Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,500)

Search Parameters:
Keywords = substrate composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3484 KB  
Review
Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation
by Lei Li and Chunhui Zhang
Minerals 2025, 15(11), 1120; https://doi.org/10.3390/min15111120 (registering DOI) - 27 Oct 2025
Abstract
Microbial hydrocarbon degradation mediated by natural/modified clay minerals represents an eco-friendly and economically viable remediation strategy for hydrocarbon contamination. However, its effects are not always positive as they depend on multiple factors, including clay mineral types, modification methods, microbial species, and hydrocarbon substrates. [...] Read more.
Microbial hydrocarbon degradation mediated by natural/modified clay minerals represents an eco-friendly and economically viable remediation strategy for hydrocarbon contamination. However, its effects are not always positive as they depend on multiple factors, including clay mineral types, modification methods, microbial species, and hydrocarbon substrates. This review systematically synthesizes existing fragmented studies concerning the impacts of natural clay minerals, modified clay minerals (acid/alkali/thermal/organic/metal ion), and clay minerals containing composite materials on microbial hydrocarbon biodegradation. Based on current findings, future research should prioritize the following recommendations: (1) avoid using concentrated strong acids in acid activation; (2) exclude metal cations that induce strong adsorption (reducing hydrocarbon bioavailability) or trigger excessive interlayer hydrolysis (some trivalent cations) in metal cation modification; (3) eliminate biologically toxic agents during organic modification; and (4) expand understanding of alkali/thermally modified clay minerals and clay mineral-containing composite materials in this direction. Natural/modified clay mineral-mediated microbial degradation is a highly promising remediation technology for hydrocarbon contamination and poised to advance and achieve breakthroughs through continuous synthesis of knowledge and innovation. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

20 pages, 4571 KB  
Article
In Vitro Fermentation Characteristics of Dietary Fibers Using Fecal Inoculum from Dogs Consuming a Dried Brewers Yeast Product
by Vanessa M. De La Guardia Hidrogo, Patricia M. Oba, Dalton A. Holt, Laura L. Bauer, Lindsey M. Rummell, Ryan N. Dilger and Kelly S. Swanson
Animals 2025, 15(21), 3117; https://doi.org/10.3390/ani15213117 (registering DOI) - 27 Oct 2025
Abstract
The increasing demand for functional ingredients has drawn attention to yeast and yeast-derived ingredients in pet foods. This experiment aimed to evaluate the in vitro fermentation characteristics of common dietary fibers using fecal inoculum from dogs fed either a control diet (CTRL) or [...] Read more.
The increasing demand for functional ingredients has drawn attention to yeast and yeast-derived ingredients in pet foods. This experiment aimed to evaluate the in vitro fermentation characteristics of common dietary fibers using fecal inoculum from dogs fed either a control diet (CTRL) or a diet supplemented with dried brewers yeast at 1.5% inclusion (BY). Sixteen healthy adult dogs were acclimated for 7 d and then randomly assigned to the two treatments (n = 8/group) for 21 d. Fecal samples collected at the end of the treatment period, were preserved in 20% glycerol and later used as inoculum for in vitro fermentation of beet pulp, pectin, and cellulose over 0, 6, 12, or 18 h. Fermentation patterns differed among fiber substrates. Pectin was highly fermentable, beet pulp showed moderate fermentation, and cellulose was minimally fermented, as indicated by SCFA production and pH changes. Within each fiber, BY inocula produced more SCFA and a lower pH than CTRL after 18 h, with the largest SCFA differences observed in beet pulp tubes (3549 vs. 2980 μmole/g) and the greatest pH differences in pectin tubes (−1.66 vs. –1.54). Microbiota analysis revealed increased relative abundances of SCFA-producing genera, along with reduced relative abundances of Fusobacterium, Streptococcus, and Sutterella. Overall, dried brewers yeast supplementation can influence canine gastrointestinal microbiota composition and fermentative activity in vitro. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

