Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = subsurface soil horizons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2231 KB  
Article
Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia
by Eyasu Elias, Alemayehu Regassa, Gudina Legesse Feyisa and Abreham Berta Aneseyee
Sustainability 2025, 17(18), 8341; https://doi.org/10.3390/su17188341 - 17 Sep 2025
Viewed by 323
Abstract
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) [...] Read more.
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) does not recognize the presence of Planosols. In contrast, the more recent digital soil map of Ethiopia, EthoSoilGrids v1.0, at a 250 spatial resolution, was not detailed enough to capture Planosol landscapes, reflecting their historical undersampling in the legacy data. To address this gap, we conducted a thorough mapping and characterization of Planosols in the Omo-Gibe basin, southwestern Ethiopian highlands. Using over 200 auger observations, 74 georeferenced soil profiles, 296 laboratory analyses, and Random Forest modeling, we produced a 30 m-resolution soil-landscape map. Our results show that Planosols cover about 18% of the basin, a substantial extent previously unrecognized in national exploratory maps. Morphologically, these soils exhibit abrupt textural change from the coarse-textured, light grey Ap/Eg horizon (about 30–40 cm thick) to a very clayey, grey–black Bssg/Bt horizon occurring below 40 cm depth. Analytical data on selected parameters show the following pattern: low clay contents (20–29%) and acidic pH (5.2–5.8) with relatively low CEC values (11–26 cmol/kg) in the surface horizons (Ap/Eg), but pronounced clay increase (37–74%), higher bulk density (1.3 g/cm3), higher pH (up to 6.5), and substantially higher CEC (37–47 cmol/kg) in the sub-surface horizons (Bss/Bt). In terms of soil fertility, Planosols are low in SOC, TN, and exchangeable K contents, but micronutrient levels are variable—high in Fe-Mn-Zn and low in B and Cu. The findings confirm the diagnostic features of WRB Planosols and align with regional East African averages, underscoring the reproducibility of our approach. By rectifying long-standing misclassifications and generating fine-scale, field-validated evidence on soil fertility constraints and management options, this study establishes a strong foundation for targeted soil management in Ethiopia. It offers transferable insights for Planosol-dominated agroecosystems across Eastern Africa. Globally, the dataset contributes to enriching the global scientific knowledge and evidence base on Planosols, thereby supporting their improved characterization and management. Full article
(This article belongs to the Special Issue The Sustainability of Agricultural Soils)
Show Figures

Figure 1

20 pages, 4539 KB  
Article
Effect of Different Oak Forest Management Models on Seasonal Variability in Soil Properties at Sites with Igneous and Sedimentary Subsoil
by Jiří Volánek, Pavel Samec, Ladislav Holík, Aleš Bajer and Marie Balková
Forests 2025, 16(2), 350; https://doi.org/10.3390/f16020350 - 15 Feb 2025
Viewed by 762
Abstract
Traditional forest management models could potentially be used to combat changes in environmental conditions by stimulating soil properties and supporting tree growth. In this study, we compare the effects of different oak (Quercus petraea /Matt./Liebl.) forest models [coppice, coppice-with-standard, stocked coppice (reference)] [...] Read more.
Traditional forest management models could potentially be used to combat changes in environmental conditions by stimulating soil properties and supporting tree growth. In this study, we compare the effects of different oak (Quercus petraea /Matt./Liebl.) forest models [coppice, coppice-with-standard, stocked coppice (reference)] on seasonal variability in soil properties at upland igneous and sedimentary sites (280–418 m a.s.l.). Soils were sampled at 0–5 and 10–15 cm in 50 × 50 m model and reference plots in January, April, July and October between 2015 and 2019, and soil organic matter, soil respiration, enzyme activity, pH and water-holding capacity were determined. The effects of forest model and seasonality were then compared using time-series analysis, analysis of variance and discriminant analysis. Overall, the models differentiated subsurface soil horizons from the topsoil and their feedback varied between sites. While water-holding capacity increased at the igneous stands, acid phosphomonoesterase activity increased and nitrogen content decreased at the sedimentary site. While the most significant negative influence of the forest model on soil properties was observed at the sedimentary site, the greatest increase in soil organic matter and water holding capacity was registered at the igneous coppice-with-standards site. Consequently, using the appropriate forest management model on different subsoil types could be valuable for improving carbon sequestration and drought resistance. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Soil Properties in Forest Ecosystems)
Show Figures

