhang, Geng Xu, Hui-Yun Qi, Xuan-Xin Chen, Hou-Feng Wang and Xiao-Mei Cui
Separations 2025, 12(9), 229; https://doi.org/10.3390/separations12090229 - 27 Aug 2025
Viewed by 209
Abstract
Although coagulation can enhance sludge dewatering performance, it often leads to dense flocs, hindered water release, and secondary pollution of the sludge cake. In this study, three types of biochar-based skeleton materials, tea waste-derived biochar (TB), PAC sludge-derived biochar (PB), and their mixture [...] Read more.
Although coagulation can enhance sludge dewatering performance, it often leads to dense flocs, hindered water release, and secondary pollution of the sludge cake. In this study, three types of biochar-based skeleton materials, tea waste-derived biochar (TB), PAC sludge-derived biochar (PB), and their mixture (MB), were employed in combination with polyaluminum chloride (PAC) to improve sludge permeability and water release capacity. The results showed that PAC alone reduced the water content (Wc) and capillary suction time (CST) of raw sludge (RS) from 79.07% and 97.45 s to 69.45% and 42.30 s, respectively. In contrast, biochar–PAC composite conditioning achieved further enhancement. Among them, the TBP group (10% DS TB + 4% DS PAC) exhibited the best performance, with Wc and CST reduced to 58.73% and 55.65 s, reaching the threshold for deep dewatering (Wc < 60%). Low-field nuclear magnetic resonance (LF-NMR) analysis revealed an enhanced transformation from bound to free water, improving water mobility. Zeta potential and particle size analysis indicated that biochar promoted electrostatic neutralization and adsorption bridging. Rheological and EPS measurements demonstrated significant reductions in yield stress and apparent viscosity, alongside the enhanced release of proteins and polysaccharides into soluble EPS (S-EPS). Scanning electron microscopy and pore structure analysis further confirmed that biochar formed a stable porous skeleton (pore diameter up to 1.365 μm), improving sludge cake permeability. In summary, biochar synergizes with PAC through a “skeleton support–charge neutralization–adsorption bridging” mechanism, reconstructing sludge microstructure and significantly improving deep dewatering performance. Full article
Show Figures

Graphical abstract

12 pages, 3250 KB  
Article
Study of Mechanical Properties of Gelatin Matrix with NaTPP Crosslink Films Reinforced with Agar
by Rebecca Giffard-Mendoza, Adalberto Zamudio-Ojeda, Erick Cisneros-López, Santiago J. Guevara-Martínez and Ernesto García
Coatings 2025, 15(9), 992; https://doi.org/10.3390/coatings15090992 - 26 Aug 2025
Viewed by 335
Abstract
The majority of the polymeric materials used in the industry are derived from petroleum and decompose slowly, resulting in waste that poses environmental issues. As a result, there has been a concerted effort to find alternative materials that cover their engineering performance. Biopolymers [...] Read more.
The majority of the polymeric materials used in the industry are derived from petroleum and decompose slowly, resulting in waste that poses environmental issues. As a result, there has been a concerted effort to find alternative materials that cover their engineering performance. Biopolymers have emerged as leading contenders because they can mimic the properties of synthetic polymers while being derived from natural and renewable sources. Several projects are focused on developing biomaterials for these applications. This study presents a modification of the mechanical properties of a gelatin-based material with the crosslinking agent sodium tripolyphosphate (NaTPP) by reinforcement with agar. The gelatin–agar (G-Ax) samples exhibited a homogeneous color and flexibility, sharing similar crystalline structures and functional groups. However, the transversal section of the gelatin-only film was modified by the addition of agar, from a porous morphology to a lamellar morphology at nanometric scale thickness. Notably, the agar samples demonstrated greater stress resistance, yield stress, and strain than the gelatin-only sample. These findings highlight the potential of biopolymers such as gelatin and agar as viable alternatives to conventional materials, contributing to the research on eco-friendly solutions for different engineering applications. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