14 pages, 28602 KB  
Article
Enhanced Performance of Inverted Perovskite Solar Cells Employing NiOx and Cu-Doped NiOx Nanoparticle Hole Transport Layers
by Ponmudi Selvan Thiruchelvan, Chien-Chih Lai and Chih-Hung Tsai
Appl. Sci. 2025, 15(21), 11449; https://doi.org/10.3390/app152111449 (registering DOI) - 27 Oct 2025
Abstract
In this study, p-type NiOx and Cu-doped NiOx nanoparticles (NPs) were synthesized by a simple chemical precipitation method and used as hole transport layers (HTLs) for inverted perovskite solar cells (PSCs). The microstructural property, surface morphology, elemental composition, optical property, charge [...] Read more.
In this study, p-type NiOx and Cu-doped NiOx nanoparticles (NPs) were synthesized by a simple chemical precipitation method and used as hole transport layers (HTLs) for inverted perovskite solar cells (PSCs). The microstructural property, surface morphology, elemental composition, optical property, charge recombination, and surface topography of the NiOx and Cu-NiOx HTLs were comprehensively characterized. The results showed that the NiOx and Cu-NiOx NPs were uniformly coated on the substrates without pinholes or voids. Cu incorporation into NiOx did not change its crystalline nature and considerably improved its electrical conductivity. The Cu-NiOx HTLs exhibited superior photoluminescence quenching and the least lifetime decay, which indicated that Cu-NiOx exhibited higher charge transport than NiOx HTLs. The fabricated PSC performances were further analyzed using current density–voltage characteristics, external quantum efficiency, and electrochemical impedance spectroscopy. The PSCs with PEDOT:PSS, NiOx, and 2% Cu-NiOx HTLs exhibited power conversion efficiencies of 11.93%, 13.72%, and 15.54%, respectively. The 2% Cu-NiOx HTL-based device showed the best performance compared with the PEDOT:PSS- and NiOx-based devices. Academic Editors: Chunyang Zhang, Dou Zhang Full article
Show Figures

Figure 1

32 pages, 1098 KB  
Review
Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients
by Hiba Selmi, Ester Presutto, Giuseppe Spano, Vittorio Capozzi and Mariagiovanna Fragasso
Foods 2025, 14(21), 3646; https://doi.org/10.3390/foods14213646 (registering DOI) - 25 Oct 2025
Abstract
Cheese manufacturing generates large volumes of whey with high biochemical and chemical oxygen demand, historically treated as waste. Yet, whey is rich in lactose, proteins, and minerals that can be fractionated and upgraded into foods and bio-based products. During cheese production, 80% to [...] Read more.
Cheese manufacturing generates large volumes of whey with high biochemical and chemical oxygen demand, historically treated as waste. Yet, whey is rich in lactose, proteins, and minerals that can be fractionated and upgraded into foods and bio-based products. During cheese production, 80% to 90% of the total volume is discarded as whey, which can cause severe pollution. However, milk by-products can be a natural source of high-value-added compounds and a cost-effective substrate for microbial growth and metabolites production. The current review focuses on cheese whey as a key milk by-product, highlighting its generation and composition, the challenges associated with its production, methods for fractionating whey to recover bioactive compounds, its applications in functional food development, the barriers to its broader use in the food sector, and its potential as a substrate for producing value-added compounds. Particularly, the focus was on the recent solutions to use cheese whey as a primary material for microbial fermentation and enzymatic processes, producing a diverse range of chemicals and products for applications in the pharmaceutical, food, and biotechnology industries. This review contributes to defining a framework for reducing the environmental impacts of whey through its application in designing foods and generating biomaterials. Full article
Show Figures

Figure 1

21 pages, 11292 KB  
Article
Thermal Cycling Tribological Behavior and Its Evolution of hBN-Reinforced Ni/WC/CeO2 Cladding Layers from 25 to 600 °C
by Ouyang Li, Guirong Yang, Wenming Song and Ying Ma
Lubricants 2025, 13(11), 473; https://doi.org/10.3390/lubricants13110473 (registering DOI) - 25 Oct 2025
Viewed by 80
Abstract
Enhancing the high-temperature tribological performance of protective claddings is crucial for demanding industrial applications. This study focuses on developing hexagonal boron nitride (hBN)-reinforced Ni-based composite claddings to improve wear resistance over a wide temperature range. Ni/WC/CeO2 cladding layers with varying hBN contents [...] Read more.
Enhancing the high-temperature tribological performance of protective claddings is crucial for demanding industrial applications. This study focuses on developing hexagonal boron nitride (hBN)-reinforced Ni-based composite claddings to improve wear resistance over a wide temperature range. Ni/WC/CeO2 cladding layers with varying hBN contents (0.25 wt% and 0.75 wt%) were fabricated on 45 steel substrates via vacuum cladding. Their microstructure, mechanical properties, and tribological behavior under thermal cycling (25–600 °C) were systematically evaluated. Results reveal that the in situ formation of a hard Cr2B phase, coupled with hBN addition, was key to achieving optimal overall properties. The composite with 0.25 wt% hBN (NWB25) demonstrated optimal overall properties, featuring the lowest porosity (0.1813%) and the highest H/E ratio (0.0405), leading to the best overall tribological performance. A distinct transition from mild to severe wear was observed during the 300 °C-2 stage, resulting from the fracture of a high-temperature tribo-oxidative layer. An hBN content of 0.25 wt% is identified as optimal for balancing solid lubrication and matrix cohesion, thereby achieving superior thermal cycling wear resistance. Higher hBN concentrations promote grain coarsening and increased porosity, which degrade performance. Full article
Show Figures