Figure 1

38 pages, 5464 KB  
Article
Early-Stage Impacts of Irrigated Conservation Agriculture on Soil Physical Properties and Crop Performance in a French Mediterranean System
by Juan David Dominguez-Bohorquez, Claire Wittling, Bruno Cheviron, Sami Bouarfa, Nicolas Urruty, Jean-Marie Lopez and Cyril Dejean
Agronomy 2025, 15(2), 299; https://doi.org/10.3390/agronomy15020299 - 25 Jan 2025
Cited by 2 | Viewed by 1191
Abstract
The Mediterranean region faces intensified climate change effects, increasing irrigation demands to sustain crop yields and increasing pressure on water resources. Adaptive management strategies such as conservation agriculture (CA) offer potential benefits for soil quality and water use efficiency. However, there is limited [...] Read more.
The Mediterranean region faces intensified climate change effects, increasing irrigation demands to sustain crop yields and increasing pressure on water resources. Adaptive management strategies such as conservation agriculture (CA) offer potential benefits for soil quality and water use efficiency. However, there is limited research on the short-term effects of this farming system under irrigated Mediterranean climatic conditions. This study aimed to explore the short-term impacts of conservation agriculture (no tillage, cover crops and crop rotation) on the soil properties, water flows and crop and water productivity in a French Mediterranean agrosystem of irrigated field crops, using a multifactorial approach. From 2021 to 2023, maize, sorghum and soybean were grown successively under either conventional tillage (CT) or conservation agriculture (CA), combined with sprinkler irrigation, subsurface drip irrigation or non-irrigated conditions. The dynamics of the surface soil properties (bulk density, penetration resistance, soil temperature), water flows (infiltration, soil evaporation) and agronomic indicators (leaf area index, crop yield, water productivity) were measured across the three cropping seasons. In the pedoclimatic conditions of the study, CA was shown to clearly impact the soil properties, water flows and crop yields, from the first year of adoption. CA practices caused an increased bulk density and soil resistance penetration, leading to decreased quasi-steady ponded infiltration in the surface horizon, particularly in the CA–subsurface drip and CA–non-irrigated conditions. These effects were also reflected in the leaf area index, crop yield and water productivity, with CA showing lower values compared to CT. Crop residues in CA reduced soil evaporation, particularly under sprinkler irrigation. However, this benefit diminished as the residues decomposed, leading to soil evaporation rates comparable to those observed in CT. Agronomic indicators were better under sprinkler irrigation than under subsurface drip irrigation. Overall, compaction emerged as a significant challenge in the adoption of CA, considering its negative impact on crop yields. Full article
Show Figures

Figure 1

11 pages, 1311 KB  
Article
Influence of Annual Ryegrass (Lolium multiflorum) as Cover Crop on Soil Water Dynamics in Fragipan Soils of Southern Illinois, USA
by Amitava Chatterjee, Dana L. Dinnes, Daniel C. Olk and Peter L. O’Brien
Soil Syst. 2024, 8(4), 126; https://doi.org/10.3390/soilsystems8040126 - 3 Dec 2024
Viewed by 1268
Abstract
Fragipans are dense subsurface soil layers that severely restrict root penetration and water movement. The presence of shallow fragipan horizons limits row crop production. We hypothesized that the roots of cover crop might improve soil physiochemical properties and biological activity, facilitating drainage and [...] Read more.
Fragipans are dense subsurface soil layers that severely restrict root penetration and water movement. The presence of shallow fragipan horizons limits row crop production. We hypothesized that the roots of cover crop might improve soil physiochemical properties and biological activity, facilitating drainage and increasing effective soil depth for greater long-term soil water storage. To evaluate annual ryegrass as one component of a cover crop (CC) mix for promoting the characteristics and distribution of soil water, on-farm studies were conducted at Marion and Springerton in southern Illinois, USA. Soil samples were collected at 15 cm increments to 60 cm (Marion) and 90 cm (Springerton) depths during the fall of 2022. Both sites had low total soil carbon and nitrogen contents and acidic soil pH (≤6.4). A soil water retention curve was fitted using the van Genuchten equation. At Springerton, the CC treatment increased saturated (thetaS) and residual (thetaR) soil water contents above those of the no cover crop (NCC) at the 60–75 cm and 75–90 cm depths. Changes in volumetric soil water content were measured using a multi-depth soil water sensor for the Springerton site during late July to early August of the soybean growing phase of 2022; NCC had higher soil water than CC within the 0–15 cm depth, but CC had higher soil water than NCC at the 30–45 cm depth. These findings indicate that cover crop mix has the potential to improve soil water movement for soils with restrictive subsoil horizon, possibly through reducing the soil hydraulic gradient between the surface and restrictive subsurface soil layers. Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes)
Show Figures