19 pages, 1200 KB  
Article
Wave Load Reduction and Tranquility Zone Formation Using an Elastic Plate and Double Porous Structures for Seawall Protection
by Gagan Sahoo, Harekrushna Behera and Tai-Wen Hsu
Mathematics 2025, 13(17), 2733; https://doi.org/10.3390/math13172733 - 25 Aug 2025
Viewed by 268
Abstract
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described [...] Read more.
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described using thin plate theory, while the fluid flow through the porous medium is described by the model developed by Sollit and Cross. The resulting boundary value problem is addressed through linear potential theory combined with the eigenfunction expansion method (EEM), and model validation is achieved through consistency checks with recognized results from the literature. A comprehensive parametric analysis is performed to evaluate the influence of key system parameters such as the porosity and frictional coefficient of the BSPs, their height and width, the flexural rigidity of the EP, and the spacing between the EP and BSPs on vital hydrodynamic coefficients, including the wave force on the seawall, free surface elevation, wave reflection coefficient, and energy dissipation coefficient. The results indicate that higher frictional coefficients and higher BSP heights significantly enhance wave energy dissipation and reduce reflection, in accordance with the principle of energy conservation. Oscillatory trends observed with respect to wavenumbers in the reflection and dissipation coefficients highlight resonant interactions between the structures. Moreover, compared with a single BSP, the double BSP arrangement is more effective in minimizing the wave force on the seawall and free surface elevation in the region between the EP and the wall, even when the total volume of porous material remains unchanged. The inter-structural gap is found to play a crucial role in optimizing resonance conditions and supporting the formation of a tranquility zone. Overall, the proposed configuration demonstrates significant potential for coastal protection, offering a practical and effective solution for reducing wave loads on marine infrastructure. Full article
Show Figures

Figure 1

34 pages, 9647 KB  
Review
Applications of Biochar in Fuel and Feedstock Substitution: A Review
by Huijuan Wang, Ping Zhou and Xiqiang Zhao
Energies 2025, 18(17), 4511; https://doi.org/10.3390/en18174511 - 25 Aug 2025
Viewed by 474
Abstract
With the continuous growth of global energy consumption and the advancement of carbon reduction targets, the development of low-carbon and renewable energy resources has become a central focus in energy science research. As the only renewable carbon source, biomass exhibits significant application potential [...] Read more.
With the continuous growth of global energy consumption and the advancement of carbon reduction targets, the development of low-carbon and renewable energy resources has become a central focus in energy science research. As the only renewable carbon source, biomass exhibits significant application potential in future energy and resource systems due to its widespread availability, carbon neutrality, and environmental friendliness. Biochar, the primary solid product generated during biomass pyrolysis, is characterized by its high energy density, excellent thermal stability, and abundant porous structure. It has been increasingly regarded as a promising substitute for conventional fossil-based fuels and feedstocks. In this study, VOSviewer was employed to identify representative applications of biochar in energy systems. Particular attention is given to its roles in fossil fuel substitution and raw material replacement. By summarizing recent research progress, this review aims to provide theoretical support and technical references for the large-scale and efficient utilization of biochar. Full article
Show Figures

Graphical abstract

26 pages, 1299 KB  
Article
Linear Damped Oscillations Underlying the Fractional Jeffreys Equation
by Emad Awad, Alaa A. El-Bary and Weizhong Dai
Fractal Fract. 2025, 9(9), 556; https://doi.org/10.3390/fractalfract9090556 - 23 Aug 2025
Viewed by 289
Abstract
In this study, we consider a fractional-order extension of the Jeffreys equation (also known as the dual-phase-lag equation) by introducing the Reimann–Liouville fractional integral, of order 0<ν<1, to the Jeffreys constitutive law, where for ν=1 it [...] Read more.
In this study, we consider a fractional-order extension of the Jeffreys equation (also known as the dual-phase-lag equation) by introducing the Reimann–Liouville fractional integral, of order 0<ν<1, to the Jeffreys constitutive law, where for ν=1 it corresponds to the conventional Jeffreys equation. The kinetical behaviors of the fractional equation such as non-negativity of the propagator, mean-squared displacement, and the temporal amplitude are investigated. The fractional Langevin equation, or the fractional damped oscillator, is a special case of the considered integrodifferential equation governing the temporal amplitude. When ν=0 and ν=1, the fractional differential equation governing the temporal amplitude has the mathematical structure of the classical linear damped oscillator with different coefficients. The existence of a real solution for the new temporal amplitude is proven by deriving this solution using the complex integration method. Two forms of conditional closed-form solutions for the temporal amplitude are derived in terms of the Mittag–Leffler function. It is found that the proposed generalized fractional damped oscillator equation results in underdamped oscillations in the case of 0<ν<1, under certain constraints derived from the non-fractional case. Although the nonfractional case has the form of classical linear damped oscillator, it is not necessary for its solution to have the three common types of oscillations (overdamped, underdamped, and critical damped), unless a certain condition is met on the coefficients. The obtained results could be helpful for analyzing thermal wave behavior in fractals, heterogeneous materials, or porous media since the fractional-order derivatives are related to the porosity of media. Full article
(This article belongs to the Special Issue Recent Trends in Computational Physics with Fractional Applications)
Show Figures

Figure 1

Back to TopTop