Linear Damped Oscillations Underlying the Fractional Jeffreys Equation
Abstract
1. Backgrounds and Motivation
- Revisiting the space–time equations that results in the temporal amplitude governed by (1), for example, the thermal wave equation and the dual-phase-lag equation.
- Replacing the ordinary Jeffreys-type equation by an extended fractional version that yields a temporal amplitude that exclusively generalizes Equation (2).
- Deriving an exact solution in addition to the zeros of this solution.
2. Fractional Jeffreys Equation
2.1. Properties
2.1.1. Non-Negativity at Stake
2.1.2. Mean-Squared Displacement
2.2. Temporal Amplitude
3. The Non-Fractional Case
4. The Fractional Case
4.1. Existence of a Real Solution
4.2. Closed-Form Solution
4.3. Numerical Validations
5. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fournier, D.; Boccara, A. Heterogeneous media and rough surfaces: A fractal approach for heat diffusion studies. Phys. A Stat. Mech. Its Appl. 1989, 157, 587–592. [Google Scholar] [CrossRef]
- Tzou, D.Y.; Chen, J.K. Thermal lagging in random media. J. Thermophys. Heat Transf. 1998, 12, 567–574. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Li, B.; Wang, J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Phys. Rev. Lett. 2003, 91, 044301. [Google Scholar] [CrossRef]
- Lee, V.; Wu, C.H.; Lou, Z.X.; Lee, W.L.; Chang, C.W. Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes. Phys. Rev. Lett. 2017, 118, 135901. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro-to Microscale Heat Transfer: The Lagging Behavior, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Schneider, W.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Compte, A.; Metzler, R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 1997, 30, 7277. [Google Scholar] [CrossRef]
- Chechkin, A.; Gorenflo, R.; Sokolov, I. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [PubMed]
- Gorenflo, R.; Mainardi, F. Fractional relaxation of distributed order. In Complexus Mundi: Emergent Patterns in Nature; World Scientific: Singapore, 2006; pp. 33–42. [Google Scholar]
- Awad, E. Dual-Phase-Lag in the balance: Sufficiency bounds for the class of Jeffreys’ equations to furnish physical solutions. Int. J. Heat Mass Transf. 2020, 158, 119742. [Google Scholar] [CrossRef]
- Awad, E.; Sandev, T.; Metzler, R.; Chechkin, A. From continuous-time random walks to the fractional Jeffreys equation: Solution and properties. Int. J. Heat Mass Transf. 2021, 181C, 121839. [Google Scholar] [CrossRef]
- Dai, W.; Han, F.; Sun, Z. Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction. Int. J. Heat Mass Transf. 2013, 64, 966–975. [Google Scholar] [CrossRef]
- Ji, C.; Dai, W. Sub-Diffusion Two-Temperature Model and Accurate Numerical Scheme for Heat Conduction Induced by Ultrashort-Pulsed Laser Heating. Fractal Fract. 2023, 7, 319. [Google Scholar] [CrossRef]
- Milovanov, A.V.; Iomin, A.; Rasmussen, J.J. Turbulence spreading and anomalous diffusion on combs. Phys. Rev. E 2025, 111, 064217. [Google Scholar] [CrossRef]
- Tzou, D.Y. The resonance phenomenon in thermal waves. Int. J. Eng. Sci. 1991, 29, 1167–1177. [Google Scholar] [CrossRef]
- Tzou, D.Y. Damping and resonance characteristics of thermal waves. J. Appl. Mech. Trans. ASME 1992, 59, 862–867. [Google Scholar] [CrossRef]
- Tzou, D.Y. Thermal resonance under frequency excitations. J. Heat Transf. 1992, 114, 310–316. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L. Thermal oscillation and resonance in dual-phase-lagging heat conduction. Int. J. Heat Mass Transf. 2002, 45, 1055–1061. [Google Scholar] [CrossRef]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Burov, S.; Barkai, E. Critical exponent of the fractional Langevin equation. Phys. Rev. Lett. 2008, 100, 070601. [Google Scholar] [CrossRef] [PubMed]
- Burov, S.; Barkai, E. Fractional Langevin equation: Overdamped, underdamped, and critical behaviors. Phys. Rev. E 2008, 78, 031112. [Google Scholar] [CrossRef]
- Naber, M. Linear fractionally damped oscillator. Int. J. Differ. Equ. 2010, 2010, 197020. [Google Scholar] [CrossRef]
- Duan, J.S.; Zhang, J.Y.; Qiu, X. Exact solutions of fractional order oscillation equation with two fractional derivative terms. J. Nonlinear Math. Phys. 2023, 30, 531–552. [Google Scholar] [CrossRef]