Figure 1

21 pages, 7451 KB  
Article
Integrated Subsurface Hydrologic Modeling for Agricultural Management Using HYDRUS and UZF Package Coupled with MODFLOW
by Efthymios Chrysanthopoulos, Martha Perdikaki, Konstantinos Markantonis and Andreas Kallioras
Water 2024, 16(22), 3297; https://doi.org/10.3390/w16223297 - 17 Nov 2024
Cited by 3 | Viewed by 1731
Abstract
The present work aims to compare two different subsurface hydrological models, namely HYDRUS and MODFLOW UZF package, in terms of groundwater recharge; thus, both models were coupled with MODFLOW. The study area is an experimental kiwifruit orchard located in the Arta plain in [...] Read more.
The present work aims to compare two different subsurface hydrological models, namely HYDRUS and MODFLOW UZF package, in terms of groundwater recharge; thus, both models were coupled with MODFLOW. The study area is an experimental kiwifruit orchard located in the Arta plain in the Epirus region of Greece. A novel conceptual framework is introduced in order to (i) use in situ and laboratory measurements to estimate parameter values for both sub-surface flow models; (ii) couple the developed models with MODFLOW to estimate groundwater recharge; and (iii) compare and evaluate the performance of both approaches, with differences stemming from the distinctive equations describing the flow in the unsaturated zone. Detailed soil investigation was conducted in two soil horizons in the research field to identify soil texture zones, along with infiltration experiments implementing both double-ring and single-ring infiltrometers. The results of the field measurements indicate that fine-textured soils are predominant within the field, affecting several hydrological processes, such as infiltration, drainage, and root water uptake. Field measurements were incorporated in unsaturated zone flow modeling and the infiltration fluxes were simulated with the application of both the UZF package of MODFLOW and the HYDRUS code. The two codes presented acceptable agreement between the simulated and observed hydraulic head values with a similar performance in terms of statistics; however, they produced different results regarding recharge rates in the aquifer as simulated by MODFLOW. HYDRUS produced higher hydraulic head values in the aquifer throughout the simulation, related to higher recharge rates arising from the root water uptake and the capillary effects that are computed by HYDRUS but neglected by the UZF package of MODFLOW. Full article
Show Figures

Figure 1

18 pages, 6883 KB  
Article
Treating Tropical Soils with Composted Sewage Sludge Reduces the Mineral Fertilizer Requirements in Sugarcane Production
by Rafael dos Santos Silva, Marcelo Carvalho Minhoto Teixeira Filho, Arshad Jalal, Rodrigo Silva Alves, Nathércia Castro Elias, Raimunda Eliane Nascimento do Nascimento, Cassio Hamilton Abreu-Junior, Arun Dilipkumar Jani, Gian Franco Capra and Thiago Assis Rodrigues Nogueira
Land 2024, 13(11), 1820; https://doi.org/10.3390/land13111820 - 2 Nov 2024
Cited by 1 | Viewed by 2144
Abstract
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient [...] Read more.
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient concentrations in the soil surface (Ap1; 0–25 cm) and subsurface (Ap2; 25–50 cm) horizons, after CSS application with or without CMF in sugarcane cultivation (first and second ratoon cane). Eleven treatments, featured by CSS increase rates and mixed with CMF at different concentrations, were tested in the first ratoon; during the second, the CSS residual effect was evaluated. Applying CSS in sugarcane-cultivated soils, improved the following: (i) soil organic matter, pH, the sum of bases, cation-exchange capacity, and base saturation; (ii) overall nutrient concentrations (P, K, Ca, Mg, B, Cu, and Zn). The treatments showing the best performances were those with 5.0 Mg ha−1 of CSS. Composted sewage sludge has the potential for use as an organic natural fertilizer reducing the need for CMF. When applied in infertile tropical soils, additional positive effects can be achieved, such as decreasing production costs and providing socio-economic benefits. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