Figure 1

33 pages, 10526 KB  
Article
Electrodeposition of Amorphous Cobalt–Phosphorus Coating
by Noam Eliaz, Gal Weisman, Amit Kohn, George Levi, Brian A. Rosen, Alexey Moshkovich and Lev S. Rapoport
Materials 2025, 18(21), 4883; https://doi.org/10.3390/ma18214883 (registering DOI) - 24 Oct 2025
Viewed by 110
Abstract
Amorphous cobalt-phosphorous (CoP) coatings are a candidate to replace hard chromium and other traditional coatings. Here, electrodeposition of both amorphous and crystalline CoP coatings was performed at room temperature and in an air environment. The bath composition and deposition conditions were optimized to [...] Read more.
Amorphous cobalt-phosphorous (CoP) coatings are a candidate to replace hard chromium and other traditional coatings. Here, electrodeposition of both amorphous and crystalline CoP coatings was performed at room temperature and in an air environment. The bath composition and deposition conditions were optimized to offer a low cost, low maintenance, and safe process. The effects of various deposition variables such as solution composition, pH, duration, and mixing parameters were studied, and the reproducibility of the process was demonstrated. Selected coatings were then thoroughly characterized by a variety of techniques. The best amorphous/nanocrystalline coating contained ca. 6.4 wt.% P after 1.2 h of deposition, and 7.2 wt.% P after 4 h of deposition. The best crystalline coating contained ca. 2.7 wt.% P after 1.2 h of deposition and between 2.3 and 5.5 wt.% P after 4 h of deposition. The amorphous coating had excellent mechanical properties: a high hardness (7.8 ± 0.7 GPa), high Young’s modulus (153 ± 9 GPa), and surprisingly low coefficient of dry friction (between 0.11 ± 0.02 and 0.17 ± 0.01). The coating could not be scraped from the substrate using a diamond scalpel blade. In a standard adhesion test, the sample failed neither cohesively within the coating nor adhesively between the coating and the substrate. In the as-deposited conditions, the structure was uniform, nanocrystalline, or had nanocrystals embedded in an amorphous matrix. The crystallization temperature of the amorphous alloy was 284 °C, and the phase transformation occurred only between 300 and 400 °C. The coatings developed and comprehensively characterized herein may be considered for aerospace, magnetic storage, fuel cells, water splitting, and other applications. Full article
(This article belongs to the Special Issue Metal Coatings for Wear and Corrosion Applications (Second Edition))
18 pages, 3059 KB  
Article
Influence of Substrate Type Made of WC-Co on CrN/CrAlN Coatings’ Durability During Machining of Particleboard
by Paweł Czarniak, Beata Kucharska, Karol Szymanowski, Corinne Nouveau, Denis Lagadrillere, Marek Betiuk, Tomasz Rygier, Krzysztof Kulikowski, Zbigniew Kusznierewicz and Jerzy Robert Sobiecki
J. Manuf. Mater. Process. 2025, 9(11), 349; https://doi.org/10.3390/jmmp9110349 (registering DOI) - 24 Oct 2025
Viewed by 68
Abstract
This paper investigates the influence of substrate grain size on the behavior of a multilayer CrN/CrAlN coating, with the bilayer thickness varying across the cross-section in the range of 200–1000 nm. The substrate tools were made of WC-Co sintered carbide with three different [...] Read more.
This paper investigates the influence of substrate grain size on the behavior of a multilayer CrN/CrAlN coating, with the bilayer thickness varying across the cross-section in the range of 200–1000 nm. The substrate tools were made of WC-Co sintered carbide with three different grain sizes. The coatings were subjected to mechanical and tribological tests to assess their performance, including nanohardness, scratch resistance, and tribological testing. The coating’s roughness was measured using a 2D profilometer. Additionally, the chemical composition and surface morphology were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The durability tests were performed on an industrial CNC machine tool on the particleboard. The results revealed that tools with ultra-fine nano-grain (S) and micro-grain (T) WC-Co substrates exhibited a significant increase in tool durability by 28% and 44%, respectively. Significant differences in the microgeometry of the substrate U, especially in relation to the tool based on substrate S, explain the lack of improvement in its durability despite the use of a multilayer coating. Full article
Show Figures