- Awad, E. On the time-fractional Cattaneo equation of distributed order. Phys. A Stat. Mech. Its Appl. 2019, 518, 210–233. [Google Scholar] [CrossRef]
- Li, M. Analytic Theory of Seven Classes of Fractional Vibrations Based on Elementary Functions: A Tutorial Review. Symmetry 2024, 16, 1202. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Awad, E.; Metzler, R. Crossover dynamics from superdiffusion to subdiffusion: Models and solutions. Fract. Calc. Appl. Anal. 2020, 23, 55–102. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Stojanović, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 2013, 16, 297–316. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondracek, Z. Bernstein Functions: Theory and Applications; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012; Volume 37. [Google Scholar]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Durbin, F. Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method. Comput. J. 1974, 17, 371–376. [Google Scholar] [CrossRef]
- Sheng, H.; Li, Y.; Chen, Y. Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Frankl. Inst. 2011, 348, 315–330. [Google Scholar] [CrossRef]
- Saitoh, S.; Tuan, V.K.; Yamamoto, M. Conditional stability of a real inverse formula for the Laplace transform. Z. Anal. Ihre Anwendungen 2001, 20, 193–202. [Google Scholar] [CrossRef]
- Lebedeva, A.V.; Ryabov, V.M. Characteristics of convergence and stability of some methods for inverting the Laplace transform. Vestn. St. Petersb. Univ. Math. 2024, 57, 77–88. [Google Scholar] [CrossRef]
- Awad, E.; Dai, W.; Sobolev, S. Thermal oscillations and resonance in electron–phonon interaction process. Z. Angew. Math. Phys. 2024, 75, 143. [Google Scholar] [CrossRef]
- Xu, M. Thermal oscillations, second sound and thermal resonance in phonon hydrodynamics. Proc. R. Soc. A 2021, 477, 20200913. [Google Scholar] [CrossRef]
- Pang, D.; Jiang, W.; Liu, S.; Jun, D. Stability analysis for a single degree of freedom fractional oscillator. Phys. A Stat. Mech. Its Appl. 2019, 523, 498–506. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7. [Google Scholar]
- Awad, E.; Samir, N. A closed-form solution for thermally induced affine deformation in unbounded domains with a temporally accelerated anomalous thermal conductivity. J. Phys. A Math. Theor. 2024, 57, 455202. [Google Scholar] [CrossRef]
- Huberman, S.; Duncan, R.A.; Chen, K.; Song, B.; Chiloyan, V.; Ding, Z.; Maznev, A.A.; Chen, G.; Nelson, K.A. Observation of second sound in graphite at temperatures above 100 K. Science 2019, 364, 375–379. [Google Scholar] [CrossRef] [PubMed]
t | |||
---|---|---|---|
1 | 1.331236863580820 | 1.331236863435100 | 1.331236863435100 |
5 | −0.364661370914947 | −0.364661371209339 | −0.364661371209332 |
10 | −0.492324712316533 | −0.492324712417995 | −0.492324712422266 |
15 | −0.097340084121303 | −0.097340084010003 | −0.097340090379925 |
20 | 0.129191929336087 | 0.129190923385198 | 0.129190492667021 |
25 | 0.098227985617070 | 0.097593075152690 | 0.098011078770671 |
28 | −0.061841150514196 | −0.086782407250272 | −0.065655340247290 |
29 | −0.051742658520400 | −0.139447453779813 | −0.061479491016212 |
30 | 0.005160433851042 | −0.380474371633025 | −0.019378272394193 |
31 | 0.050058958739673 | −2.351444092768650 | −0.012082346712144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, E.; El-Bary, A.A.; Dai, W. Linear Damped Oscillations Underlying the Fractional Jeffreys Equation. Fractal Fract. 2025, 9, 556. https://doi.org/10.3390/fractalfract9090556
Awad E, El-Bary AA, Dai W. Linear Damped Oscillations Underlying the Fractional Jeffreys Equation. Fractal and Fractional. 2025; 9(9):556. https://doi.org/10.3390/fractalfract9090556
Chicago/Turabian StyleAwad, Emad, Alaa A. El-Bary, and Weizhong Dai. 2025. "Linear Damped Oscillations Underlying the Fractional Jeffreys Equation" Fractal and Fractional 9, no. 9: 556. https://doi.org/10.3390/fractalfract9090556
APA StyleAwad, E., El-Bary, A. A., & Dai, W. (2025). Linear Damped Oscillations Underlying the Fractional Jeffreys Equation. Fractal and Fractional, 9(9), 556. https://doi.org/10.3390/fractalfract9090556