13 pages, 7713 KB  
Article
Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes
by Akinniyi Akinsunmade, Paweł Pysz, Mirosław Zagórda, Anna Miernik and Sylwia Tomecka-Suchoń
Appl. Sci. 2024, 14(16), 7328; https://doi.org/10.3390/app14167328 - 20 Aug 2024
Cited by 1 | Viewed by 1152
Abstract
Soil plays significant roles in different phases and in the continuous existence of human life. Its comprehensive knowledge, particularly as related to its physical characteristics, enhances its utilization, conservation, and management. The traditional methods of soil study are characterized with some pitfalls such [...] Read more.
Soil plays significant roles in different phases and in the continuous existence of human life. Its comprehensive knowledge, particularly as related to its physical characteristics, enhances its utilization, conservation, and management. The traditional methods of soil study are characterized with some pitfalls such as much time needed to perform such assessments. There are also issues of invasiveness that affect the soil structures and discrete sampling that may not reflect true spatial attributes in the outcome of such techniques. These problems are largely due to the concealing nature of soil layers that made its thorough evaluation difficult. In this study, an alternative geophysical approach has been adopted. The technique is the ground-penetrating method (GPR) that utilizes electromagnetic pulse energy via its equipment’s sensors, which can allow the investigation of soil properties, even in its concealing state. This study aimed at qualitatively evaluating the soil horizons and the matric potentials using the GPR signal attributes within the unsaturated zone with a view of having insight into the test field’s characterization. Field data measurements were obtained using MALA ProEX GPR equipment with its accessories manufactured by MALA Geosciences, Stockholm, Sweden. Evaluation of the processed field data results and computed attributes show soil characteristics variations with depth that was interpreted as the layers. This can be seen from the GPR data presentation as an image representing the subsurface of the zones of propagation of the pulse energy. Spectral analysis of the GPR signals allows for the delineation of two zones of contrasting features, which were tagged as high and low matric potentials. Although the conventional direct measurement of the matric potential was not made at the time of the study to complement and confirm the veracity of the approach, the results indicate the possibility of the approach towards a quick and in situ technique of soil investigations. Such evaluation may be valuable input in precision agriculture where accurate data are sought for implementation. Full article
(This article belongs to the Special Issue Engineering of Smart Agriculture—2nd Edition)
Show Figures