Graphical abstract

15 pages, 917 KB  
Article
Effect of Remineralization Products on the Microtensile Strength of Universal Dentin Bonding Systems
by Andra Claudia Tărăboanță-Gamen, Cristian Marius Toma, Vasilica Toma, Ionuț Tărăboanță, Simona Stoleriu, Veronica Serban Pintiliciuc and Sorin Andrian
Dent. J. 2025, 13(11), 493; https://doi.org/10.3390/dj13110493 (registering DOI) - 24 Oct 2025
Viewed by 73
Abstract
Background/Objectives: Adhesion to caries-affected dentin remains challenging due to its altered structure and composition. Remineralizing agents have been proposed to strengthen this substrate and improve bonding. This study evaluated the effect of three remineralization treatments, CPP-ACP, self-assembling peptide P11-4, and silver diamine [...] Read more.
Background/Objectives: Adhesion to caries-affected dentin remains challenging due to its altered structure and composition. Remineralizing agents have been proposed to strengthen this substrate and improve bonding. This study evaluated the effect of three remineralization treatments, CPP-ACP, self-assembling peptide P11-4, and silver diamine fluoride (SDF), on the microtensile bond strength (μTBS) of universal adhesive systems applied to caries-affected dentin, using both etch-and-rinse and self-etch strategies. Methods: Seventy human molars were sectioned and artificially demineralized to simulate caries-affected dentin. Samples were divided into ten groups: four untreated and six treated with CPP-ACP (MI Paste™), P11-4 (Curodont™ Protect), or SDF (Riva Star™). Universal adhesives were applied via etch-and-rinse or self-etch mode, followed by composite restoration. Microtensile bond strength was measured using a universal testing machine, and results were statistically analyzed with ANOVA and t-tests (p < 0.05). Results: Untreated caries-affected dentin showed significantly lower μTBS than sound dentin (C3: 18.3 ± 5.4 MPa vs. C1: 41.3 ± 2.7 MPa). Remineralization agents improved μTBS considerably. CPP-ACP achieved the highest recovery (S1: 31.8 ± 2.6 MPa; S2: 29.2 ± 4.6 MPa), nearing sound dentin levels. P11-4 yielded moderate gains (S3: 24.4 ± 6.5 MPa; S4: 24.1 ± 4.7 MPa), while SDF provided the lowest, yet significant, improvements (S5: 23.7 ± 7.5 MPa; S6: 21.3 ± 5.3 MPa). Etch-and-rinse generally produced higher μTBS than self-etch, but differences were not statistically significant (p > 0.05). Conclusions: Pre-treatment of caries-affected dentin with CPP-ACP, P11-4, or SDF enhances universal adhesive bond strength, with CPP-ACP showing the most pronounced effect. Remineralization protocols represent a valuable adjunct in restorative procedures involving compromised dentin. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

15 pages, 716 KB  
Article
The Effect of Enzymatic Disintegration Using Cellulase and Lysozyme on the Efficiency of Methane Fermentation of Sewage Sludge
by Bartłomiej Macherzyński, Małgorzata Wszelaka-Rylik, Anna Marszałek and Elżbieta Popowska-Nowak
Energies 2025, 18(21), 5597; https://doi.org/10.3390/en18215597 (registering DOI) - 24 Oct 2025
Viewed by 67
Abstract
This study presents a novel approach to intensifying the anaerobic digestion of sewage sludge through enzymatic pretreatment using hydrolytic enzymes—cellulase and lysozyme. It aims to determine how enzymatic activation affects the efficiency of methane fermentation, defined as the degree of organic matter decomposition [...] Read more.
This study presents a novel approach to intensifying the anaerobic digestion of sewage sludge through enzymatic pretreatment using hydrolytic enzymes—cellulase and lysozyme. It aims to determine how enzymatic activation affects the efficiency of methane fermentation, defined as the degree of organic matter decomposition and yield and composition of biogas. An experiment was carried out under mesophilic conditions over 20 days, analyzing the physicochemical properties of sludge, biogas production, methane content, and sanitary parameters. The addition of cellulase and lysozyme significantly enhanced process efficiency, increasing both the rate of organic matter degradation and biogas yield. The highest biogas production values (0.73 L·g−1 d.m. for cellulase and 0.72 L·g−1 d.m. for lysozyme) were obtained at a 4% (w/w) enzyme concentration, with a corresponding increase in the degree of organic matter decomposition to 78.7% and 80.0%, respectively. The produced biogas contained 58–61% methane, exceeding the values observed in the control sample, which indicates a positive effect of enzymatic activation on methane selectivity. Enhanced biogas production was attributed to improved hydrolysis of complex organic compounds, resulting in greater substrate bioavailability for methanogenic microorganisms. Moreover, methane fermentation led to the complete elimination of E. coli from all supernatants, confirming the hygienization potential of the process. The results of this study indicate that enzymatic pretreatment may serve as a viable strategy to improve both the energy efficiency and hygienic safety of anaerobic digestion processes, with relevance for future optimization and full-scale wastewater treatment applications. Full article
(This article belongs to the Special Issue Nutrient and Energy Recovery from Municipal and Industrial Wastewater)
Show Figures

Figure 1

20 pages, 8623 KB  
Article
Revitalization of Trakošćan Lake—Preliminary Analyses of the Sediment with the Possibility of Its Reuse in the Environment
by Saša Zavrtnik, Dijana Oskoruš, Sanja Kapelj and Jelena Loborec
Water 2025, 17(21), 3055; https://doi.org/10.3390/w17213055 (registering DOI) - 24 Oct 2025
Viewed by 137
Abstract
Trakošćan Lake is an artificial lake created in the mid-19th century for aesthetic and economic purposes. The area around the lake has been protected as park forest. Recently, the lake has become the most famous example of eutrophication in Croatia, as by 2022, [...] Read more.
Trakošćan Lake is an artificial lake created in the mid-19th century for aesthetic and economic purposes. The area around the lake has been protected as park forest. Recently, the lake has become the most famous example of eutrophication in Croatia, as by 2022, a significant amount of sediment had accumulated in it. Therefore, the lake was drained that same year, followed by mechanical removal of the sediment. The total amount of sediment removed was 204,000 m3. After the removal work, a particularly important question arose of what to do with such a large amount of sediment. The objective of this research was to gain specific insight into the chemical composition of the sediment with the aim of its possible use in agricultural production for increasing the quality of arable land. A comprehensive qualitative geochemical and agrochemical analysis of the sediment composition was carried out for the first time, including indicators of the pH value, amount of organic matter and carbon, total nitrogen, available phosphorus and potassium, amount of carbonates, and the presence of metals, metalloids, and non-metals, of which As, Cd, Hg, and Pb are toxic. Electrochemical, spectrophotometric, and titration methods were used, along with three atomic absorption spectrometry techniques. The results of the analyses were interpreted in comparison with the natural substrate, as well as with the current regulations for agricultural land in the Republic of Croatia. According to this, sediment is not harmful for the environment. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

18 pages, 6792 KB  
Article
Microstructure, Mechanical and Tribological Properties of Cold Sprayed Fe-Based Metallic Glass Coatings
by Anna Góral, Anna Trelka-Druzic, Wojciech Żórawski, Łukasz Maj, Martin Vicen, Otakar Bokůvka, Paweł Petrzak and Grzegorz Garzeł
Materials 2025, 18(21), 4875; https://doi.org/10.3390/ma18214875 (registering DOI) - 24 Oct 2025
Viewed by 212
Abstract
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without [...] Read more.
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without any crystallization due to its high cooling rate and short processing time, minimizing thermal influences. Thick and dense amorphous coatings were obtained. The effect of a substrate on the microstructure, phase composition, microhardness, flexural strength, and wear behaviour of the coatings was investigated. The cold sprayed coatings revealed an almost complete amorphous structure and negligible porosity. The coating deposited on the steel substrate showed higher microhardness, better resistance to loose abrasive wear, and a slightly lower wear index tested in the coating and Si3N4 ball tribological association than that cold sprayed on an Al alloy. The force required to destroy the durability of the coating–steel substrate system estimated during three-point bending tests was also much higher. Both coatings were characterized by a comparable friction coefficient. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Figure 1