Figure 1

23 pages, 4576 KB  
Article
Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth
by Anna Piotrowska-Długosz, Jacek Długosz, Barbara Kalisz and Michał Gąsiorek
Agronomy 2024, 14(1), 83; https://doi.org/10.3390/agronomy14010083 - 29 Dec 2023
Cited by 4 | Viewed by 2046
Abstract
Determination of the microbial and enzymatic properties in soil is primarily concentrated on the surface layers of the soil profiles; however, it is well known that the transformation of soil organic matter also occurs in the deeper horizons of the soil profile. The [...] Read more.
Determination of the microbial and enzymatic properties in soil is primarily concentrated on the surface layers of the soil profiles; however, it is well known that the transformation of soil organic matter also occurs in the deeper horizons of the soil profile. The aim of this study was to assess any changes in specific sets of enzyme activities and their associated physicochemical properties as affected by two different agricultural land-use systems and soil depth. Changes in the studied properties were determined across four Luvisol profiles in two agricultural land uses (arable land and vineyards). The enzyme activities associated with the transformation of C, N and P were analyzed. Additionally, the activity of some oxidoreductases and the fluorescein diacetate hydrolysis (FDAH) rate were also determined. Moreover, the content of the various forms of soil carbon, nitrogen, phosphorus (including microbial biomass C, N and P) and some other properties (pH, clay and silt content) were assessed. Agricultural land use significantly affected the microbial biomass content and as well as the studied enzyme activities. Most of the studied enzymes exhibited a higher activity in the grapevine (GV) profiles, which was followed by the winter wheat (WW) profiles; however, the largest variability occurred for the urease activity. There was no clear differentiation between the two studied land uses for the activity of nitrate reductase, dehydrogenases, acid phosphatase, or endo- and exo-cellulase. Irrespective of the plant being cultivated, the soil variables decreased significantly with increasing soil depth, wherein the greatest changes were observed between the surface and sub-surface soil horizons (I–II). The activity of some enzymes (e.g., the urease activity in WW profiles) decreased gradually across the soil profiles, while others were located almost solely within the surface layers (e.g., the nitrate reductase activity in the GV profiles as well as invertase in the WW profiles). The α-glucosidase activity did not exhibit any statistically significant changes along the analyzed profiles. The activity of phenol oxidase and peroxidase also revealed different trends along the studied profiles compared to the other enzymes and did not decrease gradually with depth. The microbial biomass of the C, N and P content was generally the highest in the upper horizons and gradually decreased with depth, wherein the largest decrease was observed between the surface and sub-surface horizon. The studied enzyme activities were more dependent on the soil carbon content compared to the other soil properties. And thus, in the C-rich horizons (C > 4 g kg) for the surface and subsurface layers the enzyme activities were highly correlated with TOC, DOC and MBC content as compared to the deeper, C-low horizons (C < 4 g kg). By examining how the microbial and enzymatic properties change across the soil profiles, it is possible to gain valuable insight into the long-term biogeochemical processes that are involved in soil fertility and in the health of agricultural ecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 9318 KB  
Article
Geophysical Investigation, Quality, and Sustainability Analysis of Groundwater in Mewat (Nuh) District, Haryana, India
by Amandeep Kaur and Gopal Krishan
Water 2024, 16(1), 38; https://doi.org/10.3390/w16010038 - 21 Dec 2023
Cited by 1 | Viewed by 4115
Abstract
This study utilizes geophysical investigations, combining both surface and subsurface methods, assessing quality and mapping aquifers in Haryana’s Mewat district, India. The primary objectives are to delineate the interface between freshwater and saline water, both horizontally and vertically and to perform a quality [...] Read more.
This study utilizes geophysical investigations, combining both surface and subsurface methods, assessing quality and mapping aquifers in Haryana’s Mewat district, India. The primary objectives are to delineate the interface between freshwater and saline water, both horizontally and vertically and to perform a quality and sustainability analysis. It has been observed that topsoil, approximately 12 m thick, has resistivity values ranging from 11 to 35 ohm-m, where higher values indicate lower soil saturation. Resistivity exceeding 15 ohm-m correlates with granular zones housing fresh groundwater, while values below 15 ohm-m signal saline to brackish groundwater. Approximately 55% of the region features saline groundwater, mainly in central, western, and southern areas. Freshwater resources within a depth of 30 m cover 26–30% of the area, mainly in the northwest and southwest parts. Beyond 40 m, freshwater availability drops significantly, with depths exceeding 100 m likely encountering hard rock or saline horizons. This study also highlights low freshwater yield challenges due to thin granular zones and variable bedrock depths, some as shallow as 90 m. Additionally, the research examines infiltration rates, ranging from 90 mm/h to 660 mm/h initially and 5 mm/h to 164 mm/h ultimately, with an average rate of 151 mm/h, highlighting sandy soils with some clay limitations. Utilizing available data, a three-dimensional hydrogeological model was constructed, shedding light on groundwater-related issues, such as depletion, waterlogging, water quality, and excess salinity. Groundwater development reached ~80%, categorized as semi-critical. Depletion affects areas with fresh groundwater, and waterlogging is a concern in central and north-eastern regions. In addition to salinity, other water quality issues are higher nitrate, sodium, and chloride concentrations, leading to salt-affected soils in specific blocks like Nuh and Nagina. In summary, this study offers a comprehensive assessment of groundwater resources in Mewat, Haryana, emphasizing sustainable utilization and tailored management of localized challenges. This underscores the importance of integrated water resource management to ensure prudent use while preserving the environment for future generations. Full article
(This article belongs to the Special Issue Environmental Hydrogeology and Groundwater Modelling)
Show Figures