18 pages, 11532 KB  
Article
A Polyhydroxybutyrate-Supported Xerogel Biosensor for Rapid BOD Mapping and Integration with Satellite Data for Regional Water Quality Assessment
by George Gurkin, Alexey Efremov, Irina Koryakina, Roman Perchikov, Anna Kharkova, Anastasia Medvedeva, Bruno Fabiano, Andrea Pietro Reverberi and Vyacheslav Arlyapov
Gels 2025, 11(11), 849; https://doi.org/10.3390/gels11110849 (registering DOI) - 24 Oct 2025
Viewed by 136
Abstract
The growing threat of organic pollution to surface waters necessitates the development of rapid and scalable monitoring tools that transcend the limitations of the standard 5-day biochemical oxygen demand (BOD5) test. This study presents a novel approach by developing a highly [...] Read more.
The growing threat of organic pollution to surface waters necessitates the development of rapid and scalable monitoring tools that transcend the limitations of the standard 5-day biochemical oxygen demand (BOD5) test. This study presents a novel approach by developing a highly stable and rapid BOD biosensor based on the microorganism Paracoccus yeei, immobilized within a sol–gel-derived xerogel matrix synthesized on a polyhydroxybutyrate (PHB) substrate. The PHB-supported xerogel significantly enhanced microbial viability and sensor stability. This biosensor demonstrated a correlation (R2 = 0.93) with the standard BOD5 method across 53 diverse water samples from the Tula region, Russia, providing precise results in just 5 min. The second pillar of our methodology involved analyzing multi-year Landsat satellite imagery via the Global Surface Water Explorer to map hydrological changes and identify zones of potential anthropogenic impact. The synergy of rapid ground-truth biosensor measurements and remote sensing analysis enabled a comprehensive spatial assessment of water quality, successfully identifying and ranking pollution sources, with wastewater discharges and agro-industrial facilities constituting the most significant factors. This work underscores the high potential of PHB–xerogel composites as efficient immobilization matrices and establishes a powerful, scalable framework for regional environmental monitoring by integrating advanced biosensor technology with satellite observation. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Figure 1

14 pages, 7812 KB  
Article
Study on Microstructures and Properties of FeCoNiCuAlSix High-Entropy Alloy Composite Coatings by Laser Cladding
by Xinyu Zhang, Chun Guo, Guangcan Huang, Zheng Peng, Ruizhang Hu, Qingcheng Lin and Tianyuan Lu
Micromachines 2025, 16(11), 1211; https://doi.org/10.3390/mi16111211 (registering DOI) - 24 Oct 2025
Viewed by 130
Abstract
FeCoNiCuAl high-entropy alloys exhibit remarkable mechanical properties; nevertheless, these materials struggle to withstand harsh environments because of their insufficient resistance to wear and corrosion. The addition of Si can significantly enhance the alloy’s high-temperature performance, hardness, and wear resistance, thereby making it more [...] Read more.
FeCoNiCuAl high-entropy alloys exhibit remarkable mechanical properties; nevertheless, these materials struggle to withstand harsh environments because of their insufficient resistance to wear and corrosion. The addition of Si can significantly enhance the alloy’s high-temperature performance, hardness, and wear resistance, thereby making it more suitable for applications in high-temperature or corrosive environments. To overcome these drawbacks, this research investigates how varying Si content affects the microstructure and properties of FeCoNiCuAl coatings. Composite coatings of FeCoNiCuAlSix (x = 0, 0.5, 1.0, 1.5, 2.0) were fabricated on 65 Mn substrates using laser cladding. Various testing methods, including metallographic microscopy, Vickers hardness testing, friction and wear testing, and electrochemical analysis, were employed to examine the phase structure, microstructure, and hardness of the coating. It is observed that the FeCoNiCuAl coating begins with a uniform FCC phase structure. However, as the Si content increases, a phase transformation to the BCC structure occurs. The microstructure is primarily composed of isometric crystals and dendrites that become finer and more compact with higher Si content. For the FeCoNiCuAlSi2.0 coating, the microhardness reaches 581.05 HV0.2. Additionally, wear resistance shows a positive correlation with Si content. Electrochemical testing in NS4 solution shows that the corrosion potential of the coating increases from −0.471 V for FeCoNiCuAl to −0.344 V for FeCoNiCuAlSi2.0, while the corrosion current density decreases from 1.566 × 10−6 A/cm2 to 4.073 × 10−6 A/cm2. These results indicate that Si addition plays a crucial role in enhancing the mechanical properties and corrosion resistance of FeCoNiCuAl coatings, making them more suitable for high-performance applications in extreme environments. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing, 2nd Edition)
Show Figures