Figure 1

26 pages, 17674 KB  
Article
Comparative Studies on Soil Quality Index Estimation of a Hilly-Zone Sub-Watershed in Karnataka
by M. Bhargava Narasimha Yadav, P. L. Patil and M. Hebbara
Sustainability 2023, 15(24), 16576; https://doi.org/10.3390/su152416576 - 6 Dec 2023
Cited by 2 | Viewed by 2461
Abstract
The assessment of soil quality aims to evaluate the utility and health of soils. In agricultural studies, soil productivity can be likened to soil quality. Evaluating the Soil Quality Index (SQI) solely based on surface properties offers an incomplete picture because productivity is [...] Read more.
The assessment of soil quality aims to evaluate the utility and health of soils. In agricultural studies, soil productivity can be likened to soil quality. Evaluating the Soil Quality Index (SQI) solely based on surface properties offers an incomplete picture because productivity is influenced by both surface and subsurface characteristics, with the latter associated with pedogenic processes. Additionally, relying on weighted averages of soil properties from a soil profile for the SQI may offer an overall summary, but it can occasionally obscure variations that manifest across different soil horizons. Therefore, the present study was conducted to assess the SQI in the Ganjigatti sub-watershed using data from 27 soil profiles and three different methods: (1) assessment of horizon-wise SQI by subjecting the soil properties of every horizon to principal component analysis (PCA), followed by the calculation of the weighted averages of the SQI for each soil profile (SQI-1); (2) calculation of the weighted averages of the soil properties for each soil profile, subjected to PCA, and followed by an SQI assessment (SQI-2); and (3) SQI assessment considering the properties of the Ap horizon for each soil profile (SQI-3). Additionally, to validate SQI methodologies, correlation studies were conducted against major crop yields in the sub-watershed. The results showed that cation exchange capacity (CEC) has the most significant weight and contribution to the SQI determined using MDS, followed by porosity, exchangeable sodium percentage (ESP), organic carbon (OC), CN ratio, and total N. SQI-1 was most strongly correlated with crop yield; the correlation coefficient ranged from 0.69 to 0.74. Among all the three methodologies, SQI-1 and -2 were better methods for assessment of SQI compared to SQI-3. In the SQI-1 method, the soil quality of pedons ranged from 0.26 (pedon-26) to 0.74 (pedon-11). The majority of the area in the sub-watershed (72.40%) fell within the medium category of SQI (0.35–0.55), followed by the high category of SQI (>0.55), which comprised 12.92%, and the low SQI (<0.35), which comprised 6.45% of the sub-watershed. Full article
Show Figures

Figure 1

21 pages, 8954 KB  
Article
Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada
by Mohammad Zeynoddin, Hossein Bonakdari, Silvio José Gumiere and Alain N. Rousseau
Sustainability 2023, 15(12), 9567; https://doi.org/10.3390/su15129567 - 14 Jun 2023
Cited by 5 | Viewed by 2096
Abstract
The profound impact of soil temperature (TS) on crucial environmental processes, including water infiltration, subsurface movement, plant growth, and its influence on land–atmosphere dynamics, cannot be undermined. While satellite and land surface model-based data are valuable in data-sparse areas, they [...] Read more.
The profound impact of soil temperature (TS) on crucial environmental processes, including water infiltration, subsurface movement, plant growth, and its influence on land–atmosphere dynamics, cannot be undermined. While satellite and land surface model-based data are valuable in data-sparse areas, they necessitate innovative solutions to bridge gaps and overcome temporal delays arising from their dependence on atmospheric and hydro–meteorological factors. This research introduces a viable technique to address the lag in the Famine Early Warning Network Land Data Assimilation System (FLDAS). Notably, this approach exhibits versatility, proving highly effective in analyzing datasets characterized by significant seasonal trends, and its application holds immense value in watershed-scaled hydrological research. Leveraging the enhanced state-space (SS) method for forecasting in the FLDAS, this technique harnesses TS datasets collected over time at various depths (0–10 cm, 10–40 cm, and 40–100 cm), employing a multiplicative SS model for modeling purposes. By employing the 1-step, 6-step, and 12-step-ahead models at different depths and 2 locations in Quebec, Canada, the outcomes showcased a performance with an average coefficient of determination (R2) of 0.88 and root mean squared error (RMSE) of 2.073 °C for the dynamic model, R2 of 0.834 and RMSE of 2.979 °C for the 6-step-ahead model, and R2 of 0.921 and RMSE of 1.865 °C for the 12-step-ahead model. The results revealed that as the prediction horizon expands and the length of the input data increases, the accuracy of predictions progressively improves, indicating that this model becomes increasingly accurate over time. Full article
(This article belongs to the Special Issue Application of AI in Environmental Engineering)
Show Figures

Figure 1

12 pages, 2021 KB  
Article
Comparison of Soil Taxonomy (2022) and WRB (2022) Systems for Classifying Paddy Soils with Different Drainage Grades in South Korea
by Dan-Bi Lee, Young-Nam Kim, Yeon-Kyu Sonn and Kye-Hoon Kim
Land 2023, 12(6), 1204; https://doi.org/10.3390/land12061204 - 9 Jun 2023
Cited by 12 | Viewed by 6589
Abstract
Soil classification is the systematic classification of soils based on distinguishing the characteristics of soil, aiding in understanding the properties of soils through soil survey and establishing appropriate strategies for effective soil utilization and management. Globally, the Soil Taxonomy (ST) and the World [...] Read more.
Soil classification is the systematic classification of soils based on distinguishing the characteristics of soil, aiding in understanding the properties of soils through soil survey and establishing appropriate strategies for effective soil utilization and management. Globally, the Soil Taxonomy (ST) and the World Reference Base for soil resources (WRB) are widely used for soil classification. However, the two classification systems have differences in criteria, thus exhibiting difficulties in exchanging classification results. In South Korea, soil classification has been steadily implemented to provide useful soil information to farmers for efficient soil management, contributing to the sustainability of paddy lands, but it has not been easy to establish an accurate classification system due to intensive soil management and variation in soil redox conditions. In this study, two paddy soils with different drainage grades, pedon 1 and pedon 2, were classified using the ST and WRB, and based on the comparative results, a classification criterion for paddy soil in Korea was recommended. According to ST, pedon 1 was classified as a coarse loamy, mesic family (the mean annual soil temperature, 11–14 °C) of Anthroaquic Eutrudepts (artificially irrigated, base saturation > 60%), whereas pedon 2 was a coarse loamy, mesic family of Fluvaquentic Endoaquepts (organic carbon content > 0.2%, water-saturated across the soil profile). Based on the WRB, the two soils were categorized as follows: Stagnic Hydragric Anthrosols (Eutric, Loamic, Oxyaquic) (saturated with surface water, subsurface horizon that is wet-field and human-affected) for pedon 1 and Stagnic Gleyic Hydragric Anthrosols (Eutric, Loamic, Oxyaquic) (saturated with surface and ground water, subsurface horizon that is wet-field and human-affected) for pedon 2. Overall, the two classification systems categorized these pedons consistently by judging the soil properties according to depth, but there was a difference in layer classification upon saturation by water across the soil horizons. Poor soil drainage hinders rice growth in paddies due to lowering soil and water temperature and the occurrence of harmful reduction products. In this regard, we proposed a draft of the classification criteria specialized for paddy soils in Korea based on drainage grades. This will contribute to sustainable paddy soil management by accurately classifying paddy soils and providing better soil information to farmers. Full article
(This article belongs to the Special Issue Geomorphology and Soils Applied to Natural Resources Sustainability)
Show Figures