Figure 1

15 pages, 4391 KB  
Article
Magnetically Saturated Pulsed Eddy Current for Inner-Liner Collapse in Bimetal Composite Pipelines: Physics, Identifiability, and Field Validation
by Shuyi Xie, Peng Xu, Liya Ma, Tao Liang, Xiaoxiao Ma, Jinheng Luo and Lifeng Li
Processes 2025, 13(11), 3409; https://doi.org/10.3390/pr13113409 - 24 Oct 2025
Viewed by 163
Abstract
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading [...] Read more.
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading to geometry-induced instabilities (local buckling, adhesion, and collapse), which can restrict flow, concentrate stress, and precipitate rupture and unplanned shutdowns. Conventional ultrasonic testing and magnetic flux leakage have limited sensitivity to such instabilities, while standard eddy-current testing is impeded by the ferromagnetic substrate’s high permeability and electromagnetic shielding. This study introduces magnetically saturated pulsed eddy-current testing (MS-PECT). A quasi-static bias field drives the substrate toward magnetic saturation, reducing differential permeability and increasing effective penetration; combined with pulsed excitation and differential reception, the approach improves defect responsiveness and the signal-to-noise ratio. A prototype was developed and evaluated through mechanistic modeling, numerical simulation, laboratory pipe trials, and in-service demonstrations. Field deployment on composite pipelines at the Hutubi UGS (Xinjiang, China) enabled rapid identification and spatial localization of liner collapse under non-shutdown or minimally invasive conditions. MS-PECT provides a practical tool for composite-pipeline integrity management, reducing the risk of unplanned outages, enhancing peak-shaving reliability, and supporting resilient UGS operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

14 pages, 2653 KB  
Article
Diversity and Ecology of Myxomycetes (Amoebozoa) Along a Vegetational Gradient in the Peruvian Andes
by Jorge Renato Pinheiro Velloso, Laise de Holanda Cavalcanti, Italo Treviño-Zevallos, Carlos Ernesto Gonçalves Reynaud Schaefer, Marcio Rocha Francelino and Jair Putzke
Diversity 2025, 17(11), 745; https://doi.org/10.3390/d17110745 - 23 Oct 2025
Viewed by 195
Abstract
The study investigated the diversity and ecology of Myxomycetes (Amoebozoa) along a vegetation gradient in the Cuzco department, Peru, spanning altitudes from 2500 to 4700 m. Field collections were carried out at six sites distributed across three distinct vegetation formations: non-Amazonian Forest, paramo, [...] Read more.
The study investigated the diversity and ecology of Myxomycetes (Amoebozoa) along a vegetation gradient in the Cuzco department, Peru, spanning altitudes from 2500 to 4700 m. Field collections were carried out at six sites distributed across three distinct vegetation formations: non-Amazonian Forest, paramo, and high Andean zones with and without vegetation cover. The collected material was analyzed through direct observation, cultivation in moist chambers, and morphological identification, resulting in the record of 18 species, including three new records for Peru (Diderma circumdissilens, Licea tenera, and Perichaena luteola). Species richness was higher at lower altitudes and in environments with greater substrate availability, such as dead branches and mosses, but declined under extreme environmental conditions, particularly at high elevations. Principal component analysis revealed differences in community composition among the environments, associated with environmental variables and substrate types. The results highlight that the Peruvian Andes harbor a significant biodiversity of Myxomycetes, including species adapted to high-altitude conditions, reinforcing the importance of conservation and further study of these extreme ecosystems. We conclude that high mountain environments serve as biodiversity hotspots, and that future studies, including molecular techniques, are essential to understanding the distribution and adaptation of these organisms in the Andean environments. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

Back to TopTop