Figure 1

17 pages, 1807 KB  
Article
Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation
by Manuel Rodríguez-Rastrero, Almudena Ortega-Martos and Víctor Cicuéndez
Soil Syst. 2023, 7(2), 31; https://doi.org/10.3390/soilsystems7020031 - 5 Apr 2023
Viewed by 5151
Abstract
This research analyzes the relationships between “soil” and “organisms” within the framework of the Jenny equation, a fundamental expression in soil science that is the theoretical basis for modeling the complex occurrence of soils on landscapes. This analysis is based on the interpretation [...] Read more.
This research analyzes the relationships between “soil” and “organisms” within the framework of the Jenny equation, a fundamental expression in soil science that is the theoretical basis for modeling the complex occurrence of soils on landscapes. This analysis is based on the interpretation of the indeterminate function “f” of the equation as “statistical dependence between categorical variables”. The categories of the “soil” component of the equation have been defined as “diagnostic horizons”, and those of the “organisms” factor as synthetic types of “land cover”. After applying these criteria to 424 soil profiles studied in a region with an oceanic climate in northern Spain, a multiple correspondence analysis showed pedologically consistent groupings between diagnostic horizons and categories of climate, land cover, relief, and parent material factors. Subsequently, a bivariate analysis detailed pedologically consistent relationships between diagnostic horizons and land cover categories. In the context the scarcity of quantitative information on soil and forming factor relationships, this work provides criteria to statistically assess the role of land cover in such relationships. This soil forming factor is the one whose spatial representation is more generalized and detailed, hence its interest in the development of soil mapping models. Full article
Show Figures

Figure 1

19 pages, 6623 KB  
Article
A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape
by Annelie Ehrhardt, Sylvia Koszinski and Horst H. Gerke
Water 2023, 15(6), 1248; https://doi.org/10.3390/w15061248 - 22 Mar 2023
Cited by 2 | Viewed by 2380
Abstract
Lateral subsurface flow (LSF) is a phenomenon that is widely occurring including the hummocky ground moraine landscape. Due to the heterogeneous structure of the subsurface, transport times of pesticides and nutrients from agricultural areas to adjacent water bodies are difficult to assess. Here, [...] Read more.
Lateral subsurface flow (LSF) is a phenomenon that is widely occurring including the hummocky ground moraine landscape. Due to the heterogeneous structure of the subsurface, transport times of pesticides and nutrients from agricultural areas to adjacent water bodies are difficult to assess. Here, LSF at Luvisol and Regosol plots of an experimental field were studied by applying potassium bromide along a 10 m trench below the plow pan in October 2019. The soil solution was collected in suction cups 3 m downslope of the trench and in April 2021, the soil was sampled down to 1 m depth. Almost no bromide was found in the soil solution except for the 160 cm depth of the Regosol plot after a 541 day period. After the same time, bromide was observed in the 90 cm soil depth directly underneath the application trench of the Luvisol plot. A 3D reconstruction of the subsurface horizon boundaries of the Regosol revealed subsurface heterogeneities such as sand lenses that might have been attributed to the heterogeneous subsurface flow pattern. Full article
Show Figures

Figure 1

14 pages, 2564 KB  
Article
Subsurface Lateral Solute Transport in Turfgrass
by Manuel E. Camacho, Carlos A. Faúndez-Urbina, Aziz Amoozegar, Travis W. Gannon, Joshua L. Heitman and Ramon G. Leon
Agronomy 2023, 13(3), 903; https://doi.org/10.3390/agronomy13030903 - 18 Mar 2023
Viewed by 1925
Abstract
Turfgrass managers have suspected that runoff-independent movement of herbicides and fertilizers is partially responsible for uneven turfgrass quality in sloped areas. We hypothesized that subsurface lateral solute transport might explain this phenomenon especially in areas with abrupt textural changes between surface and subsurface [...] Read more.
Turfgrass managers have suspected that runoff-independent movement of herbicides and fertilizers is partially responsible for uneven turfgrass quality in sloped areas. We hypothesized that subsurface lateral solute transport might explain this phenomenon especially in areas with abrupt textural changes between surface and subsurface horizons. A study was conducted to track solute transport using bromide (Br), a conservative tracer, as a proxy of turfgrass soil inputs. Field data confirmed the subsurface lateral movement of Br following the soil slope direction, which advanced along the boundary between soil horizons over time. A model based on field data indicated that subsurface lateral movement is a mechanism that can transport fertilizers and herbicides away from the application area after they have been incorporated within the soil, and those solutes could accumulate and resurface downslope. Our results demonstrate that subsurface lateral transport of solutes, commonly ignored in risk assessment, can be an important process for off-target movement of fertilizers and pesticides within soils and turfgrass systems in sloped urban and recreational landscapes. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop